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A teal (Anas crecca) and a thrush nightingale (Luscinia
luscinia) were trained to fly in the Lund wind tunnel for
periods of up to 3 and 16 h respectively. Both birds flew in
steady flapping flight, with such regularity that their
wingbeat frequencies could be determined by viewing them
through a shutter stroboscope. When flying at a constant
air speed, the teal’s wingbeat frequency varied with the
0.364 power of the body mass and the thrush nightingale’s
varied with the 0.430 power. Both exponents differed from
zero, but neither differed from the predicted value (0.5) at
the 1 % level of significance. The teal continued to flap
steadily as the tunnel tilt angle was varied from −1 ° (climb)
to +6 ° (descent), while the wingbeat frequency declined
progressively by about 11 %. In both birds, the plot of
wingbeat frequency against air speed in level flight was U-
shaped, with small but statistically significant curvature.
We identified the minima of these curves with the minimum
power speed (Vmp) and found that the values predicted for
Vmp, using previously published default values for the
required variables, were only about two-thirds of the
observed minimum-frequency speeds. The discrepancy
could be resolved if the body drag coefficients (CDb) of both
birds were near 0.08, rather than near 0.40 as previously

assumed. The previously published high values for body
drag coefficients were derived from wind-tunnel
measurements on frozen bird bodies, from which the wings
had been removed, and had long been regarded as
anomalous, as values below 0.01 are given in the
engineering literature for streamlined bodies. We suggest
that birds of any size that have well-streamlined bodies can
achieve minimum body drag coefficients of around 0.05 if
the feet can be fully retracted under the flank feathers. In
such birds, field observations of flight speeds may need to
be reinterpreted in the light of higher estimates of Vmp.
Estimates of the effective lift:drag ratio and range can also
be revised upwards. Birds that have large feet or trailing
legs may have higher body drag coefficients. The original
estimates of around CDb=0.4 could be correct for species,
such as pelicans and large herons, that also have prominent
heads. We see no evidence for any progressive reduction of
body drag coefficient in the Reynolds number range
covered by our experiments, that is 21 600–215 000 on the
basis of body cross-sectional diameter.

Key words: bird, wind tunnel, wingbeat frequency, body drag, flight,
Luscinia luscinia, Anas crecca.

Summary
According to Pennycuick (1996) the wingbeat frequencies
(f) of different birds, when all are in level cruising flight, are
given by:

f = (mg)1/2b−17/24S−1/3I−1/8ρ−3/8 , (1)

where m is the body mass, g is the acceleration due to gravity,
b is the wing span, S is the wing area, I is the wing moment of
inertia and ρ is the air density. The five exponents in equation
1 are related to each other by three equations, which express
the condition that the expression on the right-hand side must
have the correct dimensions (inverse time). These equations

Introduction
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were derived by Pennycuick (1990), who selected a set of
values for the exponents that satisfied the dimensional
constraints and also fitted data from 32 species, whose
wingbeat frequencies had been observed in the field. The
original set of exponents was changed slightly by Pennycuick
(1996), to make equation 1 give a better fit to an enlarged data
set, incorporating 15 additional species. Any set of exponents
that satisfies the dimensional constraints gives an allometric
relationship for geometrically similar birds, whereby the
wingbeat frequency varies with the −1/6 power of the body
mass.
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The empirical observations referred to differences in
wingbeat frequency between species, where all were assumed
to be flying under the same conditions, defined as level flight
at a fixed multiple of the minimum power speed. The body
measurements used were means of samples of different
species. However, equation 1 was derived from a dimensional
argument, and it can therefore be used in a very different way,
to predict the effect on an individual bird’s wingbeat frequency
if the body mass or the air density were to vary while the wing
span, wing area and wing moment of inertia remain constant.
Equation 1 predicts that if the body mass or air density were
to change in the course of a flight, this should cause the
wingbeat frequency to change in proportion to the square root
of the mass and the −3/8 power of the air density. These
predictions can only be checked by experiments on individual
birds, not from inter-species comparisons based on field data.

We have observed the wingbeat frequencies of two birds of
different species that were trained to fly for prolonged periods
in a wind tunnel. We have not yet been able to test the effect
of changes in air density, but we have observed the effects of
changes in body mass and of two additional variables not
considered in the earlier analysis, air speed and angle of climb
or descent.

Materials and methods
Wind tunnel

Our experiments were conducted in a large, low-turbulence
wind tunnel at Lund University, Sweden. C. J. Pennycuick, T.
Alerstam and A. Hedenström (in preparation) describe the
wind tunnel and explain its design, which represents a radical
departure from earlier wind tunnels used for bird flight
research. The wind speed, which is also the bird’s air speed,
can be precisely controlled and continuously monitored. The
whole wind tunnel can be tilted, so as to impose either level
flight or a known angle of climb or descent. The test section is
octagonal, 1.20 m wide by 1.08 m high. The first 1.2 m of its
length is enclosed by Plexiglas walls, after which there is an
open section 0.5 m long. A preliminary pitot-static survey at
119 points across the test section showed that the variation was
within ±1.3 % of the mean speed, except for three points in the
extreme corners, with speed deficits of up to 7 % of the mean
speed.

Equivalent air speed

We set and monitored the dynamic pressure (q), rather than
the air speed as such, but we expressed it in the form of the
‘equivalent air speed’ (Ve), defined as:

Ve = √(2q/ρ0) , (2)

where ρ0 is a fixed value of the air density (1.23 kg m−3)
assigned to sea level in the International Standard Atmosphere.
If the actual air density is equal to ρ0, then the equivalent air
speed is the same as the ‘true air speed’, which is the speed at
which a light particle is carried along in the air. Usually the
true and equivalent air speeds are not identical, and the
disparity between them varies from day to day because of
changes in air temperature and barometric pressure. In that
case, we prefer to set and monitor the equivalent, rather than
the true, air speed. This is because the equivalent air speed
determines the magnitudes of the aerodynamic forces acting on
the bird, and because the bird’s minimum power speed is more
nearly constant in terms of equivalent than of true air speed.

Birds and training

Two birds were used, a thrush nightingale (Luscinia luscinia
Linnaeus) and a teal (Anas crecca Linnaeus). The methods of
training were determined by the requirements of physiological
experiments, and the details will be given in a later publication
with the results of those experiments. Both birds were trained
primarily to fly horizontally for prolonged periods, the
nightingale for up to 16 h and the teal for up to 3 h, with short
interruptions for the bird to be taken out and weighed. A nylon
fishing net, made of a square 17 mm×17 mm mesh of brown
nylon thread 0.75 mm in diameter, was stretched across the
upstream end of the test section during experiments with the
teal so as to prevent it from flying into the contraction, but this
was not needed when flying the thrush nightingale. Preliminary
tests using a hot-wire anemometer showed that the root mean
square (RMS) value of longitudinal turbulence was 1.2 % of
the mean speed with the net installed. Without the net, the
turbulence level was too low for consistent measurements with
the equipment available.

Measurement of wingbeat frequency

Wingbeat frequency was measured using a shutter
(mechanical) stroboscope. This consisted of a black plastic
cylinder 31 mm in diameter (actually a 35 mm film can)
mounted on the spindle of a stepper motor giving 48 steps per
revolution. The cylinder had four holes spaced equally around
its circumference and was mounted inside a black box with
minimal clearance. Holes in the opposite walls of the box
allowed the bird to be viewed through the holes in the cylinder,
when these were aligned with the holes in the box. The stepper
motor was driven by a chip designed for that purpose
(SAA1027) and this, in turn, was fed by a pulse train supplied
by a combined oscillator and divider chip (µA2240CN). The
combined effect of dividing the oscillator frequency by 128,
then by the 48 steps of the stepper motor, and finally
multiplying by four for the four holes in the cylinder, was that
the oscillator frequency was 1536 times the shutter frequency.
To measure the wingbeat frequency, the oscillator was adjusted
until the wings appeared to be stationary. This was only possible
when the bird was flapping steadily and remained in a steady
position in the test section for several seconds. The oscillator
frequency, which was in the range 12–20 kHz for our
observations, was read to four-digit precision from a multimeter
(Precision Gold M810) and divided by 1536 to obtain the
wingbeat frequency. Some additional wingbeat frequencies for
the teal were obtained from video recordings (at 25 frames s−1),
taken with a Panasonic NV-MS1 S-VHS camcorder, by
counting the number of frames for 50 wingbeat cycles.
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Fig. 1. Double-logarithmic plot of wingbeat frequency, observed at
1 h intervals during 16 h of horizontal flight at an equivalent air speed
of 10.0 m s−1 by the thrush nightingale versus interpolated body mass.
Each of the 16 samples consisted of five observations taken within
2–5 min. Vertical bars show standard error (S.E.M.) above and below
mean frequency. The slope of the linear regression line is
0.430±0.0765, r=0.832.

Table 1. Slopes of the linear regressions of log-transformed
values from Figs 1 and 2 compared using t-tests with

hypothetical exponents of zero (null hypothesis) and 0.5
(expected value)

Test 
Bird Slope S.E.M. d.f. slope t P

Teal 0.364 0.0587 28 0.5 2.31 >0.02
0 6.17 !0.01

Thrush 0.430 0.0765 14 0.5 0.915 >0.05
nightingale 0 5.62 !0.01
Results
Flight behaviour

After some weeks of initial training, both the thrush
nightingale and the teal would fly for hours in steady flapping
flight. The wingbeat in the teal was so regular that, if the
shutter stroboscope was set slightly above or below the
wingbeat frequency, the wings could be viewed apparently
moving slowly and steadily up and down for prolonged
periods. The thrush nightingale showed similarly regular
flapping on some flights, but often there were momentary
checks in the wingbeat cycle, which were seen as sudden
jumps in the apparent wing position when viewed through the
stroboscope. These checks were too brief for naked-eye
observation, but high-speed video showed that the wings
were held in the horizontal position for a fraction of a
wingbeat period. The thrush nightingale never closed its
wings during flight and did not exhibit any behaviour
approaching the ‘bounding’ style of intermittent flight, often
seen in small passerines. At the time of these observations,
our training methods had not been developed to the point
where the bird’s position in the test section could be closely
controlled. Both birds were observed when flying in the
closed part of the test section, above the midline, but not very
close to the upper walls. Both remained in this part of the
tunnel for prolonged periods, with occasional excursions to
the lower part of the test section or downstream to the open
part. As noted above, it was only possible to measure the
wingbeat frequency when the bird was holding a steady
position in the test section. Beyond the lower and upper
extremes of the usable speed range, the birds either refused
to fly or flew in an unsteady way. For example, the highest
speed at which we observed wingbeat frequencies in the
thrush nightingale was 11.0 m s−1, but we did not use these
data, because the bird’s speed did not match the wind speed,
as it cyclically moved upwind and then drifted back
downwind. Such behaviour was not seen in the teal at any
speed, or in the thrush nightingale at lower speeds.

Effect of body mass on wingbeat frequency

Fig. 1 is a double-logarithmic plot showing 16 samples of
wingbeat frequency measurements, taken during a single 16 h
flight of the thrush nightingale on 21 September 1995. Each
sample consisted of five observations of wingbeat frequency,
each taken within 2–5 min with the shutter stroboscope, at
45 min past each hour, desynchronising the stroboscope after
each observation, then resetting it to the wingbeat frequency.
Both birds were capable of altering their wingbeat frequencies
on a much shorter time scale than the minimum 30 s interval
between measurements, so that each observation was fully
independent of those before and after it. The bird was weighed
once per 4 h (five times in all) at 20 min past the hour. The
body mass was assumed to be constant within each sample
of five wingbeat frequency observations and was estimated
by linear interpolation between weighings. It declined from
27.49 g at the first sample to 22.19 g at the last, that is by 19 %
of the starting mass. The equivalent air speed was held
constant at 10.0 m s−1, the speed to which the bird had become
accustomed during training. The air density was 1.20 kg m−3

at the beginning of the flight and 1.19 kg m−3 at the end. Fig. 2
is a similar plot showing 30 measurements of wingbeat
frequency in the teal (not grouped into samples), from video
recordings taken during training flights on 6 days between 25
November and 3 December 1995, in the course of which the
mass varied between 219.5 and 243.5 g. The equivalent air
speed was 13.1 m s−1, as used during training. The slopes of
the linear regression lines from the double-logarithmic plots
of Figs 1 and 2 are 0.430 and 0.364 respectively. Both slopes
differ from zero at the 1 % level of significance (Table 1),
confirming our surmise that individual birds, at least for these
two species, do indeed adjust their wingbeat frequencies in
response to changes in their body mass. The slope for the teal
is significantly less than our expected value of 0.5 at the 5 %
level, but neither slope differs significantly from 0.5 at the 1 %
level. The marginally significant difference of the slope below
0.5 in the teal could be an artefact caused by the limited range
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Fig. 2. Double-logarithmic plot of wingbeat frequency during six
horizontal flights at an equivalent air speed of 13.1 m s−1 by the teal
versus body mass. The slope of the linear regression line is
0.364±0.0587 (S.E.M.), r=0.761, N=30.
over which the mass varied, the lowest mass being only 9.9 %
below the highest. According to Snedecor (1946), the effect
of uncertainties in measuring the independent variable is to
bias the slope of the linear regression downwards, and the
effect is accentuated if the range of variation of this variable
is small.

Effect of climb or descent on wingbeat frequency

Fig. 3 shows a linear plot of 110 observations of wingbeat
frequency, obtained during a single flight of the teal, during
which the wind tunnel was tilted to various angles between +6 °
(bird descending) and −1 ° (climbing). We initiated this
experiment in level flight, at an equivalent air speed of
13.7 m s−1, intending to maintain this speed throughout. On
Fig. 3. Linear plot of wingbeat frequency during a single flight of the
teal, versus wind tunnel tilt angle. Each point is the mean ± S.E.M. of
a sample of at least six observations. Circles, 13.7 m s−1 (N=58);
squares, 15.8 m s−1 (N=52).
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reaching 4 ° descent, we expected the teal to glide, but it made
no attempt to do this and continued flapping steadily as usual.
At steeper angles, it could not maintain its position in the test
section and was only restrained by the net from flying into the
contraction. When we increased the speed to 15.8 m s−1, the
teal was able to descend at 6 °, still flapping steadily. It was
able to maintain 15.8 m s−1 as we reduced the descent angle to
1 °, but it could not fly horizontally at this speed. When we
reduced the speed back to 13.7 m s−1, it was able to fly level
and also to climb at 1 °. The data at the two speeds have been
plotted separately in Fig. 3, with separate linear regression
lines. This flight lasted 95 min, during which the mass
decreased from 240 to 230 g.

Changing the angle of descent had a strong effect on the
wingbeat frequency, with no change in the style of flight that
would have been apparent in the field. The teal did not glide,
flap intermittently, lower its feet or show any obvious changes
of behaviour associated with the changing descent angle. This
effect could be a significant source of error in field
observations of wingbeat frequency, as it is usually difficult
to be sure that a bird is flying horizontally unless it is flying
low over a smooth water surface and, in that case, it may be
gaining some advantage from ground effect. The effect of
imposing an angle of descent on the bird is to reduce the
mechanical power output required from its flight muscles, and
Fig. 3 shows that this was accompanied by a reduction in
wingbeat frequency, but not a proportional reduction. The
steepest angle that we used, 6 °, corresponds to a glide ratio
of 9.6 and should be steep enough to allow the teal to glide.
At this angle of descent, the teal would have been exerting a
mean thrust force near zero and possibly negative. It did not
glide, and only reduced its wingbeat frequency by
approximately 10 % below its value in level flight, while the
mechanical power required had been reduced to zero, and
possibly below. Fig. 3 therefore shows that the wingbeat
frequency cannot be used as a proportional measure of
mechanical power output, but that it did progressively follow
changes of power output over a wide range. We used this
result to interpret the next experiment.

Effect of air speed on wingbeat frequency

Fig. 4 is a linear plot of 88 observations of wingbeat
frequency obtained during three flights of the teal, between 28
November and 4 December 1995. The flight durations were 44,
96 and 131 min, and the mass losses were 5.3, 8.8 and 12.3 g,
respectively, from starting masses of between 236 and 246 g.
The air flow was horizontal throughout these flights, and the
equivalent air speed was varied between 10 and 16 m s−1. The
points for each flight show a U-shaped distribution. Each curve
shown in the figure is a least-squares fit of the equation:

f = a + b/V + cV3 , (3)

where f is the wingbeat frequency, V is the air speed and a, b
and c are constants. This is the form of the curve of mechanical
power versus speed used by Pennycuick (1975, 1989) for
speeds in the vicinity of the minimum power speed. The
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Fig. 5. Linear plot of wingbeat frequency versus equivalent air speed
in horizontal flight. Combined data for two flights of the thrush
nightingale (squares) and three flights of the teal (circles). Standard
error bars are shown, but are mostly smaller than the symbols marking
the means of samples when the data are plotted on this unexpanded
scale. The minimum of each fitted curve is marked. The minimum
power speed, estimated with data from Table 2 and using default
values of variables from Program 1A of Pennycuick (1989), is given
in parentheses for each bird.
equivalent air speeds at the minima of the fitted curves were
almost the same: 12.5 m s−1 for the first and second flights and
12.3 m s−1 for the third. The filled circle at the extreme top left
of Fig. 4 represents two observations of wingbeat frequency at
8.67 and 8.68 Hz, which were obtained just after we set the
equivalent air speed to 10.0 m s−1 during the third flight. The
teal flew for a few seconds at this speed, close to the net at the
upstream end of the test section, and then refused to fly. When
we increased the speed to 10.3 m s−1, it flew normally with the
wingbeat frequencies marked by crosses. The curve was fitted
through the points marked by the crosses, not including the
filled circle at 10.0 m s−1. The teal appeared to be most
comfortable at equivalent air speeds between 12.0 and
13.5 m s−1. It would only fly for short periods, if at all, at speeds
above 15 and below 10 m s−1.

The curved lines of Fig. 4 fit their respective sets of points
significantly better than linear regression lines. This was tested
by the variance ratio test (F-test) of Snedecor (1946), in which
the mean square of deviations from the curved line was
compared with that from the linear regression line. The
variance ratios were highly significant at the 1 % level for all
three flights, showing that the minima of the curves of Fig. 4
may be used to identify a meaningful ‘minimum frequency
speed’. The data from the three flights of the teal have been
combined into a single curve in Fig. 5, in which the data are
shown as means of observations at each value of the air speed.
The variance ratio for curvature of this line according to
equation 3 is F=26.9 for 1 and 15 degrees of freedom. For the
thrush nightingale curve, which combines the data from two
flights, F=4.96 for 1 and 11 degrees of freedom. Curvature is
significant in both cases (P<0.01). The curvature is seen to be
slight when plotted with a frequency scale extending down to
zero, as in Fig. 5, although it is readily apparent to the eye on
the expanded vertical scale of Fig. 4.
Fig. 4. Linear plot of wingbeat frequency (f) during three flights of
the teal in horizontal flight versus equivalent air speed (V). Open
circles are fitted by f=6.67+15.1/V+0.000206V3 (N=33). Squares are
fitted by f=3.76+41.6/V+0.000559V3 (N=20). Crosses are fitted by
f=5.78+22.0/V+0.000317V3 (N=35). Minimum frequency speeds
from these formulae are shown for each curve. Each point and bar
shows mean frequency ± S.E.M. for a sample of observations at one
speed. See text for explanation of filled circle at upper left.
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Discussion
Discrepancy in the minimum power speed

We regard the minimum frequency speed as an experimental
estimate of the minimum power speed Vmp. The basis for this
assumption is the result shown in Fig. 3, which indicates that
the wingbeat frequency varies progressively in the same
direction as the power required from the muscles. An observed
minimum in the curve of frequency versus speed should
therefore correspond to a minimum in the curve of power
required versus speed. The variation in wingbeat frequency at
different speeds was small and no doubt proportionally much
smaller than the variation in power required.

According to Pennycuick (1975), the minimum power speed
for a bird in level flight (Vmp) can be calculated from the formula:

0.807(mg)1/2k1/4

Vmp = ——————— , (4)
ρ1/2b1/2(SbCDb)1/4

where m is the body mass, g is the acceleration due to gravity,
ρ is the air density, b is the wing span, k is the induced drag
factor, Sb is the frontal cross-sectional area of the body and CDb

is the drag coefficient of the body. The underlying assumption
is that the curve of power versus speed must pass through a
minimum, because it represents the sum of the induced power
(Pind), required to support the weight, and the parasite power
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Table 2. Values of variables used in calculating Vmp from
equation 4

Thrush 
Variable Symbol nightingale Teal

Body mass (kg) m 0.027 0.235
Wing span (m) b 0.263 0.582
Wing area (m2) S 0.0130 0.0458
Body frontal area (m2) Sb 0.000733 0.00310
Body drag coefficient CDb 0.40 0.381
Induced drag factor k 1.2
Gravity (m s−2) g 9.81
Air density (kg m−3) ρ 1.23
(Ppar), required to overcome the drag of the body. Through the
middle range of speeds, Pind declines with increasing speed,
but Ppar increases, so that the curve of the sum of the two
components is U-shaped. The speed (Vmp) at which the
minimum occurs depends on the relative magnitudes of the
induced and parasite powers. More induced power and/or less
parasite power shift Vmp to a higher value. Estimates for Vmp

for the teal and the thrush nightingale, calculated from equation
4 using the values for the variables given in Table 2, including
default values from Pennycuick (1989) for k and CDb, are
shown in parentheses in Fig. 5. If we are correct in identifying
the minimum frequency speed as an experimental estimate of
Vmp, as argued above, then Fig. 5 shows a major discrepancy
between observed and estimated values, which is in the same
direction and of much the same magnitude in both of these very
different species. While we cannot give fiducial limits for our
minimum frequency speeds, we noted that the teal would not
fly at its calculated minimum power speed, while the thrush
nightingale did so reluctantly, with its body tilted in a
pronounced nose-up attitude. A similar discrepancy was noted
by Rothe and Nachtigall (1987), who reported that the
minimum rate of oxygen consumption in pigeons flying in a
wind tunnel occurred at a speed well above the calculated
minimum power speed and that their pigeons were reluctant or
unable to fly at the calculated value for Vmp.

Possible sources of discrepancy

The theory behind equation 4 is based on straightforward
physical principles, derived from aeronautical engineering.
Although the calculation of induced power, in particular, is
much simplified from the reality of the flapping wings, there has
been no suggestion that this is likely to cause a massive
underestimate of induced power at medium speeds, as would be
required to account for the observed discrepancy. It has also been
assumed, perhaps wrongly, that any further components of
power are independent of speed in this speed range. In particular,
profile power (Ppro), which is needed to overcome the profile
drag of the wings, has never been directly measured, and very
little is known about it. If it were to decline strongly with speed
in the vicinity of Vmp, this would shift the minimum power speed
to a higher value. Actually, some early calculated curves of Ppro

did show such a characteristic (Pennycuick, 1968b), but the
calculation involved many assumptions and the effect was, in
any case, far too weak to account for our present discrepancy.
The assumption that Ppro is independent of speed is currently the
best approximation that can be reconciled with the available
evidence about its behaviour at medium speeds (Pennycuick,
1995). An error in the relative magnitudes of Pind and Ppar is
most likely to be the source of the discrepancy seen in Fig. 5.

If a structural error in the theory seems unlikely to account
for the discrepancy, then we have to consider whether it could
be due to a gross error in one or more of the values that we
assigned to the seven variables on the right-hand side of
equation 4 (Table 2). This also seems unlikely in the case of
m, b and ρ, which were measured, while the acceleration due
to gravity (g) was assigned a standard value, which is not likely
to be far out. The body cross-sectional area Sb was calculated
from m using the formula:

Sb = 0.00813m0.666 , (5)

which was derived empirically from measurements on raptors
and waterfowl by Pennycuick et al. (1988). As Vmp depends
only weakly on Sb (it is proportional to Sb to the −0.25 power),
it is unlikely that errors in estimating Sb could be large enough
to cause the observed discrepancy.

This narrows the probable source of the discrepancy to the
two dimensionless numbers CDb and k which, respectively,
express the degree of streamlining of the body and the degree
of inefficiency with which the flapping wings generate lift. The
body drag coefficient (CDb) was assigned values according to
a formula proposed by Pennycuick et al. (1988) and
incorporated in the computer programs of Pennycuick (1989).
This formula was empirically based on wind-tunnel
measurements of the drag of frozen bird bodies, whose wings
had been removed, and takes account of the likely Reynolds
number, assigning drag coefficients ranging from 0.40 for
small birds to 0.25 for large ones. The induced drag factor k
was assigned a fixed value (k=1.2), which is essentially a guess
based on aeronautical experience.

Fig. 6 shows the effect of changing our assumptions about
the values of k and CDb in the form of a family of curves for
each bird, in which the estimated Vmp from equation 4 is
plotted against CDb for different values of k, retaining the
values in Table 2 for the remaining five variables. The filled
circles at the bottom right of each plot represent the default
values listed in Table 2. The values of k for the four curves in
each family range from 1.0 to 2.2. A value of k=1.0 represents
an ‘ideal’ pair of wings, which generate force with no waste
of energy, whereas k=2.2 represents a level of inefficiency
which would be considered unacceptable in any flying machine
and which, if found in an animal, would be quickly disposed
of by natural selection. Moving each of the filled circles
upwards, even as far as the curve for k=2.2, would increase the
estimate of Vmp, but not nearly enough to account for the
discrepancies seen in Fig. 5. While our default value for k is
not experimentally based, we would have to increase it by an
unbelievable amount in order to resolve the discrepancy in
Vmp. However, a drastic reduction of CDb by a factor of about
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Fig. 6. Effect on the predicted minimum power speed of varying the
assumed values of the induced power factor (k) and the body drag
coefficient, for the thrush nightingale and the teal. Filled circles at
bottom right show default values used in Program 1A of Pennycuick
(1989), and broken lines show estimates derived from wingbeat
frequency curves (Fig. 5).

B

A

Fig. 7. (A) A streamlined body of revolution with fineness ratio 3. Air
streaming from left to right follows stream lines which diverge around
the body, but close up again downstream. (B) A frozen bird body with
the wings removed, mounted in a wind tunnel. The stream lines do
not close up downstream, but leave a wake (stippled) in which the
flow is turbulent and the pressure is reduced.
5, to a value near 0.08, would account for our observed values
of Vmp. This involves rejecting, or at least re-interpreting, a
substantial body of published experimental data. We now
examine the nature of this evidence and consider whether there
could be valid grounds for such a revision.

Anomalous measured body drag coefficients

The drag coefficient expresses the degree to which a body
is streamlined, being the ratio of the drag force on the body
to that of a theoretical flat plate of the same frontal area (Sb)
aligned perpendicular to the air flow. Reviewing measured
drag coefficients of frozen bird bodies from which the wings
had been removed, Tucker (1990a) noted that the results were
in line with those expected for ‘bluff bodies’ and much higher
than the values usually observed for ‘streamlined bodies’. The
meaning of these aeronautical terms is illustrated in Fig. 7. A
streamlined body is one in which the stream lines come
together smoothly at the downstream end, whereas the stream
lines around a bluff body part as the air passes around the
body, but fail to come together again downstream. This leaves
a ‘wake’, in which the air pressure is lower than where the air
is impinging on the upstream end of the body. The difference
in pressure between the upstream and downstream ends is
what causes the high drag of bluff bodies. In a perfectly
streamlined body, the pressure would build up along the
backward-facing surfaces, to balance that on the upstream end
of the body. In that case, the drag would be due entirely to
‘skin friction’; that is, to the tangential forces due to the
viscosity of the fluid as it slides along the surface of the body.
Skin friction depends on the total ‘wetted area’ of the surface
rather than on the frontal cross-sectional area and is therefore
increased by such anatomical features as long tails and trailing
legs. For bodies of similar shape, skin friction becomes an
increasingly prominent proportion of the total drag at smaller
scales (smaller size and lower speed). Because of this, drag
coefficients, even of well-streamlined shapes, tend to increase
at smaller scales, usually expressed by the ‘Reynolds number’.
An explanation of these effects, with a definition of Reynolds
number and related concepts, can be found in Anderson
(1991).

The streamlined body of revolution depicted in Fig. 7 has a
‘fineness ratio’ (length:diameter ratio) of 3. Hoerner (1958), in
a classical study of fluid dynamic drag, reported a drag
coefficient of 0.015 for a smooth-surfaced body of
approximately this shape, decreasing to 0.009 for a fineness
ratio of 5. This refers to a Reynolds number of 105, which is
within the range at which medium-sized bird bodies operate in
cruising flight. A drag coefficient of 0.43, as observed for a
frozen pigeon body by Pennycuick (1968a), is far above the
range of values normally measured on streamlined bodies and
is nearer the value expected for a sphere. Recognising that this
result was anomalous, Tucker (1990a) took great care with the
technique when measuring the drag of a frozen body of a
peregine falcon (Falco peregrinus), including a careful
investigation of the effect of the mounting strut on the flow
over the body itself (further developed by Tucker, 1990b).
Even after applying downward corrections for all known
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sources of error, he obtained a drag coefficient of 0.24 for this
apparently well-streamlined species. This is approximately 20
times higher than might be expected from the engineering
literature on streamlined bodies. Tucker (1990a) also re-
examined earlier measurements, applying corrections for
shortcomings in technique but, even so, his corrected drag
coefficients from published data by Tucker (1973), Pennycuick
(1971), Pennycuick et al. (1988) and Prior (1984) were all
above 0.2. It would seem that frozen, wingless bird bodies
behave like bluff bodies when mounted on a drag balance in a
wind tunnel. In the absence of evidence to the contrary, it has
been assumed that bird bodies behave in the same way in life,
but we now question this assumption.

The feather anomaly

The wake in the region of separated flow (stippled in Fig. 7)
contains turbulent air, and Pennycuick et al. (1988) noted that
this turbulence was plainly visible on frozen, feathered bodies,
as it caused the feathers to lift and flutter. The measured drag
was minimised if the feathers were carefully smoothed down
before each observation. In a somewhat bizarre experiment,
these authors glued down the feathers of a snow goose body
using hair lacquer, having previously measured its drag
coefficient (uncorrected for the effect of the mounting struts)
as 0.33. After this treatment, the drag coefficient was 0.28, a
15 % reduction. Tucker (1990a) went a step further by making
a three-dimensional surface survey of his peregrine body and
then making an accurate full-sized model out of smooth-
surfaced plastic. The drag coefficient of the model was 0.14
compared with 0.24 for the real body, a 42 % reduction. Taken
at face value, these results indicate that the feathered surface
causes a big increase in drag. If this were really the case, it
would be an evolutionary anomaly, as there would seem to be
no phylogenetic objection to modifying the outer layer of
feathers into smooth, impervious, reptile-like scales.

A streamlined body hypothesis

We propose that the high drag coefficients measured on
wingless, frozen bodies are due to extensive separation of the
flow, but that this is an artefact that does not occur in the intact
bird. Even in small passerines and hummingbirds, the body
shape is ‘faired’ by feathers, which smooth over irregularities
caused by the neck and legs, so that the outer surface has the
shape of a typical streamlined body, tapering to a point at the
posterior end. There would seem to be no advantage in this,
unless the apparent streamlined shape actually does guide the
air flow so that it remains attached to the surface and joins up
downstream to leave a minimal wake. If this does occur, then
the engineering literature would lead us to expect drag
coefficients of approximately 0.05. Our results (Fig. 5) could
be accounted for if the teal and the thrush nightingale both had
body drag coefficients of approximately 0.08, rather than near
0.4 as at first assumed. The Reynolds numbers, based on body
diameter at the widest point, were 21 600 for the thrush
nightingale and 215 000 for the teal. We see no indication that
the smaller bird had a higher drag coefficient, although this
was expected, as aeromodellers find it difficult to keep the flow
attached to streamlined bodies at the low Reynolds numbers
seen in small birds. This result suggests that, far from
promoting separation as observed in the measurements on
frozen bodies, the feathered surface, on the contrary, helps to
keep the flow attached to the surface. We note that insects,
which do not have any equivalent of the feathered surface, do
not have streamlined shapes either, indicating that, at their
lower Reynolds numbers, separated flow is inevitable and
cannot be prevented by streamlining.

Aerodynamic cleanness

The thrush nightingale flew with its tarsal joints flexed and
its feet forward. The legs and feet could be completely
concealed under the feathers, giving the outer body surface a
smoothly streamlined shape, although sometimes the toes
could be seen projecting from the feathers. The teal held its
feet just below the tail when flying in the wind tunnel, where
they would be expected to create a small amount of drag.
Birds’ feet are extremely effective at creating additional drag
when stretched out with the toes spread (Pennycuick, 1971). A
bird’s body may be said to be aerodynamically ‘clean’ when
all irregularities that might cause flow separation, such as the
head, neck and feet, are retracted and faired smoothly into a
streamlined shape by an outer layer of feathers. Both the teal
and the thrush nightingale might possibly be capable of fairing
over their feet more completely than they actually did and, in
that case, the drag coefficients that we estimated (near 0.08 for
both birds) might not be the minimum of which they are
capable. The best interpretation that we can place on our results
is that birds whose bodies have well-streamlined shapes, as in
the teal and thrush nightingale, are capable of minimum drag
coefficients, when fully ‘cleaned up’ aerodynamically, in the
region of 0.05. However, it is possible that much higher drag
coefficients, characteristic of bluff bodies rather than
streamlined bodies, may actually occur in species with
aerodynamically ‘dirty’ body shapes, such as pelicans and
large herons, with their prominent heads and long, trailing legs.
Irregularities of outline may be expected to promote flow
separation, while features that increase the wetted area will
increase skin friction. All birds can increase their body drag
when required, as in steep descents, by lowering and spreading
their feet, except possibly for a few species with very small
feet (swifts, frigatebirds).

Implications of lower drag coefficients

Our hypothesis, which remains to be tested by future
experiments, is that the flow around living bird bodies (as
opposed to frozen, wingless bodies) remains attached to the
surface, giving a ‘streamlined’ rather than a ‘bluff body’ type
of flow, with drag coefficients far lower than have been
generally assumed. If this is correct, then the default values for
body drag coefficient used in the computer programs of
Pennycuick (1989) will in most cases be too high. Our results
suggest that a default value of 0.05 should be used for the body
drag coefficient of any well-streamlined species that is capable
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Fig. 8. Suggested values for the body drag coefficient CDb for use in
computer programs such as those of Pennycuick (1989) for
calculating flight performance. CDb may be as low as 0.05 in species
whose heads and feet can be fully faired by feathers. At the other
extreme, species with prominent heads and long legs may behave like
‘bluff bodies’ with drag coefficients as high as 0.4. These suggestions
are provisional, pending actual measurements.
of completely retracting its feet, irrespective of size. This
replaces the old default values of between 0.25 and 0.40 which
are computed in the published version of the programs. In the
case of species with long legs, large feet or prominent heads,
higher drag coefficients may be appropriate, intermediate
between the old and new default values. Fig. 8 represents this
in a graphical way and should be regarded as a provisional
suggestion, pending better measurements on species with
different body shapes.

A drastic downward revision of the default body drag
coefficient will have two practical consequences. (1) The
minimum power speed will be revised upwards, by an amount
similar to that seen in Fig. 5. This may cause some surprises
when field data on flight speeds are re-examined. Birds which
appeared to be flying at their maximum range speeds under the
old assumptions may turn out to be flying nearer their
minimum power speeds. Some birds may appear to fly even
slower than their minimum power speeds, which may be due
to aerodynamically ‘dirty’ body shapes, with drag coefficients
between the old default values and the revised values. (2) The
power in cruising flight will be less than previously estimated
and the effective lift:drag ratio will be greater. The distance
that a bird can fly with a given fraction of its take-off mass as
consumable fuel (its ‘range’) depends directly on the effective
lift:drag ratio and will be increased in the same proportion.
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