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Acclimatization in the physiological performance of an
introduced ectotherm
Lauren K. Neel1,2,*, John D. Curlis2,3, Chase T. Kinsey2,4, Christian L. Cox2,5 and Lance D. McBrayer2

ABSTRACT
Phenotypic flexibility may facilitate range expansion by allowing
organisms to maintain high levels of performance when introduced
to novel environments. Phenotypic flexibility, such as reversible
acclimatization, permits organisms to achieve high performance over
a wide range of environmental conditions, without the costly allocation
or acquisition tradeoffs associated with behavioral thermoregulation,
which may expedite range expansion in introduced species. The
northern curly-tailed lizard, Leiocephalus carinatus, was introduced
to the USA in the 1940s and is now established in southern Florida.
We measured bite force and the thermal sensitivity of sprinting of
L. carinatus during thewinter and spring to determine howmorphology
and performance varied seasonally. We found evidence of seasonal
variation in several aspects of physiological performance. Lizards
sampled in spring sprinted faster and tolerated higher temperatures,
while lizards sampled in winter had high performance over a wider
range of temperatures. Furthermore, seasonal differences in
physiology were only detected after generating thermal reaction
norms. Both sprint and bite force performance did not differ
seasonally when solely comparing performance at a common
temperature. No seasonal relationships between morphology and
performance were detected. Our results suggest that L. carinatusmay
use reversible acclimatization to maintain high levels of performance
across seasons not typically experienced within their native range.
Thermal physiology plasticity may ameliorate the impacts of sub-
optimal temperatures on performance without the cost of behavioral
thermoregulation. Our work highlights the importance of utilizing
reaction norms when evaluating performance and the potential
ecological impacts of introduced species.
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Thermal performance curves

INTRODUCTION
The ranges of most species are not static, but expand and contract
throughout their evolutionary history (Davis and Shaw, 2001).
A special case of range expansion is when introduced species
become invasive, expanding into a previously unoccupied
geographic area and impacting native flora and fauna. One critical
aspect governing range limits is a species’ ability to adapt and/or

acclimatize to novel environmental conditions, and this is
particularly true during range expansions (Hoffmann and Sgrò,
2011; Parker et al., 2003; Somero, 2010; Tepolt and Somero, 2014;
Wright et al., 2010). Organisms undergoing range expansions,
especially successful invasive species, often possess phenotypes
that are well suited for exploiting a wide variety of resources and
niche spaces (Crowder and Snyder, 2010; Huang et al., 2010;
Layman and Allgeier, 2012; Snyder and Evans, 2006).

Successful invasive species, including brown anoles (Anolis
sagrei), fire ants (Solenopsis invicta), brown tree snakes (Boiga
irregularis) and gray squirrels (Sciurus carolinensis), can often
outcompete native species because they possess traits such as
generalist habitat requirements and diet, decreased susceptibility to
native parasites, pathogens and predators, and high fecundity, relative
to natives (Gurnell et al., 2004; Losos et al., 1993; Rodda et al., 1992;
Tompkins et al., 2003; Vogt et al., 2002). Another trait likely
employed by successful invasive species is an increased ability to
acclimatize to a broader range of environmental conditions (Funk,
2008). This acclimatization requires that organisms possess sufficient
phenotypic plasticity to expand their geographic range. However,
surprisingly little is known about how seasonal variation in
temperature or rainfall influences the relationship between
morphology and physiological performance for species undergoing
range expansion.

Phenotypic flexibility (i.e. reversible phenotypic plasticity,
acclimatization or acclimation) refers to the within-individual
variation that occurs in response to predictable (e.g. seasonal)
or stochastic environmental fluctuations (Piersma and Drent,
2003; Seebacher, 2005; Wilson and Franklin, 2002). Seasonal
acclimatization is likely a useful mechanism employed by both
successful native (Stellatelli et al., 2018; Sun et al., 2018) and
invasive (Braby and Somero, 2006; Tepolt and Somero, 2014; Xu
et al., 2007) species to optimize physiological performance in novel
environments. However, the benefit of plasticity depends on the
magnitude of the environmental change and the resources required
to exhibit the acclimation response (DeWitt et al., 1998; Gabriel and
Lynch, 1992). Subsequently, tradeoffs (e.g. allocation, acquisition,
specialist–generalist) constrain the phenotypes that can be expressed
by a given genotype (Angilletta et al., 2003). Therefore, the extent
of phenotypic flexibility typically varies and is often modest rather
than fully compensatory (Kingsolver and Huey, 1998). Thermal
reaction norms are commonly used to determine the sensitivity of
performance (e.g. locomotion, assimilation, survivorship, etc.) to
changes in temperature and are proximately constrained by
biochemical processes (Hochachka and Somero, 1968; Somero,
1978). Acclimation in temperature-dependent physiological traits
such as membrane fluidity, action potential generation, protein
synthesis, heat-shock protein expression and protein thermal
stability can lead to adaptive shifts in thermal optima and thermal
tolerance limits (Hochachka and Somero, 1968; Somero, 2002).
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expansion, increased phenotypic flexibility is likely under strong
natural selection (Davidson et al., 2011; Kingsolver and Huey, 1998;
Somero, 2010). Despite the evolutionary and ecological relevance of
acclimatization for biological invasions, the acclimatory capabilities
of many introduced species remain unstudied.
Many organisms align important fitness-influencing activities

with optimal environmental conditions available in a certain season.
For example, plants and animals often reproduce during warmer
months in higher latitudes or during wetter months in lower latitudes
(Bauer, 1992; Castilho et al., 2007; Taylor and Tulloch, 1985).
Morphological traits can also exhibit phenotypic flexibility. Irschick
and Meyers (2007) found that during the breeding season,
Urosaurus lizards with relatively narrow heads and low bite
forces increase head width, which increases bite force; conversely,
lizards with large heads and high bite forces early in the breeding
season exhibited narrower heads and low bite forces late in the
breeding season. In that study, the researchers hypothesized that
head width plasticity dictates social interactions in the breeding
season, as head width (and bite force performance) largely impacts
territory defense and mate acquisition (Irschick and Meyers, 2007).
However, the correlative relationship between morphological and
physiological traits undergoing reversible acclimatization remains
largely enigmatic. We studied phenotypic flexibility in two
performance traits and the performance morphology axis to better
understand the potential for acclimatization to increase annual
performance in an introduced, potentially invasive species.
The northern curly-tailed lizard, Leiocephalus carinatus, was

introduced into the southeastern USA in the 1940s and is now
established in southern Florida. Curly-tailed lizards outcompete and
prey upon other lizards when introduced, including another
introduced species, Anolis sagrei (Losos et al., 2004), and their
presence may disrupt the ecology of many native species in this
region (e.g. Anolis carolinensis). We evaluated (1) how the thermal
sensitivity of sprinting and bite force performance changes across
seasons, and (2) how the relationship between morphology and
performance might change across seasons in the introduced range
of L. carinatus. We asked the following questions. (1) Does
performance at a common temperature vary seasonally for different
performance traits? (2) Do thermal performance curves for sprint
performance vary seasonally? (3) Does the relationship between
morphology and physiological performance vary seasonally? We
hypothesized that sprint speed and bite force performance would
have similar thermal optima because these traits influence
survivorship and/or fecundity and therefore have substantial
fitness consequences (Husak et al., 2006; Lappin and Husak,
2005; Miles, 2004). Monthly average ambient temperatures differed
by 2.5°C between seasons during our sampling period (NOAA,
National Centers for Environmental Information: https://www.ncei.
noaa.gov/; Menne et al., 2012). We expect curly-tailed lizards to
align thermal optima for performance with the differing
environmental temperatures available during the spring and winter
seasons. Hence, thermal optima for bite force and sprint
performance would be higher in the spring and lower in the
winter. We predicted that differing thermal optima could alter the
morphology–performance axis.

MATERIALS AND METHODS
Study system
The northern curly-tailed lizard (Leiocephalus carinatus Gray 1827)
natively occupies rocky, open, coastal habitats in The Bahamas,
the Cayman Islands and Cuba. The regions where curly-tailed
lizards occur natively and non-natively are close geographically

and therefore experience similar climates. However, introduced
populations in Florida are concentrated in urban areas where
temperatures are likely inflated as a result of urban heat island effects
(Winchell et al., 2016;Yuan and Bauer, 2007). Introduced curly-tailed
lizards were sampled separately (i.e. not mark–recaptured) in the
winter (November 2015 and January 2016) and spring (March 2016)
in urban West Palm Beach, FL, USA (26.743939, −80.049544).
Lizards were captured using a slip noose and temporarily stored in
cloth bags in a cool environment while in the field. Lizards were then
transferred to the animal care facility at Georgia Southern University
for collection of physiological and morphological data. All applicable
institutional and/or national guidelines for the care and use of animals
were followed. All methods were approved by the Georgia Southern
University Institutional Animal Care and Use Committee (protocol
#I15011 and #I15012).

Critical thermal limits
Critical thermal maxima (CTmax) and critical thermal minima
(CTmin) are indices of the highest and lowest temperatures at which
an animal loses basic locomotor function (Lutterschmidt and
Hutchison, 1997) and define tolerance limits in ectotherms (Huey
and Stevenson, 1979). To measure CTmax, lizards were placed in a
deep container under heat lamps, so the temperature increased at a
constant rate (∼1°C min−1). Attached to the venter of each animal
was a small thermocouple that continuously measured ventral body
temperature. Every minute, a lizard’s ‘righting response’ was
checked by gently flipping the lizard onto its back and observing
whether it could regain an upright position. If the lizard flipped over
within 15 s, the trial continued. The temperature at which an animal
lost its righting response was recorded as CTmax. For CTmin trials,
lizards were cooled on an icepack, and the righting response was
checked each minute. The temperature at which an animal lost its
righting response was recorded as the CTmin. Thermal sensitivity
and thermal tolerance data were only collected from male animals,
as varying levels of gravidity are known to impact female thermal
preference in a wide range of ectotherms and specifically many
lizards (Beuchat, 1986; Braña, 1993; Le Galliard et al., 2003; Rock
and Cree, 2003). Egg laying typically begins for L. carinatus in
early May (Meshaka et al., 2006), so we could not determine female
reproductive status during our spring sampling period.

Sprinting thermal sensitivity
Male sprint speed was quantified at five ecologically relevant
temperatures (28, 32, 34, 37 and 40°C) that span the critical thermal
limits of the northern curly-tailed lizard to generate thermal
performance curves. Prior to each sprinting trial, lizards were
placed in an incubator until the desired body temperature was
reached. Lizard body temperature was measured with a cloacal
thermometer prior to the start of each trial. After ensuring a lizard
was at the desired trial temperature, it was encouraged by the
experimenter to sprint down a 2 m racetrack. We did not include
trials in statistical analyses if they occurred more than 30 s after the
lizard was removed from the incubator because of the rapid rate of
equilibration with environmental temperature. Infrared photocells
lined the track (9 paired photocells spaced 0.25 m apart), allowing
us to collect data for calculation of velocity using custom LabView
software (see Angilletta et al., 2002; Bauwens et al., 1995; Miles,
2004). Each lizard was run 3–4 times at each temperature, and the
maximum sprint value from each trial was retained for analysis. We
considered a lizard’s sprint speed to be 0 m s−1 if the individual was
unable to run continuously for 25 cm (the distance between each
photocell pair). Lizards were sprinted at the same temperature on the
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same day, and the order of temperature trials was randomized.
Between the various temperature trials, lizards were kept in terraria
at ∼33–35°C for ≥24 h between sampling days to minimize stress
and ensure lizards were ready for the next sprint trial at a different
temperature. If sprint data could not be collected for at least three-
quarters of the trial temperatures for an individual (excluding the
upper and lower trial temperatures), they were omitted from the
curve-fitting process.
The thermal performance curve of each individual lizard was

estimated by fitting a set of left-skewed parabolic equations to sprint
data using the program TableCurve 2D (Systat Software, Inc.)
(Angilletta, 2006; Logan et al., 2014; Neel and McBrayer, 2018).
Equations were chosen based on the typical left-skewed shape of
ectotherm thermal performance curves, which are thought to be
structured by the thermodynamics of enzyme function (Somero,
1978). A line of best fit for the data for each individual was selected
using Akaike’s information criterion (AIC) (Akaike, 1987; Logan
et al., 2014). When two equations did not significantly differ in their
AIC score, the equation with the fewest parameters was chosen.
When curves did not differ in AIC score or in the number of
parameters, the curvewith the highest R2 value was chosen. Thermal
performance curves were anchored with the critical thermal limits for
an individual. The upper and lower temperature where an individual
lost its righting response were considered the thermal limit. The loss
of a righting response would clearly hinder locomotor performance,
and thus it makes biological sense to incorporate this measure into
the thermal performance curve for sprint performance.
Thermal performance curves were used to estimate three traits

associated with thermal performance. First, the predicted maximum
sprint speed (Pmax) was estimated from each curve. Second, the
thermal optimum (Topt), or the temperature at which performance is
predicted to be maximal, was estimated for each individual from
their thermal performance curve. Finally, the range of body
temperatures over which the lizard can run at 80% of its Pmax or
faster (B80) was estimated for each individual via the thermal
performance curve. These three traits were all used to describe and
compare the shapes of the thermal performance curve (Huey and
Stevenson, 1979).

Bite force performance
Bite force was measured every other day for 6 days (i.e. three trial
days per lizard). On days in which bite force was measured, lizards
were removed from terraria, placed in individual cloth bags, and
stored in a thermal chamber at 37°C for at least 30 min before
measurements were recorded. The temperature of each lizard was
taken with a cloacal thermometer immediately prior to the start of the
trial. We measured bite force performance at a single temperature, as
previous studies have found it to be relatively insensitive to changes
in temperature (Herrel et al., 2007). We selected 37°C as our
common temperature to compare seasonal variation in sprint and bite
performance because physiological optima are expected to be co-
adapted with preferred body temperature in nature (Angilletta, 2009;
Lande and Arnold, 1983). We expected this trial temperature to be
closest to preferred body temperature, which Phillips and Howes
(1988) found to be 37.1±0.8°C in L. carinatus.
Bite force was measured using dual cantilever bite plates fitted

with a piezoelectric force transducer (Kistler 9203; see Herrel et al.,
1999). The bite plates consisted of two metal plates, spaced 2 mm
apart, and wrapped in small pieces of duct tape to avoid damaging
the lizards’ teeth during measurements. The position of the plates in
a lizard’s mouth was standardized such that the furthest edges of the
metal bars aligned with the third scale posterior to the nostril.

Lizards were encouraged to bite the bite force meter 3 times per trial
day. Lizards were held in the hand and placed into position to bite
the plates immediately upon mouth opening. If more than a minute
passed or if the lizard escaped and had to be recaptured, we did not
take any more measurements on that animal on that trial day. We
generated a standard curve by regressing the force (in newtons, N)
displayed on the readout of the calibrated charge amplifier (Kistler
5995A) while hanging weights of known mass on the bite bars to
determine the actual bite force in newtons (Anderson et al., 2008).
For each individual, we used the maximum bite force across all trials
for all subsequent statistical analyses.

Morphological measurements
All collected lizards were euthanized with MS-222. We used digital
calipers to measure the following morphometric traits to the nearest
0.01 mm: snout–vent length (SVL), jaw length, jaw width, humerus
length, antebrachium length, metacarpal length, longest digit from
both the hindlimb (tarsal phalange) and forelimb (phalange) length,
femur length, shank length, metatarsus length and tail length. We
excluded individuals with broken or autotomized tails from further
analyses, as this may have affected performance.

Body temperature model
We derived estimates of lizard body temperature using the ectotherm
model in the R package NicheMapR v.2.0.0 (Kearney and Porter,
2020). For this, we first estimated microclimates (air temperature,
wind speed, zenith angle of sun, relative humidity, solar radiation,
sky radiation and substrate temperatures) for West Palm Beach, FL,
USA, using the NicheMapR microclimate model (Kearney and
Porter, 2017). The NicheMapR microclimate model generates
hourly above- and below-ground conditions from meteorological,
terrain, vegetation and soil data at a resolution of 15 km2 (Kearney
and Porter, 2017; New et al., 2002). We ran the microclimate model
assuming a shade level of 50% to compare estimated lizard body
temperatures between seasons. The NicheMapR ectotherm model
uses the output produced from the microclimate model as the driving
environmental input to compute the range of body temperatures
animals would experience (Kearney and Porter, 2017). We ran the
ectotherm model for a diurnal lizard with a mass of 40 g. We turned
off behavioral parameters (i.e. postural changes, shade-seeking,
climbing and retreating underground) to minimize the potential
effects of behavioral thermoregulation on computed body
temperatures. The data we present here are for the middle days of
each month during the winter (15 November, 15 December and 15
January) and spring (15 March, 15 April and 15 May).

Statistical analysis
To statistically determine the relationship between bite force, sprint
performance, morphology and season, we used general linear
models with a normal distribution. All dependent variables were log-
transformed prior to statistical analysis. Data were size-adjusted by
including body size (log-transformed SVL) in all models tested as
covariates. To test for seasonal differences in the relationship
between morphology and performance, initial analyses included
sex×season interactions and interactions between the morphological
trait of interest and season, but none were significant, so interaction
terms were not included in the final analyses. To test for
heterogeneity of slopes in our thermal performance curve statistics,
initial analyses included SVL×season interaction effects, but none
were significant so the interaction terms were not included in the
final analyses. To determine whether seasonal acclimatization in
sprint performance was beneficial, we analyzed sprint speed at
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our lowest (28°C) and highest (40°C) temperature trials with a
temperature×season interaction. All data were evaluated for the
assumption of normality and equal variances prior to using
parametric tests. For parametric analyses, we obtained P-values
using the ‘Anova’ function (car package; Fox and Weiserg, 2019)
with type III sum of squares. If assumptions of parametric tests were
not met, non-parametric alternatives were used. All linear models
were fitted and tested using R Statistical Software (http://www.
R-project.org/). Means are reported ±1 s.e.m., and significance was
established at α=0.05.

RESULTS
Seasonal variation in sprinting and bite force performance
at a common temperature
We found that sprint speed did not vary seasonally, when sexes were
analyzed either separately or together. Log-transformed sprint speed at
37°C did not differ between seasons (N=14 winter, N=28 spring) but
did differ between sexes (N=15 females, N=27 males) and with SVL
(ANCOVA: season:F4,32=2.87,P=0.10; sex:F4,32=61.78,P≤0.0001;
SVL:F4,32=6.64,P=0.014; seeTables 1–3, Fig. 1A). Log-transformed
sprint speed did not vary seasonally formales (ANCOVA:F3,18=1.72,
P=0.20) or females (ANCOVA: F3,12=1.56, P=0.24).
Similarly, we found that bite force did not vary among seasons

(N=18 winter, N=29 spring), when sexes were analyzed either
separatelyor together (N=26 females,N=21males). Log-transformed
bite force did not differ between seasons, but did differ between sexes
and with SVL (ANCOVA: season: F4,43=1.68, P=0.20; sex:
F4,43=4.19, P=0.046; SVL: F4,43=611.24, P≤0.001; Fig. 1B). Log-
transformed bite force did not vary seasonally for males (ANCOVA:
F3,18=0.47, P=0.50) or females (ANCOVA: F3,23=1.30, P=0.26).

Seasonal variation in thermal performance curve shape
We found that CTmax was greatest in the spring, but CTmin did not
vary seasonally. Log-transformed CTmax was greater in the spring
(41.62±0.24°C, N=17) than in the winter (39.75±0.79°C, N=9;
ANCOVA: F3,23=7.72, P=0.010). CTmin did not vary between
spring (19.38±0.50°C, N=17) and winter (17.73±0.95°C, N=10;
ANCOVA: F3,23=3.67, P=0.07).
We found that Pmax and B80 varied seasonally, with greater Pmax

in spring and greater B80 in the winter. Log-transformed Pmax was
greater in lizards during the spring (1.17±0.06 mm s−1) than during

the winter (0.85±0.05 mm s−1; ANCOVA: F3,13=13.93, P=0.002).
Log-transformed Topt was 3°C warmer in the spring (38.76±0.52°C)
than in the winter (35.85±1.52°C), although this difference was not
statistically significant (non-parametric Wilcoxon–Mann–Whitney:
W1,14=43.5; P=0.15; Fig. 2). Log-transformed B80 was greater in
lizards sampled in the winter (10.13±0.96°C; non-parametric
Wilcoxon–Mann–Whitney: W1,14=11; P=0.044) than in the spring
(7.42±0.52°C; see Table 3). Sprint speed was relatively low at both

Table 1. Seasonal variation in the relationships between snout–vent
length (SVL) and sprint performance at 37°C between sexes in
Leiocephalus carinatus

Variable F P

Sex 61.78 <0.0001*
Season 2.87 0.10
SVL 6.64 0.014*

*Significant difference.

Table 2. Thermal sensitivity of mean (±1 s.e.m.) sprint speed in male
L. carinatus

Temperature (°C)

Sprint speed (m s−1)

Winter Spring

28 0.76±0.05 N=11 0.75±0.03 N=17
32 0.79±0.04 N=11 0.96±0.03 N=17
34 0.67±0.08 N=3 0.84±0.04 N=17
37 0.84±0.04 N=10 1.01±0.04 N=17
40 0.73±0.04 N=11 1.10±0.03 N=17

Table 3. Seasonal variation in thermal performance curve parameters
and thermal tolerance limits

Variable F P

CTmin 3.67 0.06
CTmax 7.72 0.010*
Topt 43.5 0.15
B80 11 0.044*
Pmax 13.93 0.002*

CTmin, critical thermal minimum; CTmax, critical thermal maximum; Topt,
thermal optimum; B80, thermal performance breadth; Pmax, maximal
performance.
Note that for Topt and B80, we used non-parametric Wilcoxon tests and report
the correspondingW-statistics for those data rows in the F column. *Significant
difference between seasons.
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the coolest and warmest temperature trials in the winter, although it
increased between our coolest and warmest temperature trials
in the spring, suggesting that seasonal acclimatization in sprint
performance was beneficial (ANCOVA: F5,27=9.49, P=0.004).

Seasonal variation in the relationship between morphology
and performance
Despite seasonal variation in Pmax and B80 for locomotion, we did
not detect any corresponding seasonal variation in the morphology–
performance axis. There were no significant differences between
seasons in the relationships between morphological traits and
physiological performance (see Table 4; Table S1).

DISCUSSION
Our results suggest that phenotypic flexibility may be an important
factor in facilitating the invasion of new habitats. We found
evidence of seasonal acclimatization in several aspects of
physiological performance, including differences in Topt, B80,
Pmax and CTmax. Differences in Topt and CTmax between winter
and spring (2.9 and 1.8°C, respectively) closely tracked seasonal
environmental variation during that time. Monthly average ambient
temperature increased by 1.8°C between winter (November,
December and January) and spring (March, April and May)
during sampling periods in 2015–2016. Average daily minimum

and maximum ambient air temperature spanned 19.4–26.4°C in our
winter sampling period, and 20.7–28.6°C in our spring sampling
period (NOAA, National Centers for Environmental Information
2019: https://www.ncei.noaa.gov/; Fig. S1). However, ectotherms
can achieve body temperatures that differ greatly from air
temperatures as a result of complex interactions between the
organism and environmental factors (e.g. air and surface
temperature, solar radiation, wind, precipitation, etc.) (Angilletta,
2009; Bakken, 1992; Heath, 1964). Lizard body temperature
generated with NicheMapR (Kearney and Porter, 2020) spanned
11.6–32.1°C during the winter and 15.1–37.3°C during the spring
(Fig. S2). In winter months, the average highest body temperature
lizards could attain during the day was 30.5°C, compared with 35.1°C
in the spring (Fig. S2). Consistent with our predictions, higher
temperatures enabled higher Pmax in the spring (Figs 3A and 4). We
also found that during the winter, when temperatures are lower and
more heterogeneous (Fig. S1), lizards had wider B80 (Fig. 3B). These
results suggest an alignment between physiological traits and the
predictable, seasonal fluctuations in environmental temperature that
occur within the non-native range of curly-tailed lizards.

Importantly, we were only able to detect seasonal variation in
locomotion by generating the reaction norms of thermal performance
(Fig. 4; Fig. S3). Reaction norms describe the relationship between
continuous environmental and phenotypic variables (Gotthard and
Nylin, 1995; Stearns, 1989). Reaction norms describing the thermal
sensitivity of performance metrics such as locomotion, assimilation,
survivorship, etc., are commonly referred to as thermal performance
curves because of their characteristic non-linear and left-skewed
shape (Huey and Stevenson, 1979). By generating thermal reaction
norms, curve parameters (Topt, B80, CTmin, CTmax and Pmax) can be
used to capture and interpret variation in the relationship between
temperature and performance (Huey and Stevenson, 1979) that may
otherwise be missed when solely comparing performance at a
common temperature. Our results highlight the value of considering
performance over a range of temperatures when seeking to evaluate
the potential for introduced species to invade novel environments.

Phenotypic flexibility has been proposed as the main mechanism
employed by species across a broad taxonomic range for continued
persistence under projected warming scenarios (Charmantier et al.,
2008; Chown et al., 2007; Seebacher et al., 2015) and also when
encountering novel environmental conditions during range expansion
(Baker, 1965; Molina-Montenegro and Naya, 2012; Parker et al.,
2003; Wright et al., 2010). The performance breadth, or range of
temperatures that permits high performance (80% of Pmax), has direct
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Fig. 2. Thermal optima (Topt) for sprint performance in L. carinatus
sampled in the winter and spring. CTmax, critical thermal maximum.
Means±1 s.e.m. are shown (N=6 winter, N=10 spring).

Table 4. Seasonal variation in the relationships between morphology and performance at a common temperature (37°C)

d.f.

Sex Season SVL Morphology

F P F P F P F P

Bite force
Jaw length 5,42 3.83 0.06 0.50 0.48 50.31 <0.0001* 0.36 0.55
Jaw width 5,42 3.52 0.07 1.38 0.24 42.40 <0.0001* 1.25 0.26

Sprint speed
Tail length 5,31 63.32 <0.0001* 2.65 0.11 6.48 0.02* 2.00 0.16
Humerus 5,31 68.02 <0.0001* 0.16 0.68 0.32 0.57 3.31 0.08
Antebrachium 5,31 86.71 <0.0001* 0.14 0.70 0.02 0.88 8.48 0.006*
Metacarpal 5,31 52.27 <0.0001* 1.88 0.17 2.41 0.13 0.30 0.58
Phalange 5,31 61.05 <0.0001* 2.66 0.11 3.42 0.07 0.0001 0.99
Femur 5,31 90.87 <0.0001* 0.27 0.60 1.91 0.17 10.18 0.003*
Shank 5,31 74.48 <0.0001* 0.31 0.58 0.65 0.42 5.02 0.03*
Metatarsus 5,31 60.88 <0.00001* 1.91 0.17 1.69 0.20 0.07 0.78
Tarsus phalange 5,31 66.24 <0.00001* 3.22 0.08 0.34 0.56 2.60 0.11

*Significant difference.
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implications for organismal performance and fitness in novel or
fluctuating environments (Huey and Stevenson, 1979; Kingsolver
et al., 2004). In winter, when a wider range of environmental
temperatures is experienced daily, expanding performance breadth
enables animals to maintain relatively high levels of activity, despite
experiencing increased environmental variation.

Given the proximate biochemical mechanisms limiting
performance at the organismal level, models of thermal sensitivity
assume that tradeoffs between maximum performance and
performance breadth (e.g. specialist–generalist tradeoffs) constrain
variation in performance curves (Gilchrist, 1995; Huey and
Kingsolver, 1989). However, several recent studies conflict with
the predictions of this model, suggesting current theories may be too
simplistic or not applicable to a broad range of taxa (Angilletta et al.,
2003; Butler et al., 2013). Our results provide potential support for a
specialist–generalist tradeoff.We observed lowerPmax andwiderB80

in the more-varied winter sampling period and higher Pmax and
narrower B80 in the spring (Fig. 4; Fig. S4). Moreover, thermal
performance breadth likely contributes to determining a species’ or
population’s fundamental niche, which describes a hypervolume of
environmental states that enable survival (Colwell and Futuyma,
1971; Hutchinson, 1959). Research has shown a positive
relationship between niche breadth and geographical range size in
a wide range of both plant and animal taxonomic groups (Slatyer
et al., 2013). Niche breadth, and specifically the breadth for thermal
performance, as well as thermal tolerance likely play an important
role in determining the potential for geographic range expansion in
invasive and introduced species.

Limitations of this study include that we did not sample throughout
ontogeny (i.e. juveniles and hatchlings were not sampled), only
measured thermal sensitivity of male lizards, and only studied lizards
in two different seasons. However, to better understand how
phenotypic flexibility can impact invasive species biology, future
work should measure phenotypic variation across the full range of
environmental variation. Thermal tolerance can differ among the
sexes and life stages in ectotherms (Bowler and Terblanche, 2008;
Krebs and Loeschcke, 1995), and it cannot be assumed that adult
male physiology alone determines the fundamental niche space or the
potential for range expansion.While our results demonstrate temporal
variation in physiological performance, future research across
multiple seasons in both sexes across multiple life stages is
necessary to elaborate how phenotypic flexibility is associated with
seasonal changes in the environment.

Species undergoing rapid range expansion should experience
selection for phenotypic flexibility in a variety of traits. Specifically,
when phenotypic flexibility brings a population close to a new
phenotypic optimum that aligns with current environmental
conditions, directional selection should increase fitness in individuals
with greater plasticity (Ghalambor et al., 2007). Beyond the adaptively
plastic response of single traits, evolutionary theory suggests that
alterations in behavior should accompany acclimation in a co-adapted
genotype (Lande andArnold, 1983). In the context of thermal biology,
thermal co-adaptation could entail thermal optima aligning with
preferred temperatures, which has been observed in several
ectotherms including crocodiles (Glanville and Seebacher, 2006)
and lacertid lizards (Bauwens et al., 1995). This alignment
occurs because, as thermoregulation becomes cost-prohibitive in
unfavorable environments, animals shouldmaximize the net benefit of
thermoregulation by shifting preferred temperatures to align with
available temperatures (Angilletta, 2009; Huey and Slatkin, 1976). In
the broadest context, phenotypic flexibility like that in curly-tailed
lizards could ultimately induce physiological shifts that lead to genetic
adaptation, thereby facilitating acycle of invasion and range expansion.
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