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This paper responds to research into the aerodynamics
of flapping wings and to the problem of the lack of an
adequate method which accommodates large-scale trailing
vortices. A comparative review is provided of prevailing
aerodynamic methods, highlighting their respective
limitations as well as strengths. The main advantages of an
unsteady aerodynamic panel method are then introduced
and illustrated by modelling the flapping wings of a
tethered sphingid moth and comparing the results with

those generated using a quasi-steady method. The
improved correlations of the aerodynamic forces and the
resultant graphics clearly demonstrate the advantages of
the unsteady panel method (namely, its ability to detail the
trailing wake and to include dynamic effects in a
distributed manner).
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Summary
The growing body of research on the aerodynamic energy
requirements necessary for insect flight (Weis-Fogh, 1956;
Dudley, 1991; Ellington, 1991; Sunada et al. 1993a) utilizes
six prevailing methods: momentum, blade-element, hybrid
momentum (or vortex), lifting-line, two-dimensional thin
airfoil and lifting-surface (or vortex lattice). Unfortunately,
extant analyses of the aerodynamics of flapping wings are
unduly constrained for reasons related either to the inherent
limitations or to the inappropriate application of prevailing
methods. In response to such constraints, this paper highlights
and illustrates the advantages of a distinct type of lifting-
surface method known as an unsteady aerodynamic panel
method. An earlier draft of this paper was presented as a poster
at the Society for Experimental Biology Symposium
‘Biological Fluid Dynamics’, University of Leeds, England,
July 1994.

The analysis of aerodynamic forces on flapping wings:
prevailing methods

Momentum, blade-element and hybrid momentum methods

The concern of biologists and zoologists with the energetics
of animal locomotion has led to a focus on momentum, blade-
element or ‘hybrid’ momentum methods (i.e. methods that
combine elements of both simple momentum and blade-
element theory), which enable the prediction of energy usage
as a function of forward speed or animal size and type.

The momentum (or momentum-jet) method relies on

Introduction
modelling the beating plane of a flapping wing as an actuator
disk which accelerates the surrounding air and thus imparts a
change in momentum to it, generating a thrust which balances
the weight and drag of the host body. The method is thus only
able to determine gross values of the aerodynamic forces and
power requirements given the value of the downwind farfield
velocity. It has also been used to determine the induced
velocity at the wings. In this method, no reference is made to
the fact that the wings are beating or to the airfoil properties
of the wings themselves. As Spedding (1992) points out, the
method cannot reflect changes in wing area, aspect ratio, wing-
beat frequency, section geometry or kinematics.

To establish some understanding of the aerodynamic forces
on flapping wings, a simplification is made by assuming that
the instantaneous forces developed by a flapping wing
correspond to those in steady motion at the same instantaneous
velocity and attitude; that is, the quasi-steady assumption. The
usual quasi-steady aerodynamic treatment is based on blade-
element theory, in which the wings are divided into a number
of chordwise transverse sections for which the forces can be
calculated. The relative velocity of each wing section is
calculated from the sum of flapping, forward and induced
velocities. The induced velocity is calculated from the
momentum-jet or actuator disk model as developed by
Ellington (1980).

Weis-Fogh (1956) and Jensen (1956) have found that the
forces produced by locusts in forward flight are explicable
using quasi-steady assumptions. Ellington (1980), however,
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queried the validity of Weis-Fogh’s assumptions and
developed a vortex theory of flight by combining blade-
element and momentum theories using a pulsed actuator disc
to mimic the periodic beating of the flapping wings. This
‘hybrid momentum’ method has also been developed by
Rayner (1979a,b,c) with a much more detailed analysis of the
wake, as well as by Spedding et al. (1984) and Spedding (1986,
1987). In both Ellington’s and Rayner’s methods, only mean
values of lift and power requirements of flapping wings are
determined. Parameters such as animal weight, wing length,
wing flapping angle and frequency do, however, enter into the
calculations.

Another ‘hybrid momentum’ method is the ‘local circulation
method’ developed by Kawachi (1981) in the analysis of
helicopter rotors and wind turbines and applied by Azuma et
al. (1985) to the forward flight of dragonflies. The loading on
a wing is defined by combining the approach of the blade-
element analysis with a more realistic and complete analysis
of the modifying effects of the unsteady wake (Azuma et al.
1985; Azuma and Watanabe, 1988). The wake is defined by
the path of the tip and trailing edge of the wing, and an iterative
procedure is invoked to balance the effect of the wake and
circulation distribution of the wings. The wing planform is
approximated by the action of a series of elliptically loaded
airfoils of diminishing size. Nonlinear, empirical lift
coefficient (CL) versus angle of attack (a) curves are used to
compute the actual forces and moments on the wings for each
blade element. This method is similar to the lifting-line method
(to be discussed below) and is thus subject to the same
limitations usually associated with such a method (i.e. if the
flow is significantly three-dimensional, the validity of using
two-dimensional lift coefficient data is questionable).

Biologists and applied mathematicians have also focused on
the derivation of the energy usage of beating wings by
analyzing particulars of the wake. Rayner (1979a,b,c) regards
all the force developed by beating wings to be generated during
the downstroke only (for forward flight) and neglects any
loading on the upstroke. Thus, a series of discrete vortices is
generated. With assumptions made regarding the core size of
the vortex rings, the induced flow at the wings and the mean
power expenditure can be approximated. Brodsky (1991) also
hypothesized the nature of the trailing wake, assuming it to be
like a crooked ‘ladder’ with the dominant circulation evident
in the downstroke.

After careful examination of bird flight, Spedding et al.
(1984) characterized a ‘concertina’ or ‘roller coaster’ wake. As
pointed out by Lighthill (1990), this concertina wake takes the
form of a pair of vortices of equal, constant circulation but with
the distance between them varying periodically. Because the
circulation is constant, the wide wake (shed during the
downstroke) exerts a greater momentum than the narrow wake
with a smaller momentum (shed during the upstroke).

Investigations of the energetics of animal locomotion have
found that predictions of power expenditure do not correlate
fully with in-flight measurements of metabolic rate (Spedding,
1992). To address this problem and clarify the breakdown of
insect energetics, Wilkin and Williams (1993) have measured
total in-flight forces (aerodynamic plus inertial) on a tethered
sphingid moth and compare their results with those from a
quasi-steady, blade-element analysis. Their comparison,
however, is only qualitative and thus a comprehensive analysis
of both the aerodynamic and inertial forces (and hence the
energy expended during each wing-stroke cycle accounting for
the complex kinematics of the wings) has yet to be developed.

Lifting-line method

To obtain better temporal estimates of the thrust, lift, power
and propulsive efficiency of flapping wings, a methodology
more comprehensive than the momentum-jet or wake analysis
methods is required. One such approach is the lifting-line
method, which also attempts to delineate the dominant
dimensionless parameters that describe the thrust performance
of flapping wings. In their investigation of the aerodynamic
loads and propulsive efficiencies of rigid, non-twisting
flapping wings, engineers such as Betteridge and Archer
(1974) implement an unsteady lifting-line method that uses
assumed time-dependent pressure modes, where the root axis
of the wings can be set at an angle to the free stream. Archer
et al. (1979) use a similar procedure, allowing the wing to be
torsionally flexible. Their analysis, however, is limited to the
in-phase twist response of a flapping wing. The relationship
between the aerodynamic and structural forces necessary to
produce the wing twist is, therefore, not addressed. The
induced velocity at the lifting line is developed from a quasi-
steady model of the wake and excludes unsteady features of
the vortex wake.

Phlips et al. (1981) also implement a lifting-line approach
in their analysis of the aerodynamics of bird flight. The wake
is modelled in two parts: a near wake, which is a vortex sheet
formed from the streamwise vortices traced out by the wings,
and a far wake consisting of discrete transverse and streamwise
vortices. Their model, however, neglects the convection of the
wake.

Ahmadi and Widnall (1986) developed a low-frequency
unsteady lifting-line method for a harmonically oscillating
wing of large aspect ratio, using matched asymptotic
expansions. Guermond and Sellier (1991) extended this
method by reducing the limitation on reduced frequency and
also by applying it to swept wings. Both approaches are based
on linearized aerodynamic theory and, as such, are restricted
to small-amplitude transverse oscillations of wings.

While the use of this method has established that the trailing
wakes generated by flapping insect or bird wings are important
in understanding the forces on the wings and has facilitated
hypotheses of the general structure of the trailing wake, the
level of modelling remains crude. Prevailing models of the
wake that use the lifting-line method tend to be three-
dimensional adaptations of two-dimensional theory and
consequently are unable to predict in detail the dynamic
behavior of the trailing wakes due to the motion of the wings
when undergoing large displacements and deformations. The
accuracy of the assessment of the influence of the trailing
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vortices on the aerodynamic forces acting on the wing is thus
compromised. In general, then, the lifting-line method has
enabled a multidisciplinary array of researchers to model the
aerodynamics of flapping flight and established the importance
of general vortex effects. The assumptions of small-amplitude
motions and a high-aspect-ratio wing inherent to a low-
frequency, unsteady lifting-line method are, however, unduly
restrictive for the purposes of modelling the aerodynamics of
flapping insect wings.

A two-dimensional method using thin airfoil theory

To analyze flapping wings, DeLaurier (1993) and DeLaurier
and Harris (1993) have adapted a method widely used by
engineers in the aerodynamic analysis of helicopter blades. The
method is essentially a two-dimensional strip implementation
of the Theodorsen function C(k) for sinusoidally heaving and
pitching oscillating wing sections. DeLaurier uses a modified
Theodorsen function, as developed by Scherer (1968), to
account for wings of finite aspect ratio. This theory, although
convenient to implement, is strictly only applicable to
oscillations of a small order of magnitude. The method has
been used successfully in the stability analysis of helicopter
rotors, where the deflections of the rotors are of a small
magnitude (Friedmann, 1983, 1987).

Lifting-surface or vortex lattice method

In the lifting-line method, the importance of the trailing
wake and the necessity of twisting of the wing in order to
produce thrust are confirmed, but detailed geometric (i.e.
spatial) and kinematic effects of the wing are suppressed. The
lifting-surface method, in contrast, enables the wake and the
wing to be represented by a lattice of vortex elements, thus
permitting a more detailed representation of the wake and wing
geometry.

Lan (1979), following the work of Albano and Rodden
(1969), has developed a vortex lattice approach to the
modelling of oscillating flat-plate wings. The propulsive
efficiency and thrust for some swept and rectangular planforms
are calculated for varying phase angles between the pitching
and heaving motions. The method is applied to the study of
tandem wings and it is shown that tandem wings can produce
high thrust with high efficiency if the pitching is in advance of
the flapping and the hindwing leads the forewing with some
optimum phase angle. The motion of the wings is, however,
limited to small-amplitude harmonic motion.

Sunada et al. (1993a,b) have also developed a vortex lattice
approach to the modelling of flat plates. The method is applied
to both the analysis of splitting triangular plates and the take-
off of a butterfly. The wake, however, is artificially prescribed
and the method relies on experimentally developed ‘shape
factors’ to account for dynamic effects.

Prevailing aerodynamic methods: conclusions

Overall, current theory and research on flapping flight which
utilizes prevailing methods establishes that flapping flight is an
aeroelastic phenomenon which is inherently dynamic, is
characterized by rapid reversals in stroke direction and in wing
rotation which result in gross movements of and between
lifting surfaces, and produces the necessary aerodynamic
forces for flight in a highly efficient manner. The prevailing
methods variously establish that any attempt to model the
aerodynamic forces on flapping wings must accommodate both
trailing vortex effects and wing force resolution in a detailed
manner.

A general problem, therefore, with existing methods is that
while some can detail vortex effects and others can
accommodate wing force resolution, not one of the methods
reviewed above is capable of detailing both. For example, the
hybrid method has no detailed wake or detailed force
resolution, the lifting-line method has no detailed wake
resolution, is valid only for small displacements and has no
detailed force resolution, and the prevailing lifting-surface
method has no detailed free-wake analysis. Hence, such
complaints as ‘presently, a vortex theory based on a simple
wake model for forward flight of insects is lacking’ are still
valid (Spedding, 1992, p. 82). Moreover, existing studies
which have attempted to compare the in-flight measurements
of metabolic rates with predictions of power expenditure have
not provided the necessary comprehensive analysis of the
aerodynamic forces involved. Given the need to model the
relevant aerodynamic forces on flapping wings, and the
disadvantages of prevailing aerodynamic methods, the present
study advances a type of lifting-surface method known as an
unsteady aerodynamic panel method.

The advantages of an unsteady aerodynamic panel
method

The unsteady aerodynamic panel method is a classical
boundary element method which relies on developing a
distribution of source and doublet ‘singularities’ on wing and
body surfaces, and doublet ‘singularities’ to represent the
wake. To date, the panel method has been used, almost
exclusively, to analyze the aerodynamic forces on aircraft
(Ashley and Landahl, 1985; Ashby et al. 1988; Katz and
Plotkin, 1991). The unsteady panel method is based on
potential theory which assumes non-viscous flow (see Katz and
Plotkin, 1991). It is valid for Reynold’s numbers of the order
of 104 and above (Reynold’s number Re =cU/n, where c is a
nominal chord length, U is based on the flapping frequency, a
nominal radius and the free-stream velocity and n is the
kinematic viscosity of air). Engineers have established that the
advantages of the panel method are that it accommodates the
detailing of the trailing wake, includes dynamic effects and
includes those effects in a distributed manner. Moreover, the
panel method is also capable of accommodating flexibility and
interference effects. Such advantages render the panel method
more useful than other prevailing methods when analyzing the
aerodynamic forces on flapping wings.

While, ideally, a comprehensive demonstration of the
advantages of a panel method over other prevailing methods
would encompass comparing results obtained from the
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application of each, the scope of such a project would be
enormous. Instead, to demonstrate the method’s advantages,
this paper provides a comparative example using the results of
Wilkin and Williams (1993), who compared ‘derived’
experimental aerodynamic forces on a tethered sphingid moth
with those predicted by quasi-steady theory. They measured
total forces (aerodynamic plus inertial) and obtained ‘derived’
experimental aerodynamic forces by subtracting estimates of
the inertial forces from the total measured forces. It was noted
above that, while the experimental data of Wilkin and Williams
(1993) are useful, the correspondence they obtain between
theory and measurement is only qualitative. Such results are 
not surprising, given that quasi-steady theory does not
accommodate unsteady fluid-flow effects (such as the
development and subsequent influence of free vortices) and that
such effects are integral to flapping-wing flight (see Ellington,
1984; Brodsky, 1991; Spedding, 1992; Sunada et al. 1993b).

Wilkin and Williams (1993) provide wing-angle-to-plane
trajectories, moth wing planform, the wind-tunnel wind
velocity (3.36 m s21) and derived aerodynamic vertical and
horizontal forces acting on a tethered sphingid moth. It is
important to note that the latter forces are derived by
subtracting estimates of the inertial forces from measured data
that include both the aerodynamic and inertial forces. Drawing
on their data, the present study sets out the assumptions made
in modelling the in-flight aerodynamic forces of a tethered
sphingid moth, details the necessary coordinate systems used,
their interrelationships and kinematic relationships, and
outlines a relevant potential flow model. The boundary
conditions are then developed by determining the trajectories
of the wings and their angular rates of change from
experimental wing-angle-to-plane data. The discretization
procedure is then delineated and the velocity components,
pressures, loads and trailing vortex roll-up are calculated.
Comparative results are then presented and general
conclusions drawn.

Modelling the flapping wings of a tethered sphingid moth
using an unsteady aerodynamic panel method

Given that Reynold’s numbers (Re) for the aerodynamic
flows of the sphingid moth are of the order of 104, this Re range
suggests that the airflows are inertially dominated and, as such,
viscous effects should not be directly important in most of the
flow field. Viscous effects are thus confined to regions near the
body, the wing and the wake that is shed behind the body or
the wing. In contrast to high-speed flows of aeronautical
interest (Re of the order of 107), the flow in the immediate
vicinity behind the insect is considered to be laminar, only
beginning to dissipate or diffuse after some distance. The
diffusion of the flow is therefore assumed to have a negligible
effect on the aerodynamic forces. In an analysis of the wake
behind a sphingid moth, A. P. Willmott (personal
communication) showed that it was clearly discernible for at
least 1 wing-beat period. An initial step, therefore, is to
construct an inviscid, three-dimensional, potential unsteady
solver which amounts to solving Laplace’s equation in space,
with impermeability conditions imposed on the moving wing
surfaces. A current panel method computer program that meets
the requirements of solving Laplace’s equation, as well as
detailing the wake, and which is used in this investigation, is
PMARC (Panel Method Ames Research Center) (Katz and
Plotkin, 1991; Ashby et al. 1988). While PMARC does not
include dynamic effects, it can be modified to do so by
developing the theory as outlined below.

To model the aerodynamic forces on the flapping wings of
a tethered sphingid moth using an unsteady panel method, it is
therefore necessary to take the following steps: (1) develop a
potential flow model, (2) discretize the wings and the wake,
(3) compute the velocity components, pressures and loads
acting on the wings and (4) develop the boundary conditions.
A summary of these steps is found below; for a more detailed
derivation of the aerodynamic forces, see Smith (1995) and
Katz and Plotkin (1991).

Potential flow model

If the fluid is considered irrotational (except at the
boundaries of the fluid and in the trailing wake), then the
vorticity is zero and a scalar velocity potential F can be defined
such that the fluid velocity q→ is given by:

Substituting this into the fluid flow continuity equation,
Laplace’s equation is obtained:

=?q→ = =?=F = =2F = 0 . (2)

Laplace’s equation for the velocity potential must be solved for
an arbitrary body with boundary SB enclosed in a volume V,
with the outer boundary S` and a wake model SW, where SW

models a surface across which a discontinuity in the velocity
potential or the velocity may occur. The boundary conditions
apply to SB and S`, respectively.

After suitable manipulation (including the definition of an
internal velocity potential Fi for solid bodies SB and a far-field
velocity potential F`), the equation for the velocity potential
F at any point P in the flow field becomes (Katz and Plotkin,
1991):

where r is the distance from the point of interest in the flow
field to a singularity on a velocity potential boundary surface,
S is the velocity potential boundary area, and n→ is the normal
unit vector on the inside surface of the body, wing and far-field
velocity potential boundaries. This equation provides the value
of F(P) in terms of F and ­F/­n on the boundaries.
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Fig. 1. Aerodynamic panelling arrangement used for the combined
wings model.
Defining (at the boundaries)

−m = F − Fi (4)

and

where ­/­n indicates differentiation in the normal direction at
the velocity potential surface, m is called the doublet strength
and s the source strength, and letting F` =Fi (since the value
of the potential inside SB may be any arbitrary constant) and
fp =F −F`, then, on the inside surface of the body:

The problem is thus reduced to finding the appropriate
distribution of source (­F/­n) and doublet strengths (F) (or
‘singularities’) over the surface of the body of interest. The
normal velocity at the boundary is satisfied directly by a source
strength distribution:

where V
→

` (the kinematic velocity of the boundary surface) is a
consequence of the boundary conditions to be developed
below. Once the surface distribution of sources is thus
determined, equation 6 provides a means to determine the
unknown doublet distribution:

For a given set of boundary conditions, the solution is not
unique and a Kutta condition must be applied to the wakes
leaving the body (wing) (Katz and Plotkin, 1991).

Discretization, computation of velocity components,
pressures and loads

Breaking up the boundary surface into panels, equation 8 can
be written in discretized summation form. If constant strength
source and doublet distributions are assumed over each panel,
they may be factored out of the summations. Since the source
values (s) are known, and the strengths of all previous wake
panels (mW) are also known from calculations for previous time
steps, both may be transferred to the right-hand side of the
equation and in matrix form may be written as:

{mK} = −[CJK]−1([CJL]{mW} + [BJK]{sK}) , (9)

where BJK, CJK and CJL represent the velocity potential
influence coefficients per unit singularity strength for body
panel K or wake panel L acting on the control point of panel

(8)
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J. The wing panelling arrangement for the combined wing
model is shown in Fig. 1. A more detailed discretization does
not add significantly to the numerical accuracy.

The total velocity Q at a collocation point k is the sum of
the kinematic velocity plus the perturbation velocity:

Qk = [U(t) V(t) W(t)] ? [l m n]k + [ql qm qn]k , (10)

where U(t), V(t) and W(t) are the reference velocities in the a1,
a2 and a3 directions, respectively, lk, mk and nk are the local
panel coordinate directions and q is the local perturbation
velocity.

The pressure coefficient cp may be computed from
Bernoulli’s equation (Katz and Plotkin, 1991):

where Q and p are the local fluid velocity and pressures,
­fp/­t=−­m/­t since Fi is a constant, pref is the far-field
reference pressure, r is the density of air and Vref is the
magnitude of the translational velocity of the origin Ob.

The aerodynamic load DF
→

ak on an elemental panel area DSk

is given by:
DF

→
ak = −cpk (GrVref2)DSkn→k . (12)

The panel method develops the aerodynamic forces at the
centroids of the aerodynamic panels.

Description of coordinate systems

To develop the governing equations for the kinematics, and
hence the boundary conditions, the definition of coordinate
vector bases sets is required. The chosen bases are the body
axes {b} and the wing axes {a} (Fig. 2).

Body axes {b}

Origin Ob is fixed at some reference point in the body of the

(11)

cp =  
p − pref

GrVref2

= 1− , 

, 

−Q2

Vref2
2

Vref2
­fp

­t
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Fig. 2. Wing and body coordinate vector bases used to develop the
governing equations for the kinematics and boundary conditions for
the unsteady panel method. For explanation, see text.
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   the RT-axis on the b1b2-plane, and

   the b2 axis

U∞ is the magnitude of the free-stream

   velocity

Fig. 3. Experimental wing-angles-to-planes definition used to convert
experimentally measured angles into Euler angle form.
moth (not necessarily the centre of gravity). The axes are
defined by b1, b2 and b3, with the b1-axis positive aft (parallel
to the free-stream wind velocity), the b2-axis positive
starboard, and the b3-axis positive vertically up (Fig. 2).

Wing axes {a}

Origin Oa is fixed at the wing root, rotates with the wing and
is used to define ‘local’ wing rotations (azimuth, flap and
pitch). The axes are defined by a1, a2 and a3, with the a1-axis
positive aft, the a2-axis positive starboard, and the a3-axis
positive vertically up (Fig. 2).

Interrelationship of the coordinate systems

In terms of Euler angles, the relationship between the {b}
and {a} bases is given by Tab:

where c is the wing azimuth angle, the horizontal angle
between some reference direction (e.g. b1-axis) and the
projection of the a1-axis on the horizontal plane (positive
rotation is from north to west); u is the wing flap angle, the
vertical angle between the a1-axis and the horizontal plane
(positive rotation is up); f is the wing pitch angle, the angle
between the a1a3-plane and the vertical plane containing the
b1-axis; positive rotation is clockwise about the a1-axis,
looking forward; and

Tab = (Tba)−1 = (Tba)T . (14)

Kinematic relationships

The kinematic relationship between the Euler angle rates of
change and the relative angular rotation rates between the {a}
and the {b} axis systems is given by:

b
ev

a = (Teva)(bva
a) , (15)

(13),Tab = 
cosucosc                             cosusinc                  −sinu

sinfsinucosc − cosfsinc  sinfsinusinc + cosfcosc  sinfcosu
cosfsinucosc + sinfsinc   cosfsinusinc − sinfcosc  cosfcosu











where:
b
ev

a = [f
·
u
·
c
·
]T , (16)

bva
a = [pa qa ra]T , (17)

and

Also,
bva

a = (Tvae)(b
ev

a) , (19)

where:

Development of boundary conditions

Because the experimental wings-to-planes angles are not in
Euler angle form, the experimental angles must be converted
before modelling is possible. With reference to Figs 2 and 3,
this conversion can be described as follows. Defining the line
joining the ‘root’ (R) and the tip of the wing (T) to be the RT-
axis, the angle between the projection of the RT-axis on the
b3b2-plane and the b2-axis is v. The angle between the
projection of the RT-axis on the b1b2-plane and the b2-axis is
h. The angle h serves as a measure of the Euler angle c. From
geometric considerations:

uexp = tan−1(tanvcosh) (21)

and serves as a measure of the Euler angle f. The rotation of

(20)Tvae = = (Teva)−1 . 
1 0 −sinu
0  cosf sinfcosu
0 −sinf cosfcosu











(18).Teva = 
1 sinftanu cosftanu
0  cosf −sinf
0 sinfsecu cosfsecu










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Fig. 6. Comparison of derived experimental vertical forces and
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calculated horizontal forces for one wing-beat cycle from this study
and that of Wilkin and Williams (1993).
the wing about the RT-axis is obtained from measurements of
the projected chord of the wing on the blb2-plane and the actual
wing chord at different wing-sections. This rotation angle serves
as a measure of the Euler angle u at the root of the wing and
also as a measure of the twist of the wing along its span. In this
study, both the root value of the wing twist and an average value
of the root wing twist and mid-span wing twist were
investigated. Thus, the wing-angles-to-planes data are converted
into the Euler angles c, f and u. The derivatives of these angles
with respect to time may be developed numerically. Using the
kinematic relationships described above, the angular velocities
pa, qa and ra are developed. The determination of the normal
kinematic velocity on the wing surfaces and hence the boundary
conditions then follows. A plot of the derived Euler angles as a
function of the wing-beat cycle is shown in Fig. 4. The motion
of the wing is described using the terms ‘supination’ and
‘pronation’, ‘downstroke’ and ‘upstroke’, ‘forwardstroke’ and
x

z

y
(b   )2

Body, opposite wing

and associated

wake not included

in present model

Wing and associated wake

included in present model

(b   )1

(b   )3

Fig. 5. Wake development after one wing-beat cycle. The view is
from the side and front as indicated in the inset diagram.
‘backstroke’ in correspondence with the wing motion between
the extreme values of the Euler angles u, f and c, respectively.

Modelling assumptions
To construct a tractable mathematical model of the in-flight

aerodynamic forces of a tethered sphingid moth, the following
assumptions are made (these assumptions generally allow for
the neglect of flexibilities, separation effects and aerodynamic
interference effects between bodies, the primary concern at the
present time being the incorporation of dynamic effects and
inclusion of the wake). (1) The fore and aft wings are treated
as one combined wing, which is considered to be a flat rigid
surface hinged by a ‘universal joint’ at a ‘root’ location. (2) The
wing vortices are generated at the trailing edge only. (3) The
flow behind the moth is considered laminar with the vortices
having no time to dissipate under the influence of viscous
effects (Grodnitsky and Morozov, 1993). (4) The rounded
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Table 1. Mean values of aerodynamic forces (vertical and horizontal) developed over the upstroke, downstroke and over a full
wing-beat cycle

Wilkin and Williams (1993) This study: panel method
Averaged wing twist Root wing twist

Derived
Quasi-steady experimental Wake length Wake length

method results One period Half period One period Half period

Vertical force (mN)
Downstroke 25.46 23.38 21.31 19.70 23.13 23.33
Upstroke −17.90 −2.75 −8.09 −10.41 −2.28 −10.25
Full stroke 9.85 13.97 10.73 8.86 13.98 11.24

Horizontal force (mN)
Downstroke −0.31 −0.57 0.62 0.98 1.61 2.09
Upstroke 13.05 6.23 1.46 1.91 2.38 1.22
Full stroke 4.50 1.88 0.92 0.96 1.88 1.77
leading edges (veins) of the wings and the ‘corrugated’ profile
of the wing surface inhibit leading-edge separation (Rees,
1975). (5) Each combined wing acts independently of the other.
(6) The effect of the body is not included.

Vortex wake
Since the wake is force-free, each wake panel moves with

the local free-stream velocity. This velocity is the result of the
kinematic motion and the velocity components induced by the
wake and the body. A view of the wake developed over one
cycle is shown in Fig. 5. Running the simulation for two wing-
beat cycles did not alter the results appreciably, indicating that
the wake has minimal impact after one or two wing-beat
periods. Indeed, if one limits the length of the wake from a half
wing-beat period to a whole wing-beat period, the results are
not appreciably altered (see Figs 6, 7; Tables 1, 2). This
confirms the third assumption above and also justifies the use
of a potential flow model.

Results and conclusions
It was asserted above that the advantages of the panel
Table 2. Correlation coefficients for results using the panel m
Williams, 1993) with respect to the derived expe

Wilkin and Williams (1993)

Derived
Quasi-steady experimental

method results

Vertical
Downstroke 0.8392 1.0000
Upstroke 0.4038 1.0000
Full stroke 0.7730 1.0000

Horizontal
Downstroke 0.6628 1.0000
Upstroke 0.8616 1.0000
Full stroke 0.6564 1.0000
method over other methods are its ability to accommodate the
detailing of the trailing wake, to include dynamic effects and
to include such effects in a distributed manner. Fig. 5
graphically captures these advantages.

Figs 6 and 7 present calculated vertical and horizontal
aerodynamic forces obtained using both an unsteady panel
method (this study) and a quasi-steady method (Wilkin and
Williams, 1993) and compare those forces with the ‘derived’
experimental results of the latter study. Table 1 presents
average values of the aerodynamic forces developed by the two
methods over the downstroke, the upstroke and the full wing-
beat cycle.

Table 2 reveals that the correlations between the vertical
forces obtained using the panel method are greatly improved
over those of Wilkin and Williams’ (1993) quasi-steady
results. Admittedly, the correlation coefficients for the
horizontal forces are not improved. These forces are, however,
of a lower order of magnitude than the vertical forces.

Fig. 6 also reveals that the calculated vertical force is in
excess of the experimental value in both the upstroke and the
downstroke for the case where the wing twist is taken as the
wing twist of the root. This excess could be due to the
following effects: (1) the neglect of flexibility effects in the
ethod (this study) and the quasi-steady method (Wilkin and
rimental results of Wilkin and Williams (1993)

This study: panel method
Averaged wing twist Root wing twist

Wake length Wake length
One period Half period One period Half period

0.9645 0.9616 0.9469 0.9374
0.4891 0.6268 0.5158 0.5474
0.9002 0.9208 0.8862 0.9001

−0.0152 0.0000 −0.4454 −0.5156
0.7646 0.5611 0.7877 0.5295
0.3583 0.2599 −0.0367 −0.0898
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model (i.e. the variation of twist along the span), (2) the neglect
of leading-edge separation effects in the aerodynamic model
or (3) interference effects of the body and wings. Another
cause could be (4) the accuracy of the experimental data which
Wilkin and Williams (1993) derived by subtracting their
estimates of the inertial forces on the wings from measured
data. In order to gain some measure of the effect of twist,
another case is investigated where the wing twist is considered
to be the average of the twist at the root and the twist at mid-
span. It is noted in Fig. 6 that, while this case develops extreme
forces much closer to the experimental values, average values
of lift are, however, slightly compromised.

On closer examination of Fig. 6 and Table 1, secondary
effects can be noted, due to the inclusion of the extended wake
in the analysis (in this instance the wake for one wing-beat
period). Secondary effects include the lowering of the extreme
lift force on the downstroke to correlate better with the
experimental result, as well as slight increases in lift at the
beginning of the downstroke and the beginning of the upstroke.

Some general limitations of the present study are that it
makes certain assumptions about the morphology of moth
wings which depart somewhat from biological reality. In order
to make the present analysis tractable, the fore and aft wings
were combined as one and assumed to be rigid even though
they are in fact flexible. The present results indicate that the
experimental results lie between the two sets of rigid twist
motion explored (see Figs 6 and 7, downstroke vertical force)
and, as such, imply that there is a ‘mean value’ of wing twist
of rigid motion that would give improved results. Moreover,
were the wings modelled as flexible surfaces, it is likely that
the present results would be further improved. Indeed, if the
fore and aft wings were modelled independently of one
another, this too would introduce more flexibility and further
enhance the results.

Regarding the wake structure, it is assumed that the
diffusion of the vortices behind the insect does not influence
the aerodynamic forces appreciably, since the wake influence
dies away as it moves further from the insect. This assumption
is confirmed by comparing the results of the aerodynamic
forces for differing lengths of the wake (see Figs 6, 7; Tables
1, 2).

Overall, the present analysis establishes that there are
distinct advantages to the use of an unsteady panel method in
that it includes both wake and distributed dynamic effects and,
in comparison with other prevailing methods, better models the
aerodynamic forces on rigid flapping wings. The panel method
also holds great promise in its ability to accommodate other
effects such as flexibility and interference.

List of symbols
A rigid appendage (wing)
a1, a2, a3 basis unit vectors {a}forming appendage or wing

reference axes
BJK source strength potential influencing coefficient

matrix of wing or body
B rigid host body to A
b1, b2, b3 basis unit vectors {b} forming host body

reference axes
CJK doublet strength potential influencing coefficient

matrix of wing or body
CJL doublet strength potential influencing coefficient

matrix of wake
C(k) Theodorsen function
CL lift coefficient
c nominal chord length
cp pressure coefficient on aerodynamic panel
h the angle between the projection of the RT-axis

on the b1b2-plane and the b2-axis
J control point of aerodynamic panel
K body panel
k collocation point
L wake panel
lm, ln, lk local panel coordinate directions
n wing-beat frequency
n→ normal unit vector on inside surface of body, 

wing and far-field velocity potential
boundaries

Ob origin of body axes system
Oa origin of appendage axes system
P point of interest in the flow field
p fluid static pressure
pa relative rotation rate of the {a} axes system to the 

{b} axes system about the a1 axis
pref fluid reference static pressure
Q total velocity
q→ the velocity of the fluid
qa relative rotation rate of the {a} axes system to the 

{b} axes system about the a2 axis
ql fluid perturbation velocity in panel l direction
qm fluid perturbation velocity in panel m direction
qn fluid perturbation velocity in panel n direction
RT-axis line joining R and T
R root point of wing
Re Reynolds number = cU/n
r distance from point of interest in the flow field

to singularity on a velocity potential boundary
surface

ra relative rotation rate of the {a} axes system to the 
{b} axes system about the a3 axis

S velocity potential boundary area (=SB+SW+S`)
SB velocity potential boundary area of body
SW velocity potential boundary area of wake
S` velocity potential boundary area of far field
t time
T tip point of wing
Tab coordinate transformation relationship between

{b} and {a} axes
Teva kinematic relationship between b

ev
a and bva

a

U(t) reference velocity in the a1 direction
U` fluid free-stream velocity in x-direction
ul, vl, zl wake velocity at each time step
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V volume of potential flow interest
V(t) reference velocity in the a2 direction
Vref reference free-stream velocity in x-direction
V
→

` kinematic velocity of the boundary surface
v the angle between the projection of the RT-axis

on the b3b2-plane and the b2-axis
W(t) reference velocity in the a3 direction
a wing angle of attack
DF

→
ak aerodynamic load on aerodynamic panel k

DF
→

ap aerodynamic force at Ps

DSk area of aerodynamic panel k
m doublet strength
mW strength of wake panels
n kinematic viscosity of air
b
ev

a Euler angle rotation rates between the {a} and
{b} axes = [f

·
u
· 

c
·
]T

bvaa relative angle rotation rates between the {a} and
{b} axes = [pa qa ra]T

F fluid velocity potential
Fi internal body fluid velocity potential
F` far-field fluid velocity potential
fp fluid velocity potential relative to F`

f body A (or wing) flap Euler angle
c body A (or wing) azimuth Euler angle
r air density
s source strength
u body A (or wing) pitch Euler angle
uexp experimentally derived pitch Euler angle of wing

˙ differentiation with respect to time, e.g. f
·

­ differentiation in the normal direction at a
­n boundary velocity potential surface

The authors would like to thank the anonymous reviewers
for all their helpful comments.
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