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The agility and manoeuvrability of a flying animal and
the inertial power required to flap the wings are related to
the moment of inertia of the wings. The moments of inertia
of the wings of 29 bird species and three bat species were
determined using wing strip analysis. We also measured
wing length, wing span, wing area, wing mass and body
mass. A strong correlation (r2=0.997) was found between
the moment of inertia and the product of wing mass and
the square of wing length. Using this relationship, it was
found that all birds that use their wings for underwater
flight had a higher than average moment of inertia.
Assuming sinusoidal wing movement, the inertial power

requirement was found to be proportional to (body
mass)0.799, an exponent close to literature values for both
metabolic power output and minimum power required for
flight. Ignoring wing retraction, a fairly approximate
estimate showed that the inertial power required is
11–15 % of the minimum flight power. If the kinetic energy
of the wings is partly converted into aerodynamic (useful)
work at stroke reversal, the power loss due to inertial effects
may be smaller.

Key words: moment of inertia, bird, bat, inertial power, flapping
flight.

Summary
During flapping flight, flying animals invest power to move
the air (aerodynamic power) and to move the wings (inertial
power). The inertial power required to accelerate and
decelerate the wings during each wing stroke increases with
the moment of inertia of the wings. The moment of inertia is
small when the wing mass is low and concentrated near the
axis of rotation. A lower limit to the moment of inertia of the
wing will be set by structural demands. The wings should be
able to withstand the loads applied to them (Pennycuick, 1967).
The resistance to bending and the breaking moment of the wing
bones are determined by their structure, mass and material
properties (the same applies to the feather shafts). Kirkpatrick
(1994) found that the breaking stress of the bone material of
the humerus in a range of bird and bat species was
comparatively low. The safety factors of the humeri ranged
between 1.41 and 3.99 for bats and between 2.22 and 6.63 for
birds. Wing design reflects a compromise between reducing the
moment of inertia and maintaining a reasonable resistance to
bending and a reasonable safety factor against failure (see
Kirkpatrick, 1994).

During hovering in the hummingbird Amazilia fimbriata
fluviatilis, Weis-Fogh (1972) calculated that the total
mechanical work consisted of 53 % inertial and 47 %
aerodynamic work. He estimated that 43 % of the total
mechanical work is wasted and, therefore, (53 2 43)/53 % ≈
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19 % of the inertial work is converted into useful aerodynamic
work. Norberg (1976, 1990) estimated that the inertial power
requirement of the long-eared bat Plecotus auritus was
negligible during fast forward flight and was a small fraction
of the mechanical power expenditure during slow flight and
hovering (2–2.6 %). However, a later recalculation gave a
value of 16 % for slow flight. Norberg et al. (1993) estimated
the inertial power requirement in a nectar-feeding bat,
Glossophaga soricina, to be 60 % of the total mechanical
power required during hovering and 30 % during slow forward
flight; power losses were estimated to be 45 % and 18 %,
respectively. The inertial power requirement seems to be a
significant factor in the total mechanical power demand of
vertebrate flyers. Norberg and Rayner (1987) and Norberg
(1990) suggested that a low moment of inertia of the wings
may also be important for increasing manoeuvrability and
agility (the ability to make tight and fast turns).

Some data are available in the literature on the moment of
inertia of bird and bat wings (Norberg, 1976; Aravind Babu et
al. 1978, 1979, 1983; Madan Mohan et al. 1981, 1982;
Partridge, 1982; Chari et al. 1982, 1983; Janaki Rama Rao et
al. 1983; Aldridge, 1985; Kirkpatrick, 1990, 1994; Thollesson
and Norberg, 1991), as well as on insect wings (Sotavalta,
1952, 1954; Ellington, 1984). However, there is a need for
more data. In this paper, new measurements of the moment of
owning Street, CB2 3EJ, Cambridge, UK.
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Table 1. The family, scientific and common names of the
experimental bird and bat species and the identification

numbers used in this paper

Identifi-
cation

Family Scientific name number Common name

Birds
Podicipedidae Podiceps ruficollis 1 Little grebe
Ardeidae Ardea cinerea 2 Grey heron
Anatidae Melanitta nigra 3 Common scoter
Accipitridae Accipiter nisus 4 Sparrowhawk
Accipitridae Buteo buteo 5 Buzzard
Falconidae Falco tinnunculus 6 Kestrel
Phasianidae Alectoris rufa 7 Red-legged 

partridge
Phasianidae Coturnix coturnix 8 Quail
Rallidae Gallinula chloropus 9 Grey moorhen
Scolopacidae Scolopax rusticola 10 Woodcock
Laridae Larus ridibundus 11 Black-headed gull
Alcidae Alle alle 12 Dovekie (little auk)
Alcidae Uria aalge 13 Common murre 

(guillemot)
Columbidae Columba livia 14 Rock dove (pigeon)
Strigidae Strix aluco 15 Tawny owl
Alcedinidae Alcedo atthis 16 Common kingfisher
Picidae Picus viridus 17 Green woodpecker
Picidae Picoides major 18 Great spotted 

woodpecker
Hirundinidae Delichon urbica 19 House martin
Muscicapidae Erithacus rubecula 20 Robin
Muscicapidae Turdus merula 21 Blackbird
Muscicapidae Turdus philomelos 22 Song thrush
Paridae Parus ater 23 Coal tit
Paridae Parus caeruleus 24 Blue tit
Fringillidae Fringilla coelebs 25 Chaffinch
Estreldidae Poephila guttata 26 Zebra finch
Ploceidae Quelea quelea 27 Red-billed quelea
Sturnidae Sturnus vulgaris 28 Starling
Corvidae Corvus frugilegus 29 Rook

Bats
Vespertilionidae Myotis mystacinus 30 Whiskered bat
Vespertilionidae Pipistrellus 31 Pipistrelle

pipistrellus
Rhinolophidae Rhinolophus 32 Greater horseshoe 

ferrumequinum bat
inertia of bird and bat wings are presented, together with
morphological data. Using these data, the inertial power
requirement was estimated and compared with literature values
of the minimum power requirement for flight.

Materials and methods
General morphological parameters

The experimental birds were taken from a collection of birds
which had been found dead in the field. They had been
enclosed in plastic bags and stored in a freezer. Some
specimens had died as a result of road accident or from
starvation. Care was taken to use fairly intact specimens with
perfectly intact wings, but the measured body mass may
occasionally be an underestimate of the original body mass.
Species were selected from as many different taxonomic and
functional groups as possible. One to three specimens were
used for each species and mean values were calculated per
species. Twenty-nine bird species (from 22 families) and three
bat species (from two families) were used (Table 1).

Body mass (mb; in kg) was measured with a sensitive
electronic balance (accuracy 0.5 mg) or, when the mass
exceeded 200 g, with a less sensitive one (accuracy 0.5 g). The
wing span (b) was measured (in m; to ±1 cm) between the tips
of the extended wings. One wing was cut from the body at the
shoulder joint; the flight muscles and skin distal to this joint
were included in the wing. Wing mass (mw) was determined
(in kg; to ±0.01 g) and its length (lw) was measured (in m; to
±1 mm) as the distance between the humeral head and the tip
of the extended wing. The outline of the extended wing was
traced onto paper, digitised using a data tablet and the area of
one wing (S; in m2) was calculated using a BBC computer.
Wingbeat frequencies (at normal cruising speed) were taken
from Rayner (1988) and J. M. V. Rayner (unpublished results).

Moment of inertia of the wing

The extended wing was fixed, using adhesive tape, to a sheet
of Perspex with engraved 1 cm markings. The wing was cut
into 9–33 strips of equal width perpendicular to the wing axis
(the line between the humeral head and the wing tip). To cut
a wing into strips, a flexible ruler was placed along the
appropriate marking and each strip was carefully cut with a
scalpel and/or a microtome knife. The work area was
surrounded by wooden shields, to prevent any loss of feather
segments. The material constituting each strip was
immediately collected and weighed (to ±0.5 mg).

The moment of inertia and the centre of gravity of the wing
were calculated using a BBC computer. Each wing strip was
considered to be a bar, with a homogeneous mass distribution
along its width rather than a point mass at the centre of the strip
(the method commonly used in the literature). Hence, the
moment of inertia I (in kg m2) was calculated as:

n
I = ∑(midi2 + miw2/12) , (1)

i=1

where mi is the mass of strip i (in kg), di is the distance between
the centre of strip i and the shoulder joint (in m), w is the width
of each strip (in m) and n is the number of strips. This method
is slightly more accurate than the ‘point mass method’, but the
difference between the two methods is less than 1 % when
more than ten strips are cut. For that reason, Thollesson and
Norberg (1991) ignored the second term in equation 1.

We ignored the effect of the air being accelerated by the
wing (added mass), which, according to Alexander (1977), is
justified for birds, but not for insects.

Note that I is the moment of inertia of the fully extended
wing. The wings are usually retracted to some degree during
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the upstroke and during manoeuvres, resulting in a reduced
moment of inertia. I is, therefore, the maximum value of the
moment of inertia of the wing. The radius of gyration ri (in m)
is defined as:

ri = √(I/mw) , (2)

where mw is the wing mass (in kg).
The distance between the centre of gravity of the wing and

the shoulder joint (rcg; in m) was determined from the strip
masses, using a custom-made BASIC computer program,
which minimised the net moment of force acting on
increasingly accurate estimates of the centre of gravity.

Kinetic energy and inertial power

The kinetic energy (Ekin; in J) of a wing rotating with
angular velocity v (in rad s21) is given by:

Ekin = 0.5Iv2 . (3)
The angular velocity v is a function of time t (in s), wingbeat
frequency f (in s21) and total excursion angle F (in rad).
Assuming that the wing movement is sinusoidal (compare
Weis-Fogh, 1972), the angular wing position as a function of
time [g(t); in rad] is given by:

g(t) = 0.5Fsin(2ptf) + –γ, (4)

where –γ is the mean angular position of the wing (in rad).
The angular velocity as a function of time [v(t), in rad s21]

is the derivative of equation 4:

v(t) = dg/dt = pFfcos(2ptf) (5a)

and the maximal angular velocity of the wing is:

vmax = pFf . (5b)

During the first half of the downstroke and the first half of
the upstroke, the wing is accelerated, gaining kinetic energy.
During the latter half of the down- and upstrokes this kinetic
energy is dissipated as the wing decelerates back to rest. The
kinetic energy (Ekin) of one wing reaches a maximum at the
maximal angular velocity; combining equations 3 and 5b gives:

Ekin = 0.5p2F2f 2I . (6)

The inertial power required to accelerate or decelerate a
wing is equal to the rate of change of its kinetic energy. The
kinetic energy of the wing increases from zero to a maximum
(equation 6) during the first half of the down- and upstrokes,
i.e. in a period of 0.25/f. Hence, the inertial power required is
equation 6 divided by 0.25/f. During the second half of the
down- and upstrokes, the kinetic energy of the wing decreases
from the maximum to zero over the same time span, 0.25/f.
Hence, the same inertial power is required, albeit for
deceleration of the wing rather than for acceleration. Although
the wings are accelerated and decelerated twice during each
flap cycle, the inertial power requirement Pin (in J s21) is
constant; for two wings:

Pin = 4p2F2f3I . (7)

Note that many birds and bats retract their wings during the
upstroke, reducing I and, hence, Ekin and Pin. However,
equation 7 should be correct for the downstroke. Pin calculated
with equation 7 is the maximum inertial power requirement.

The value of Pin in Alexander’s (1977) equation 10.9 is half
of the value calculated using equation 7 in this study
(considering that g0 in Alexander’s equation corresponds to
0.5F). Alexander considered only the positive work for the two
acceleration phases of a wing beat and calculated the average
inertial power by dividing this work by the total duration of a
wing beat. In equation 7, the absolute value of the work done
for the two deceleration phases is also included, resulting in a
doubling of the inertial power requirement.

Error analysis and statistics

Two systematic errors in the calculation of the moment of
inertia of the wing (I) have to be considered: mass loss during
sectioning of the wing and the effect of the number of strips
used. The mass loss was determined for all wings as the
difference between the total mass of the wing strips and the
original wing mass mw. The mass loss was approximately 4 %
and was independent of the number of strips. To obtain more
detailed information about mass loss, a pigeon wing was cut
at the elbow and wrist, perpendicular to the wing axis. These
three sections were weighed every hour for 6 h and once more
after 24 h. The mass of each section decreased in an
exponential fashion, the proximal section having the largest
relative mass loss per unit time and the distal section the lowest
(presumably an effect of the proximal position of most soft,
wet tissue). On the basis of this experiment, we assumed that
I will be underestimated by approximately 2 % due to mass loss
during sectioning of the wing.

The effect of the number of strips used on the calculated
value of I was estimated by recalculating I with pairs of strip
masses added together, simulating a measurement with
doubled strip width. The difference between this and the
original values gives an indication of the effect of the number
of strips used (Fig. 1). This analysis indicates that when the
number of strips was at least 15, the ‘doubled strip width error’
was always less than 3 %, whereas with ten strips the error was
in the range 3–15 %. When the above procedure was repeated
with tripled and quadrupled strip widths, the calculated value
of I increased approximately exponentially. Hence, the
difference between the present measurements and the real
moment of inertia is probably less than the ‘doubled strip width
error’, and a minimum of ten strips is acceptable.

The measurement error was estimated by assuming that all
the measurements of the strip masses were 0.5 mg too low,
corresponding to the accuracy of the balance (obviously, this
is an extreme case). In the blackbird, the measurement error in
the moment of inertia was estimated to be 1.0 %; it was 6.4 %
in the pipistrelle, which had the second lowest wing mass in
our sample of flying vertebrates.

Reduced major axis regressions (r.m.a.) were used for the
statistical analyses. This method is more appropriate than least
squares linear regression, because the errors in the x- and y-
coordinates are likely to be of the same order of magnitude
(Rayner, 1985). Regressions were performed on the logarithm
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Fig. 1. The ‘doubled strip width’ error versus the number of strips
used for the bird and bat wings. The doubled strip width error is the
original calculated value of the moment of inertia divided by the
moment of inertia recalculated with pairs of strip masses added
together, multiplied by 100 %. This error gives an indication of the
systematic error caused by using a finite number of discrete strips.
Note that the doubled strip width error may exceed 5 % when the
number of strips is 15 or fewer.
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Fig. 2. Wing strip mass and moment of inertia as a function of wing
length of (A) a blackbird and (B) a pipistrelle.
of the measurements. Hence, the relationships are of the form
Y=AXB. 95 % fiducity intervals for the values calculated for B
were obtained from the formula in Rayner (1985), which
employs the Student’s t-test.

The relative moment of inertia (I*) is the ratio of I to the
predicted value of I obtained from r.m.a. regression of I versus
mwlw2 (see Results section),

I
I* = ———— , (8)

A(mwlw2)B

where A is the intercept of the r.m.a. regression line with the
y-axis and B is the slope of the this line. I* is a measure of the
deviation of the value for each bird species from the average
values. The I* value of the bat wings was also determined,
although the bat data were not included in the r.m.a. analysis.

Results
The morphometric data for each species are listed in

Table 2. The distribution of the strip masses and the results of
the r.m.a. regression analysis are discussed below.

Mass distribution of the wing

The distributions of strip mass and strip moment of inertia
illustrate structural wing adaptations to reduce the moment of
inertia. In birds (e.g. the blackbird Turdus merula, Fig. 2A),
the proximal part of the wing is characterised by high strip
masses and a rather irregular mass distribution. The peaks
usually correspond to the elbow and wrist joint. From the wrist
to the wing tip, the mass distribution typically declines in a
regular fashion. The distribution of the moment of inertia is
typically bell-shaped, with the peak slightly distal to the wrist.
The decrease in strip moment of inertia towards the wing tip,
despite the rapidly increasing square of the distance from the
shoulder joint (see equation 1), is a result of the marked
reduction in strip mass towards the wing tip. Feathers play a
key role in this pattern. The moment of inertia of one wing of
a pigeon Columba livia, stripped of its feathers, was measured
and compared with values for the intact wing. Although the
wing mass had decreased by 25 % and the wing length by 47 %,
the moment of inertia of the featherless wing was still 65 % of
that of the intact wing (whereas, isometrically, it should have
decreased to 21 %). Furthermore, the strip moments of inertia
of the second primary feather of a grey heron Ardea cinerea
and a blackbird were determined and also showed a bell-
shaped pattern. The low mass and favourable mass distribution
of feathers should strongly reduce the overall moment of
inertia of bird wings.

In bats (e.g. the pipistrelle Pipistrellus pipistrellus, Fig. 2B),
the mass is concentrated in the shoulder, elbow and wrist joints
(see also Norberg, 1976). Typically, the moment of inertia
peaks at the strip containing the wrist joint. The moment of
inertia of the bat wings was more than twice that of the bird
wings of similar mass and length (Fig. 3, see also Fig. 6).
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Table 2. Morphometric data for the birds and bats used in this study

Species mb 103×mw 104×S lw b rcg ri 106×I f
(number) (kg) (kg) (m2) (m) (m) (m) (m) (kg m2) I* (s−1) n

Birds
P. ruficollis 0.146 4.56 110.1 0.194 0.40 0.053 0.066 20.03 1.44 − 19
A. cinerea 2.140 167.1 1997 0.830 1.72 0.216 0.272 12334 0.99 2.64 21
M. nigra (2) 0.569 38.85 422.6 0.390 0.81 0.108 0.130 656.6 1.17 4.90 19, 20
A. nisus (2) 0.279 22.61 377.0 0.355 − 0.093 0.108 263.0 1.01 4.48 18, 18
B. buteo 0.771 72.51 1142 0.590 1.22 0.155 0.187 2536 1.00 3.19 20
F. tinnunculus (2) − 13.74 356.2 0.355 − 0.086 0.108 159.5 1.03 6.80 18, 18
A. rufa 0.393 19.15 241.1 0.254 0.52 0.060 0.073 100.7 0.93 − 25
C. coturnix 0.132 4.00 91.8 0.164 0.33 0.037 0.046 8.482 0.99 17.8 16
G. chloropus (2) 0.364 14.20 254.9 0.271 0.56 0.065 0.082 95.58 1.04 − 14, 27
S. rusticola (2) 0.163 12.45 254.2 0.279 0.59 0.068 0.083 84.98 1.00 − 27, 28
L. ridibundus (2) 0.256 18.98 442.2 0.461 0.93 0.118 0.146 402.5 1.07 3.50 23, 23
A. alle 0.100 5.04 65.0 0.183 0.38 0.046 0.057 16.18 1.18 9.43 18
U. aalge 0.691 31.07 241.6 0.335 0.68 0.100 0.117 424.8 1.32 9.40 17
C. livia (3) 0.293 22.47 314 0.323 − 0.071 0.088 172.7 0.81 6.71 31, 32, 33
S. aluco 0.398 31.41 617.7 0.421 − 0.111 0.136 578.5 1.10 − 21
A. atthis 0.0343 1.55 62.0 0.130 0.29 0.030 0.039 2.344 1.20 − 13
P. viridus 0.179 11.75 231.0 0.235 0.49 0.051 0.064 47.54 0.85 − 23
P. major 0.0629 4.17 121.8 0.190 0.41 0.042 0.052 11.15 0.92 − 19
D. urbica 0.0152 0.85 51.5 0.140 0.29 0.030 0.040 1.348 1.10 9.35 14
E. rubecula 0.0150 0.69 46.5 0.108 0.22 0.022 0.029 0.581 1.02 16.1 21
T. merula (2) 0.0562 3.14 127.8 0.184 − 0.042 0.054 9.115 1.08 8.55 18, 19
T. philomelos (2) 0.0676 3.39 103.5 0.171 0.37 0.033 0.042 6.098 0.78 10.0 17, 17
P. ater 0.0146 0.84 51.9 0.112 0.23 0.021 0.028 0.673 0.89 − 11
P. caeruleus 0.0095 0.48 42.4 0.095 0.20 0.018 0.024 0.286 0.96 − 10
F. coelebs (2) 0.0199 1.10 55.8 0.116 0.25 0.023 0.030 1.007 0.93 17.3 11, 11
P. guttata (2) 0.0145 0.63 33.0 0.090 0.20 0.019 0.024 0.356 1.00 27.4 9, 9
Q. quelea (2) 0.0151 0.64 46.5 0.100 − 0.026 0.032 0.663 1.47 − 10, 20
S. vulgaris 0.0581 3.70 120.8 0.185 0.39 0.041 0.052 10.16 1.00 11.3 18
C. frugilegus (2) 0.328 28.78 419.8 0.389 0.80 0.080 0.107 326.9 0.80 3.97 19, 20

Bats
M. mystacinus 0.0039 0.238 25.0 0.096 0.20 0.027 0.035 0.287 1.97 − 10
P. pipistrellus (3) 0.0043 0.241 18.5 0.087 0.21 0.028 0.035 0.291 2.42 13.9 16, 16, 20
R. ferrumequinum 0.0098 0.551 50.2 0.128 − 0.042 0.050 1.377 2.16 10 13

When more than one specimen was measured for a species, the data were averaged; the number of specimens used is given in parentheses
after the species name.

The species are listed in the same order as in Table 1.
b, wing span; f, wingbeat frequency; I, moment of inertia of one wing; I*, relative moment of inertia; lw, wing length (humeral head to tip);

mb, body mass; mw, mass of one wing; n, number of wing strips used; rcg, distance between the centre of gravity of the wing and the humeral
head; ri, radius of gyration of the wing; S, area of one wing.
Wing loading, moment of inertia and inertial power

The relationship between wing area and body mass does not
differ significantly from isometry (Table 3) and wing loading
(mb/S) increases as mb0.28. Both wing mass and wing length
scale with body mass with an exponent slightly (but
significantly) greater than predicted for isometry.

The moment of inertia is the product of a mass and the
square of a length; hence, isometrically, the moment of inertia
is proportional to l5 and m5/3 (Table 3). The exponents of the
regressions between moment of inertia and body mass
(Fig. 3A) and wing mass (Table 3) are significantly higher than
the isometric value of 5/3 (1.95 and 1.79, respectively). The
relationship between moment of inertia and wing length does
not differ significantly from isometry. Kirkpatrick (1990)
obtained an exponent of 2.05 for the relationship between
moment of inertia and body mass for 17 bird species (16 of
which are different from the species used in the present paper),
which is not significantly different from our value of 1.95
(Table 3). Thollesson and Norberg (1991) calculated an
exponent of 1.57 in eight bat species; by adding seven more
bat species to these data, Kirkpatrick (1994) arrived at an
exponent of 1.61. Both values are significantly lower than our
value for birds (Table 3).

Using multiple regression analysis on their bat data,
Thollesson and Norberg (1991) found the relationship:
I=mb0.53b2.15S0.65 (r2=0.994) (note that in this case S is the area
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Table 3. Statistical parameters for regressions between X
and Y 

95 % fiducity
Y X r2 Bisom B range of B A

mw mb 0.972 1 1.098* 1.025–1.176 0.0706
S mb 0.863 2/3 0.718 0.611–0.844 0.0782
lw mb 0.895 1/3 0.396* 0.345–0.455 0.528
rcg lw 0.979 1 1.140* 1.076–1.208 0.287
ri lw 0.986 1 1.099* 1.048–1.152 0.339
I mb 0.954 5/3 1.953* 1.787–2.134 0.00194
I mw 0.988 5/3 1.785* 1.709–1.864 0.225
I lw 0.982 5 4.912 4.656–5.182 0.0428
I mwlw2 0.997 1 1.040* 1.018–1.063 0.118
f mb 0.653 −1/3a −0.440 −0.673 to −0.288 3.228

−1/6b −0.440*
f lw 0.877 −1a −1.055 −1.290 to −0.863 1.807

−1/2b −1.055*
Ekin mb 0.959 1a 1.051 0.938–1.178 0.204

4/3b 1.051*
Pin mb 0.711 2/3a 0.799 0.554–1.153 7.746

7/6b 0.799*

Reduced major axis (r.m.a.) regressions were applied to the
logarithmic values of the X and Y values. Hence, Y=AXB.

The correlation coefficient (r2), the predicted value of the exponent
B given isometric scaling (Bisom) and the regression parameters A and
B are shown. These values were calculated using the bird data alone.

A, the intercept of the r.m.a. regression line with the y-axis; B, the
slope of the r.m.a. regression line, i.e. the exponent in the relationship
between the Y and X; Ekin, maximum kinetic energy of the flapping
wing; f, wingbeat frequency; I, moment of inertia of one wing; lw,
wing length (humeral head to tip); mb, body mass; mw, mass of one
wing; Pin, inertial power required to beat the wing; rcg, distance
between the centre of gravity of the wing and the humeral head; ri,
radius of gyration of the wing; S, area of one wing.

*Significant difference between Bisom and B (5 % confidence level).
aPrediction based on maximum available wingbeat frequency,

assuming isometric muscle volume scaling (see Hill, 1950).
bPrediction based on minimum wingbeat frequency required to

support the body mass during sustained flight (see Pennycuick, 1975).
of both wings joined over the thorax). We found an even higher
correlation (r2=0.997) for the relationship between the moment
of inertia and mwlw2 (Fig. 3B; Table 3) (the units of mwlw2 are
the same as those of I: kg m2).

The radius of gyration and the centre of gravity both shift
outwards (significantly) relative to the wing length with
increasing bird size (Table 3; for example, in a bird where
lw=0.10, rcg is 21 % and ri is 27 % of lw; whereas with lw=1.0,
rcg is 29 % and ri is 34 % of lw). In other words, the mass
distribution of the wings becomes less favourable with
increasing bird size.

Predicting the isometric scaling exponent for wingbeat
frequency is not simple. Hill (1950) argued that, given an
isometric increase of flight muscle volume, frequency should
be proportional to m21/3 or l21. This analysis gives the
maximum available frequency. The minimum frequency
required to support the body mass in flight can be shown to be
proportional to m21/6 or l21/2 (Pennycuick, 1975). In a
thorough study of wingbeat frequencies, Pennycuick (1990)
performed dimensional analysis on data for wingbeat
frequency versus body mass, wing span, wing area, wing
moment of inertia and air density. This analysis showed that
frequency should be proportional to b22/3, where b is wing
span. Pennycuick’s (1990) multidimensional regression has a
comparatively high correlation (r2=0.897).

In this study, we used literature data for the wingbeat
frequencies (Rayner, 1988; J. M. V. Rayner, unpublished
results). Wingbeat frequency decreases with wing length with
an exponent of 21.055 (Fig. 4), which is not significantly
different from Hill’s (1950) predicted exponent of 21, but is
significantly different from 21/2 (Pennycuick, 1975). Scholey
(1983) also found values close to 21. However, Rayner
(1988), for a wide range of bird species, found that frequency
scaled as mb20.269, if hummingbirds were excluded (the
exponent was 20.333 including hummingbirds). This value
lies outside the 95 % fiducity range of the exponent in our
study. Greenewalt (1962) found different exponents for
different bird types: 20.36 for Passeriformes, 20.19 for
shorebirds and 20.24 for ducks. The relationship is, therefore,
somewhat sensitive to the particular selection of bird species.
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Fig. 5. Maximum inertial power required to flap the wings versus
body mass. The r.m.a. regression line is indicated. Note the double
logarithmic scale.
Further, note that the correlation of wingbeat frequency with
wing length is much higher than that with body mass (Table 3).

Assuming frequency to be proportional to m21/3, kinetic
energy should be proportional to m1 in isometric animals (see
equation 6; F is constant in isometric animals) and inertial
power (equation 7) should be proportional to m2/3. If, however,
frequency is proportional to m21/6, then kinetic energy would
be proportional to m4/3 and inertial power to m7/6.

Kinetic energy and inertial power were calculated using our
data on moment of inertia and literature data on wingbeat
frequency (Rayner, 1988; J. M. V. Rayner, unpublished
results). Wingbeat amplitude was calculated using the
regression equation in Scholey (1983): F=1.1048mb20.119.
Note that the frequency data are literature observations for each
species and the wingbeat amplitudes are estimates based on
Scholey’s (1983) regression for a range of bird species. The
exponent of the regression between inertial power and body
mass does not significantly exceed the predicted isometric
value of 2/3, based on the maximum available frequency, but
it is significantly different from 7/6, as predicted with the
minimum required frequency (Table 3).

The relationship between inertial power and body mass (Fig.
5) has a rather low correlation (r2=0.711), possibly due to
errors in the estimations of F and f. Inertial power could not
be calculated for our bat species, as no data on F are available.

Discussion
Relative moment of inertia

The correlation coefficients for the regressions between the
moment of inertia and the wing parameters are higher than with
the body parameters. The best predictor for the moment of
inertia is the product of wing mass and the square of wing
length: I=0.118(mwlw2)1.04 (r2=0.997) (Fig. 3B; Table 3). This
suggests that the mass distribution of the wings of each bird
species reflects a similar compromise between reduction in the
cost of beating the wings and maintaining a reasonable
stiffness and strength (see Introduction; see also wing shape
factors of insects in Ellington, 1984). In the bats used in the
present study, this compromise results in a twofold greater
moment of inertia than for birds (Fig. 6). This difference
between birds and bats may well be related to the presence of
feathers (see above).

The values of I* (equation 8) ranges between 0.78 and 1.47
(Table 2), with a standard deviation of 0.17. The deviations of
I* from 1.0 (which is the value predicted with the r.m.a.
regression analysis of I) may reflect aspects of the ecology of
each species (Table 2; Fig. 6). For all birds associated with
water, I* ranges between 1.05 and 1.45. I* is particularly high
for species that use their wings for underwater ‘flight’ (Fig. 6).
The guillemot Uria aalge dives up to 180 m deep, using its
half-opened wings for propulsion (Pennycuick, 1988), the
closely related little auk Alle alle is an excellent diver and
swimmer (Lippens, 1954), the common scoter Melanitta nigra
dives well, at depths of up to 9 m, opening its wings while
doing so (Johnsgard, 1965) and the little grebe Podiceps
ruficollis is also a specialist diver and swimmer. It is possible
that wings used for underwater flight have to be comparatively
strong, resulting in high I* values. In his multivariate analysis
of body mass, wing span and wing area, Rayner (1988) also
found that ‘diving birds’ group together. The high value of I*
for the red-billed quelea Quelea quelea (a tropical pest, that
devastates food crops and flies in immense, very dense flocks;
Bruggers and Elliott, 1989; no. 27 in Fig. 6) and the low I*
values (I*<0.85) for the pigeon, green woodpecker Picus
viridus, song thrush Turdus philomelos and rook Corvus
frugilegus are harder to explain. Weis-Fogh (1972) calculated
the wing moment of inertia for the hummingbird Amazilia
fimbriata fluviatilis. Using his data, the value of I* can be
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Fig. 6. The deviation I* of individual values of the moment of inertia
(I) from the predicted value of I, based on r.m.a. regression between
I and mwlw2. The common names of bird species associated with water
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numbers given in Table 1. The water-associated birds all have values
of I* higher than 1.0. In other words, they show positive deviations
from the expected value of I. In particular, birds using their wings for
underwater ‘flight’ (filled squares) have high values of I*. For
comparison, bats are also included, although they were not included
in the r.m.a. regression analysis. The moment of inertia of these bats
is 2–2.4 times the value expected for birds of similar wing dimensions.
Note the logarithmic x-axis.
calculated to be 0.56. Considering the extremely high flapping
frequency of this species (35 Hz), this very low value of I* may
well be an adaptation for reducing its comparatively high
inertial power requirement.

It would be very interesting to compare the present data with
those for flightless birds and for species adapted exclusively to
underwater flight (e.g. penguins). Unfortunately, at present,
such data are not available.

Allometric increase of the centre of gravity and the radius of
gyration

The radius of gyration and the centre of gravity both shift
outwards relative to the wing length with increasing mb. This
allometric increase may be due to structural demands. Consider
the wing as a beam under bending, loaded by the body mass.
It is reasonable to assume that a structural demand for wings
is an isometric relationship between the radius of wing bending
R (in m) and the wing length: R must be proportional to l. The
bending moment M (in N m) is:

M = EI2nd/R , (9)

where E is Young’s modulus (in N m22) and I2nd is the second
moment of area (in m4) (Alexander, 1983). For a geometrically
similar beam, M scales as l0l4/l1=l3 (see equation 9). The actual
bending moment applied to the beam is proportional to the
product of body mass and wing length; hence, it scales as
l3l1=l4. So, with R proportional to l and with E a constant, I2nd

must scale as l5 rather than isometric scaling as l4.
Assuming that, at all wing sizes, a similar structural

compromise is reached between minimising mass and
preventing failure due to buckling, the cross-sectional area of
the beam will be of constant shape and will be proportional to
the square root of I2nd. Hence, the cross-sectional area of the
beam will scale as l2.5 rather than isometric scaling as l2. The
mass of the beam will scale as l3.5 rather than isometric scaling
as l3.

The outermost parts of the wing are designed to carry load,
whereas the more proximal parts also contain tissues with other
functions (muscles, blood vessels), which are expected to scale
close to the isometric value of l3. Hence, the wing mass
distribution may well shift distally in larger birds (see also
Kirkpatrick, 1994).

Inertial power

The relationship between inertial power and body mass (Fig.
5) allows a comparison with other literature estimates of power
requirements of birds and bats. Note that in our calculations
wing retraction was ignored, so our Pin is the maximum value,
which will usually only be required during the downstroke
(wings fully stretched). Note also that, owing to the exponents
in equation 7, the calculation of Pin is sensitive to errors in
wingbeat frequency (f) and amplitude (F). Since the values we
use for both of these parameters are estimates, the inertial
power calculation is no more than an approximation. Clearly,
more accurate data of flight kinematics are required to make
an accurate estimation of the inertial power requirement.

The inertial power requirement (in W) for two wings was
found to be Pin=7.75mb0.799 (Table 3). The scaling of the
standard metabolic rate (in W) for a large group of birds has
been estimated to be 4.19mb0.668 (Norberg, 1990). Hence, at
mb values of 0.01 and 1 kg, Pin is 1.0 times and 1.8 times the
standard metabolic rate, respectively. The minimum power
required for flight (in W) of birds has been given as 50.2mb0.73

(Norberg, 1990). Hence, at mb values of 0.01 and 1 kg, Pin is
11 % and 15 % of the minimum power required for flight,
respectively.

Comparison with literature data is difficult because the
available data on inertial power do not include the power
needed for wing deceleration and often do include the effect
of wing flexion during the upstroke. To allow comparisons, the
literature values should be doubled, to account for deceleration,
and our values should be decreased to allow for wing flexion.

Norberg (1976) calculated that inertial power constituted
16 % of the total mechanical power requirement for the long-
eared bat Plecotus auritus (using a corrected estimate of
inertial power). Norberg et al. (1993) calculated a value of
60 % for hovering in the nectar-feeding bat Glossophaga
soricina and Weis-Fogh (1972) calculated a value of 53 % for
hovering in the hummingbird Amazilia fimbriata fluviatilis.
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When the inertial power requirement is doubled, the above
percentages were recalculated to give 28 %, 75 % and 69 %,
respectively.

Assuming an overall inertial power reduction of 25 % due
to wing retraction, the values for our birds were recalculated
to 8.5–12 %. These values are much lower than the recalculated
literature values mentioned above. The proportion of the total
mechanical power requirement comprised by the inertial power
for P. auritus (Norberg, 1976) is more than twice that of our
birds. This may be related to the finding that the moment of
inertia of bat wings, on average, was more than twice that of
birds of similar dimensions (Fig. 6). The proportions of the
total mechanical power requirement comprised by the inertial
power for hovering in A. fimbriata fluviatilis (Weis-Fogh,
1972) and G. soricina (Norberg et al. 1993) are even larger.
During hovering, the inertial power seems to be a larger
fraction of the total mechanical power requirement than during
flight at the minimum power speed.

The exponent of the regression of inertial power versus body
mass is quite similar to exponents found previously for
standard metabolic rate and the minimum power requirement
for flight (see above); hence, inertial power constitutes a
similar proportion of the total power requirement across the
range of bird sizes. This is partly due to the rapid decrease of
wingbeat frequency with body mass (f is proportional to mb21/3

rather than to mb21/6). Furthermore, the positive allometry of
the moment of inertia (Table 3) will be largely cancelled by
the negative allometry of wingbeat amplitude (Scholey, 1983).

Elastic storage of kinetic energy may strongly decrease the
inertial power loss during flapping flight. If the kinetic energy
gained during acceleration of the wing were converted into
elastic energy during deceleration of the wing, then this elastic
energy, in turn, could be used to accelerate the wing during the
next wingbeat. Weis-Fogh (1972) argued that the presence of
efficient elastic storage mechanisms is essential for hovering
insects. The apparent lack of such mechanisms in vertebrate
fliers may set an upper limit to their wingbeat frequencies and
their ability to hover. Hummingbirds may well operate close
to this limit (Weis-Fogh, 1972).

In conclusion, the inertial power requirement should,
perhaps, not be ignored in the study of the flapping flight of
birds and bats. However, if a large fraction of the kinetic
energy of the wing is converted into useful work during stroke
reversal, the power loss due to wing inertia may be much
smaller. Accurate data on wingbeat frequency and amplitude
are required to make a reliable estimate of inertial power
expenditure.

List of symbols
b wing span (m)
di distance between centre of wing strip i and shoulder

joint [=(i20.5)w] (m)
E Young’s modulus (N m22)
Ekin maximum kinetic energy of the wing during a wing 

beat ( J)
f wingbeat frequency (s21)
i wing strip number
I moment of inertia of the wing (kg m2)
I* I divided by the prediction of I, based on the r.m.a. of

I versus mwlw2

I2nd second moment of area (m4)
l length (m)
lw wing length (m)
m mass (kg)
mb body mass (kg)
mi mass of wing strip i (kg)
mw wing mass (kg)
M bending moment (N m)
n number of wing strips
Pin inertial power required to beat the wing (J s21)
rcg distance between the centre of gravity of the wing and

the shoulder joint (m)
ri radius of gyration of the wing (m)
r.m.a. reduced major axis (method II regression)
R radius of wing bending (m)
t time (s)
S area of one wing (m2)
w width of each wing strip (m)
F total excursion angle of the wing (rad)
g angular position of the wing (rad)
g0 wingbeat amplitude (g0=0.5F)
–g mean angular position of the wing (rad)
v angular velocity of the wing (rad s21)
vmax maximal angular velocity of the wing during a wing

stroke (rad s21)
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