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needed, however, because although circuits and their
components do change, it is not yet clear which features are
relatively well conserved and which are modified.

One difficulty of using the comparative method in an
evolutionary context is deriving an acceptable representation
of the primitive condition by evaluating a number of related,
but differently evolved, modern species. We are testing a novel
approach to this problem, open to us because Australia has a
relict population of the syncarid crustacean Anaspides
tasmaniae. Fossil and morphological evidence from extant
syncarids suggests that they have altered little in their external
morphology for at least 300 million years (Schram, 1983) and
probably represent a form close to the ancestral malacostracan
condition. If constancy in external morphology is mirrored by
a similar stability in the nervous system, a likely but unproved
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behaviour and the structure and function of its nervous system
(e.g. Macmillan and Field, 1994; Pasztor and Macmillan, 1990;
Sandeman et al. 1988, 1993). Here we report on a comparison
of serotonergic immunoreactivity in the neurones of the
anterior nerve cord of Anaspides tasmaniae and Cherax
destructor.

 

Materials and methods
The malacostracan central nervous system consists of a

dorsal, cerebral ganglion that gives rise posteriorly to a pair of
circumoesophageal connectives leading to a ventral nerve cord
composed of a series of ganglia joined by paired connectives.
There are 18 primordial neuromeres in the nerve cord of
malacostracans, but they aggregate into ganglia in different
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 crustaceans, of which only a few living species crayfish Cherax de
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selection operates on both morphology and
hether there are patterns to the morphological and

anges in neurones during behavioural evolution is
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idence of an underlying conservatism in a number
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pending on the species. Macruran decapods, such as
 and lobsters, have six abdominal ganglia and five
 ganglia associated with the walking legs. Anaspides
ae lacks a carapace and the segments of the thorax are
ed, but the serial homology of its segments and
res relative to those of Cherax destructor is clear (E.

in preparation). We have used the crayfish numbering
for ease of comparison: T1–T5 for the ganglia

ed with the five posterior appendages of the thorax, and
for the six abdominal segments.
ture specimens (0.30–0.45 g; 24–30 mm carapace
of Cherax destructor were taken from a population
 in our laboratory from stock obtained through a local
or. Adult Anaspides tasmaniae (0.25–0.50 g,
m total length) were collected from Mount
ton, Tasmania, and maintained at 4 ˚C in circulating

bodies and axons. The high concentration of serotonin
necessary to suppress the staining is probably due to the fact
that the antibody is raised against serotonin coupled to a carrier
protein with formaldehyde and recognises the conjugate better
than serotonin alone. No staining was observed when the
serotonin antiserum was omitted. Six A. tasmaniae and nine C.
destructor nerve cords were processed.

Results
A comparison of the prepared ventral nerve cords revealed

a network of labelled, serotonin-immunoreactive structures in
both C. destructor and A. tasmaniae. These included nerve cell
bodies, axons, branching fibres and neuropilar regions within
the central nervous system (CNS) and arborisations of varicose
fibres in the the nerve roots. An example of the
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n water. C. destructor were anaesthetised by cooling
d A. tasmaniae by exposure to a nitrogen atmosphere.
 were pinned out in a bath lined with Sylgard 184
rning) and the ventral nerve cords dissected at 4 ˚C in
saline solution containing (in mmol l21): 205 NaCl,
 13.5 CaCl2, 2.6 MgCl2, 10 Tris, 5 maleic acid, pH 7.4.
ected preparations were pinned out in fresh saline and
eural tissue was carefully removed prior to fixation
 at room temperature in 4 % formaldehyde in
21 phosphate buffer, pH 7.0. Following fixation, the
as rinsed with phosphate-buffered saline (PBS) and
d to the following series of incubations to increase
 penetration: 70 % ethanol for 30 min at room

ture; several changes of PBS-0.3 (0.05 % thimerosal
 Triton X-100, pH 7.0, in PBS) over 10–15 h.

ssues were then pre-incubated in normal goat serum
diluted 1:10 in PBS-0.3 for 6–8 h, followed by a

incubation in rabbit anti-serotonin antiserum
m 196C, Costa et al. 1982) diluted 1:1000 in PBS-0.3

ng 10% NGS. Tissue was then rinsed for 6–8 h in PBS-
ubated in biotinylated goat anti-rabbit secondary

 (Vector Laboratories Inc.) for 15–20 h, rinsed for
cubated at 4 ˚C in avidin–biotin–peroxidase complex

immunoreactive neurones in an A. tasmaniae preparation is
shown on the cover of this issue of the journal and camera
lucida reconstructions of the stained structures in the entire
thoracic cord of both animals are shown in Fig. 1.

Cherax destructor

Sixteen clearly labelled cell bodies were consistently
detected in the last five thoracic and first abdominal ganglia of
C. destructor. These elements are essentially the same as those
previously described in the same cord regions of Homarus
americanus (Beltz and Kravitz, 1983) and Procambarus clarkii
(Real and Czternasty, 1990). Three distinct, longitudinal fibre
bundles run the entire length of the thoracic cord on either side
(Fig. 1A), laterally (lateral fibre bundle, LFB), in the midline
(medial fibre bundle, MFB) and between these two (central
fibre bundle, CFB). As in the other species studied, the
positions of the cell bodies and axons are characteristic of the
segment. A pair of postero-lateral cell bodies stains in each of
the first four segments (T1–T4), and each cell body gives rise
to an axon crossing the midline to run anteriorly in the
contralateral CFB. In T5, the cell bodies are medial and their
axons run into the ipsilateral MFB. This pattern is also
followed by a pair of cells in the ganglion of the first abdominal
ector Laboratories, Inc.) for 15–20 h, and rinsed in
 for 6–8 h. After this, the nerve cords were first
d in a solution containing (in g ml21) 6.0 Tris, 6.0
d 0.5 ammonium nickel sulphate for 15–20 h and then
d in diaminobenzidine-tetrahydrochloride (DAB) at a
ation of 0.02 % in Tris buffer for 5 min at room
ture prior to transferring them to fresh DAB solution
ng 0.005 % H2O2. The peroxidase reaction was
 and stopped, usually after 2–3 min, by transferring
 PBS-0.3. Tissue was then mounted on microscope
 phosphate-buffered glycerol. The specificity of the
was tested by pre-adsorbing diluted antiserum for 24 h
3 or 1022 mol l21 serotonin. In both C. destructor and
niae, 1023 mol l21 serotonin caused a reduction in the
of the cell bodies, nerve terminals and axons, and
l l21 serotonin abolished the staining of the nerve
s and dramatically reduced the staining of the cell

segment (A1), which contains, in addition, four small
immunoreactive cells. The close similarity in the organizaton
of serotonergic neurones from representatives of the three
astacid families, Nephropidsidae (Homarus), Astacidae
(Procambarus) and the Gondwanan Parastacidae (Cherax),
provides further evidence of the morphological constancy
exhibited by this presumptive serotoninergic secretory system.

Anaspides tasmaniae

In overall disposition, the distribution of serotonin
immunoreactivity in the A. tasmaniae ventral nerve cord was
remarkably similar to that described above for C. destructor.
Three longitudinal bundles can be distinguished clearly on the
basis of their position in the cord (Fig. 1B). Varicose
branchings in the nerve roots are also present but less
pronounced than in C. destructor. A pair of cells with axons
crossing to the contralateral CFB stains in segments T1, T3 and
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eral MFB. On the basis of neuromere, neuronal
ology, position within the ganglia and projection in both
a and nerve cord, we propose that these neurones are
logues of those described in C. destructor and other

malacostracans. That is to say, we propose that the neurones
have the same embryological and evolutionary antecedents.

There were, however, a number of interesting differences.
Additional, medial immunoreactive cells in A1, a feature found
in C. destuctor and the other decapod species studied, are
lacking in A. tasmaniae. There is also the apparent deletion in
T2 mentioned above, for which we see no obvious explanation
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Discussion
The most significant finding of the study is the striking

similarity of the serotonergic fibre bundles of the ventral nerve
cords, and of some of the neurones in the segmental ganglia
contributing axons to them, in the two animals. Not only are the
species separated by at least 300 million years of evolutionary
history, but the morphology of the trunk segments of the
crayfish has diverged markedly from the primitive condition,
more closely represented by A. tasmaniae. The anterior trunk
segments of the syncarid are all articulated and have essentially
the same morphology, whereas those of the crayfish are fused
and variously modified to contribute to the rigid cephalothorax.
Is the conservatism revealed here general or is it a property of
certain types of neural systems? There is evidence that the
serotonergic system functions in a neuromodulatory capacity in
crustaceans (Beltz and Kravitz, 1986; Harris-Warrick and
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Kravitz, 1984) and it is possible that its apparently constant
elements are related to this function. A modulatory system
could perhaps be expected to operate with a certain degree of
independence from detailed modifications in coordinating
networks downstream of its input. In A. tasmaniae, as in the
other macruran species, the longitudinally staining serotonergic
immunoreactive tracts run the length of the abdomen, but no
cell bodies stain. We have not resolved the situation in ganglia
anterior to the ones reported on here because they are too small
for reliable application of the whole-mount technique we used
and will require analysis by histological sectioning.

The differences revealed by the serotonin immunoreactivity
in the two animals raises a number of questions. Both animals
have at least some neurones that are not represented in the other,
and there are three possible mechanisms which alone, or in
combination, could explain this finding. The first is that unique
cells could be additions since the evolutionary divergence of the
groups; the second is that the absence of neurones could
represent deletions; the third is that homologous neurones are
present in both species, but no longer stain for serotonin in one
of them (Brauth, 1990). Our present results do not permit us to
distinguish between these possibilities, although a number of
authors have argued against the second mechanism as a major

T4

T5

A1

Proposed homologous neurones

Other neurones

iagrammatic comparison of neurones and longitudinal
hat stain for serotonin in the anterior ventral nerve cord of
ctor and A. tasmaniae. Proposed homologous neurones are
 black; those staining in only one of the species are shown
rphology of the animal. In contrast, a number of cells
at are not present in the other species, but which are
 with the longitudinal network of serotonin-
active tracts in A. tasmaniae (Fig. 1B). Segments
ch show a bilateral pair of cells posteriorly, near the
undary of the ganglion, which each give rise to a fine
ining the ipsilateral CFB. Segments T1 and T2 also
ir of postero-medial cell bodies on either side giving
ons running together towards the contralateral CFB,
ch they terminate in a tuft of fine arborisations
rather than contributing an axon to the bundle itself.

ts of the comparison are summarised in diagrammatic
ig. 2.

contributor to neural evolution, particularly where the changes
in somatic morphology are not extreme or where CNS
structures are involved (Kavanau, 1990). There are, however,
numerous examples of neuronal loss in related groups, so it
remains a possibility until specifically excluded. Objective
consideration of cell loss is somewhat confounded by the third
possibility, that morphologically similar circuits can change
function under the influence of neuromodulatory changes (Katz,
1991) and that apparently homologous cells can change their
transmitter chemistry (Katz and Tazaki, 1992). Only a
combination of detailed analyses of cellular properties in
sharply defined groups of cells and comparisons across related
species will permit us to determine which of the mechanisms
operate during evolution and under what circumstances.
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