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et al. 1991), grasshoppers (Hadley and Quinlan, 1993),
beetles (Lighton, 1988a, 1991a) and ants (Lighton, 1988b,
1990, 1992; Lighton and Wehner, 1993; Lighton et al.
1993a,b). These studies may, however, give the erroneous
impression that discontinuous ventilation is universal.
Researchers naturally tend to study a phenomenon in its more
pronounced and quantifiable forms, so exceptions that test the
implied rule tend to be under-represented in the literature. For
example, it is quite reasonably assumed that mealworm larvae
(Tenebrio molitor) ventilate discontinuously (Snyder et al.
1995; Loudon, 1989), and it may be equally reasonably
concluded in the light of evidence from African xeric
tenebrionid beetles (Lighton, 1991a) that American xeric
tenebrionid beetles such as Eleodes spp do so as well. Neither
is in fact the case (Lighton, 1994; M. C. Quinlan and J. R. B.
Lighton, in preparation). Far from being universal,

us ve
 also 
ect; 
iscon
adult
of most ant species is reflected in their respiratory

physiology. During the claustral phase of colony
establishment, the founding queen excavates a burrow, seals
the entrance, lays eggs, tends and feeds larvae, and feeds the
new workers prior to the initiation of foraging, all from her
internal reserves (Hölldobler and Wilson, 1990). If – as is
presumably the case – the claustral chamber becomes
significantly hypercapnic and hypoxic, discontinuous gas
exchange will be the most practical gas exchange strategy
because it maximizes partial pressure gradients and minimizes
durations of spiracular opening (see Discussion).

Given the indisputable evidence for discontinuous
ventilation in workers of primitive ant genera (Pogonomyrmex,
Lighton et al. 1993b; M. C. Quinlan and J. R. B. Lighton, in
preparation; Leptogenys, Duncan and Crewe, 1994) and
somewhat more derived genera (Camponotus, Lighton, 1988b,
1990, 1992; Cataglyphis, Lighton and Wehner, 1993; Lighton
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CO2 emission than when inactive at 24 ˚C,
discontinuous ventilation in M. pergandei
 conditions is not likely to be imposed by
nstraints and may, in fact, be a response to
onment. We hypothesize – aside from
ects – that discontinuous ventilation occurs
sects that may experience hypoxic and
nditions, such as ant queens during
 foundation and perhaps workers within
ment; that discontinuous ventilation is not
ntial to reduce respiratory water loss; and
t necessarily occur in castes or species
d to xeric but normoxic conditions.
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ontinuous ventilation, in the sense of discontinuous
l gas exchange, is widely distributed in adult insects
views by Miller, 1981; Kestler, 1985; Slama, 1988;
, 1994). Both the existence and some aspects of the

 mechanisms of the discontinuous ventilation cycle or
ave been studied in cockroaches (Kestler, 1980, 1985;
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mptive queens)? In the xeric harvester ant genus
, we found that M. pergandei and M. julianus female
ventilated highly discontinuously, as predicted, but
anus workers ventilated less discontinuously and M.
dei workers (which occur in more xeric habitats)
ted continuously. We present the salient
teristics of the discontinuous ventilation cycles of the
 and the manner in which they are modulated by
mission rates at a single temperature (24 ˚C). We
strate that, in M. julianus workers, open-spiracle
CO2 emission rate only slightly exceeds overall CO2

n rate, making discontinuous ventilation marginal,
e extrapolated in M. pergandei to continuous
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993a), and given the necessity for discontinuous
n in the claustral stage and thus in the queen,
uous ventilation in the workers may be a correlated
ental character rather than a necessary characteristic.
gly, we hypothesized that, if a selective advantage

to abandoning discontinuous ventilation (cf. Tenebrio
des), then loss of discontinuous ventilation would be

 workers rather than queens. Further, such a loss would
bably arise in highly derived species with an extreme
 for xeric environments because, in such species,
 permeability is low enough to elevate the selective
nce of respiratory water loss (Lighton et al. 1993b;
 1994) and decoupling of correlated characters in the
aste is more likely to have occurred than in more
 and conservative genera, such as Pogonomyrmex.
cellent example of a highly derived, xeric ant species

controlled at 50 ml min21 by a mass flow controller, we
calculated the rate of CO2 output (V·CO∑) according to Lighton
(1991b). The three phases of the discontinuous ventilation
cycle (DVC) are easily distinguishable in high-resolution
records of V·CO∑, and the interpretations used in this paper have
been verified in other species of ants by direct visual
observation of spiracular activity (Lighton et al. 1993a). All
measurements took place at ambient temperature in an air-
conditioned laboratory regulated at 24±0.5 ˚C. Computerized
data acquisition and analysis were performed using
DATACAN V high-resolution A/D hardware and software
(Sable Systems).

Statistics

Means are accompanied by standard deviations and sample
sizes. Means are compared with Student’s t-test, utilizing the

. R. B. LIGHTON AND D. BERRIGAN
r pergandei. This member of the myrmicine subfamily
 the most specialized xeric granivores of all ants. In
s of Hölldobler and Wilson (1990), they ‘flourish in

rts of southwestern Arizona, southern California and
ifornia. In Death Valley, one of the driest and hottest
 North America, the Messor pergandei are the most
t ants; they have a biomass approximately equal to that
tal rodent population in the same area (Went et al.
he toughness of the species in the face of harsh
s is legendary... [In one study] colonies survived even

elve years of severe drought (Tevis, 1958).’ We
 selected workers and alates of M. pergandei as our
study animal in this investigation. To control, to at
e extent, for phylogenetic effects, we also studied

nd alate ventilation in a congener, Messor julianus,
es in the more mesic and productive environment of

 peninsula in Mexico.

Materials and methods
Animals

 and workers from M. pergandei (Mayr) and M.
(Pergande) colonies were collected during the February
flight season from a site 15 km south of Phoenix,
 USA, and from Baja California, Mexico, respectively,
ported by air to our laboratory at the University of Utah
fter collection. We maintained the ants in small plastic
rs at an ambient temperature of 24±0.5 ˚C and supplied
th water and oat flakes ad libitum. Our experiments
formed within 2 weeks of capture.

Respirometry

spirometric techniques are described in full elsewhere
, 1991b; Lighton et al. 1993b). Briefly, we utilized a
stems TR-3 high-resolution, high-sensitivity flow-
respirometry system (Sable Systems, 476 E. South
Salt Lake City, UT 84112) to detect, with a temporal
n of 1 s, the CO2 added by a single worker or alate ant
-free airstream. From CO2 concentration and flow rate,

square root of 
percentages. 
transformation
level of regre
(ANOVA), an
covariance (A
P<0.05.

The standa
alates of M. p
and 2 with s
SMRs typica

Table 1. Me
pergandei w

Parameter

Live body mass
V
·
CO∑ (ml h−1)

FV
·
CO∑ (ml h−1)

Burst CO2 (ml)
Burst frequency
Burst duration 
CV (%)

Parameters a
for each animal

CV, mean c
recording divid
deviation divid
increasing vent
F) were collecte
display an iden

Dashed lines
discontinuous v
arcsine-transformed data in the case of ratios and
Least-squares regressions, with axis

 where appropriate, were used. The significance
ssions was evaluated with analysis of variance
d regressions were compared with analysis of
NCOVA). The significance level was set at

Results
Standard metabolic rate

rd metabolic rates (SMRs) of the workers and
ergandei and M. julianus are shown in Tables 1
ample sizes. All castes and species displayed
l for ants of their body masses (Fig. 1). We

tabolic and ventilatory parameters of Messor
orkers, male and female alates at an ambient

temperature of 24°C

Workers Male alates Female alates
(N=38) (N=26) (N=25)
 (mg) 7.19±3.53 16.47±1.63 39.40±2.11
1.95±1.45 4.98±1.59 6.46±2.01

− 0.60±0.13 1.46±0.65
− 0.259±0.081 0.362±0.118

 (mHz) − 5.28±2.08 4.75±1.67
(s) − 95.0±22.5 103.4±22.8

28.3±15.8 118.7±38.1 102.5±22.1

re the mean of three discontinuous ventilation cycles
, where appropriate.
oefficient of variation (standard deviation of each
ed by its mean; not equivalent to overall standard
ed by overall mean). The CV figure increases with
ilatory discontinuity. Flutter phase data (prefixed with
d from three male alates; the remaining males did not

tifiable flutter phase.
 denote no data, because we did not observe consistent
entilation in any worker of this species (see text).
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emphasize this point here because some of our ventilation
results (below) differ significantly from those previously
reported in ants. These differences are not caused by
significantly deviant SMRs.

The discontinuous ventialtion cycle

Occurrence

When inactive, all alates of both species ventilated
discontinuously (Figs 2, 3). In M. julianus, all inactive workers
also ventilated discontinuously (Fig. 3). However, we
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Ta arameters of Messor
es at an ambient
C

Female alates
Param (N=50)

Live 21.11±0.77
V
·
CO∑ 3.50±0.60

FV
·
CO 0.53±0.21

Burst 0.295±0.077
Burst 3.26±1.02
Burst 115.1±24.7
CV (% 146.3±37.5

CV
Par tinuous ventilation cycles
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Fig. 1. The relationship between live body mass and metabolic rate
in 23 species of ants (open circles), including Messor pergandei
female alates (filled circle), male alates (open square) and workers
(filled square), and M. julianus queens (+) and workers (3). All data
are corrected from measurement temperature (23–30 °C) to 25 °C
assuming a Q10 of 2.5 (Withers, 1992); references to the other ant data
are in Lighton and Fielden (1994). The equation relating metabolic
rate (MR) in mW to live body mass (M) in g is MR=743.0M0.812

[r2=0.87; F(1,21)=140; P<0.0001].
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Fig. 2. Ventilation, as externally
measured rates of CO2 emission
(V·CO∑ in ml h21), of a typical
individual Messor pergandei female
alate (A), male alate (B) and worker
(C). Note scale differences on the y-
axes. Live body masses were 41.7,
18.6 and 6.6 mg respectively.
Comparative gas exchan

ble 2. Metabolic and ventilatory p
julianus workers and female alat

temperature of 24°

Workers
eter (N=39)

body mass (mg) 5.09±0.38
(ml h−1) 0.99±0.37
∑ (ml h−1) 0.22±0.03
 CO2 (ml) 0.027±0.010
 frequency (mHz) 9.73±3.47
 duration (s) 61.5±14.0

) 68.1±21.8

, See Table 1 legend.
ameters are the mean of three discon
ch animal.
tter phase data (prefixed with F) w
orkers (Fig. 2).
d, we found no

discontinuous
with very little
s not caused by
ous ventilation
g motionless in
ile ventilating

haracteristic of
1). In another
ia, on Messor
hton and F. D.
of ventilatory

ividuals did not
s of this species
rved no such tendency in M. pergandei w
total of 38 M. pergandei workers examine
nce of consistent or unambiguous 
lation. Most displayed a constant V·CO∑

tion from its mean value (Fig. 2). This wa
ctivity-induced disruption of discontinu
ton, 1988b). We observed the ants standin

respirometer vials for long periods wh
nuously and the SMR measured was c
onless ants of their body mass (Fig.
tigation, carried out in Zzyzx, Californ

andei locomotion energetics (J. R. B. Lig
an, in preparation), no evidence 

ers and 48 female alates; the remaining ind
ay an identifiable flutter phase. No male alate
 collected.
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Bentilation, as externally
 rates of CO2 emission
 ml h21), of a typical
l Messor julianus female
 and worker (B). Variation
etween open (O) phases in

er is caused by instrument
uity was found in any of over 100 recordings of
ss workers at a wide range of temperatures. In one
y large M. pergandei worker, in the present
tion, we did observe a brief episode of discontinuous
n on one occasion (data not shown) so we cannot

vely state that M. pergandei workers never, under any
ances, ventilate discontinuously. We are confident,
, that these events are exceedingly rare, at least under
oxic and normocapnic (or acapnic) conditions of our
nts.
t values of the DVC in M. pergandei and M. julianus
 in Tables 1 and 2.
distinction between discontinuous and non-
uous ventilation is qualitatively obvious (Figs 2, 3),
lso be quantified by using the coefficient of variation
ndard deviation/mean; Tables 1, 2). Utilizing the
f square-root-transformed CVs for testing purposes
alize CV distribution), M. pergandei workers were
gnificantly less variable in their ventilation than male
e alates of their own species or the workers or female
 M. julianus (t>5.8; P<0.00001). Interestingly, the
of M. julianus, although they were still able to

 discontinuously, had significantly lower CVs than the
lates (Table 2; P<0.001).

nd timing

entilation phase coefficient is a measure of the
tal increase in ventilatory phase duration as overall

ration increases (Lighton, 1990, 1991a). The durations
sed (C), flutter (F) and burst (O) phases as a function
VC duration in both species are shown in Figs 4, 5

espectively. In M. pergandei female alates, the C
n phase coefficient was 14.1±4.4 % (S.E.), while the

ation phase coefficient was 61.7±5.4 % and the O
n phase coefficient was 19.1±5.4 %. Male alates

chiefly in not displaying a consistent F phase, which

was found in only t . Their C
ventilation phase arger, at
86.7±5.1 % (Fig. 4) s, the C
ventilation phase coe entilation
phase coefficient wa tion phase
coefficient was 16 layed an
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Fig. 6. The relationship between burst (O) phase duration and total
DVC duration in discontinuously ventilating M. pergandei and M.
julianus. M. pergandei workers did not ventilate discontinuously and
are not shown. M. pergandei female alates are open circles, male
alates are filled circles; M. julianus female alates are filled squares
and workers are crosses. Individual regression lines are shown. The
line of equality between O phase and total DVC durations is also
shown (see Discussion). All species and castes shared a common
slope or O ventilation phase coefficient of 17.3 % (ANCOVA: P>0.4).
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2) and in male alates, y=0.61+938.0x
lianus female alates, y=0.24+862.2x
workers, y=5.43+4354.5x (r2=0.26,
e case of the O phase, ventilation phase coefficients can
ily misinterpreted owing to their incremental nature. If
e duration is expressed instead as a percentage of total
duration, a more intuitive measure of the relative
n of the O phase emerges. In M. pergandei, O phase

duration is 47.0±11.8 % of
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DVCs in this species (Table
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rkers are crosses. Individual regression lines are shown. Male
eldom, and workers never, displayed an F phase (three male
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e durations therefore lie along the horizontal line y=0. The
 alates shared a common slope or F ventilation phase
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ales displayed a slight, but significant, trend

her DVC frequencies at high V·CO∑ (analysis of
NCOVA: P<0.05). Burst volume, or the volume

ed during the O or burst phase, also increased with
), but less than 40 % of burst volume variance was
 V·CO∑, and male and female alates did not differ

 in the modulation of burst volume by V·CO∑

 P>0.1). Under these circumstances, it is
o hypothesize that alates displaying high burst
will also display low burst volumes, and vice

 hypothesis can be tested by examining the
between unexplained variances in DVC frequency
lume versus V·CO∑. If this is done by analysis of
 of data in Figs 7 and 8, this hypothesis cannot be
ig. 9). In spite of slightly higher DVC frequencies
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Where x is burst volume residuals and y is DVC frequency residuals,
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s, the inverse co-modulation of DVC frequency and
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duals in Fig. 9: F(1,47)=0.02; P(same slope)=0.4:

0; P(same intercept)=0.4]. Equivalently, multiple
on analysis, using V·CO∑ as the dependent variable and

DVC frequency and burst volume
yields a coefficient of multiple cor
of the variance of CO2 is explain

V·CO∑ = 0.000866DVC

where V·CO∑ is in ml h21, DVCF
frequency in mHz, and BV is bu
male and female alate data).

Changes in burst volumes as 
mediated by changes in O phas
Rather, an increase in the rate of
phase was responsible for the in

ssion volume in discontinuously ventilating M. pergandei
 julianus. M. pergandei workers did not ventilate
uously and are not shown. M. pergandei female alates are
les, male alates are filled circles; M. julianus female alates
 squares and workers are crosses. Individual regression lines
n. They share a common slope of 26.79 [ANCOVA:

=2.54; P=0.06; see text]. The intercepts of the alates are
lly equivalent, but the worker intercept is significantly
see text for further details).

CO2 emission rate in discontinuousl
M. julianus. M. pergandei workers d
and are not shown. M. pergandei fem
alates are filled circles; M. julianus
and workers are crosses. Individual r
that the lower line is not a regressio
between O phase V·CO∑ and overall 
share a common slope of 1.21 (AN
intercepts of the alates are statistic
intercept is significantly (tenfold) sma
ase V·CO∑ was strongly correlated with overall
P<0.001), with O phase V·CO∑ increasing

) faster than overall V·CO∑ in both male and
ig. 10).
 is broadly equivalent in M. julianus female
rs, but alates differ from workers in the details
ncy and burst volume modulation. In both
requency increased with increasing V·CO∑

nificantly more rapidly in the case of the
OVA: P<0.01). The power of V·CO∑ in
 frequency was, however, poor (<26 %;

 alates did not modulate burst volume in
 V·CO∑; burst volume varied over a threefold

tly at random (Fig. 8; r2=0.003; P=0.4).
ntrast, increased burst volumes significantly
·
CO∑, although the relationship was still fairly

 Fig. 8). Analysis of the residuals for M.
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julianus in Figs 7 and 8 revealed, however, inverse co-
modulation of DVC frequency and burst volume broadly
equivalent to that of M. pergandei (Fig. 11). However,
workers and female alates differed highly significantly in the
details of the modulation. In terms of variance unexplained by
V·CO∑, workers modulated DVC frequency versus burst volume
some 30 times more steeply than female alates (Fig. 11).

By multiple regression analysis, in female alates of M.
julianus:

V·CO∑ = 0.000907DVCF + 0.00999BV (2)

(coefficient of multiple correlation 0.916, 83 % of variance in
V·CO∑ explained), while in workers of M. julianus:

V·CO∑ = 0.0000907DVCF + 0.0338BV (3)

(coefficient of multiple correlation 0.965, 93 % of variance in
V·CO∑ explained).

As 
respon
phase 
(P>0.2
V·CO∑
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P>0.2;
signifi
interce
P<0.00
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volumes are fixed at a maxim
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increasing V·CO∑ and incr
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Caste effects
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Fig. 11. The relationship between unexplained variance in the
relationship between DVC frequency and V

·
CO∑ (Fig. 7) and the

unexplained variance in the relationship between burst volume and
V
·
CO∑ (Fig. 8) in M. julianus female alates (filled squares) and workers

(crosses). In both cases, a strong inverse co-modulation of DVC
frequency and burst volume explains more than 90 % of the previously
unexplained variance of these parameters as a function of V

·
CO∑.

Where x is burst volume residuals and y is DVC frequency residuals,
in female alates y=210.94x (r2=0.92, P<0.001), and in workers,
y=2349.7x (r2=0.90, P<0.001). The slope is significantly greater in
the workers. This means that workers modulate DVC frequency
approximately 30-fold more than burst volume as a function of V·CO∑

(see text and equation 3 for further details).
527as exchange in Messor

iscussion

uous ventilation

ventilating insects studied so far,
odated by orderly, linear changes in
88b; Lighton and Wehner, 1993). In
n thief ant Cataglyphis bicolor, burst
al level that is independent of V·CO∑

), while in more mesic ants, such as
t volumes decline linearly with
easing DVC frequency (Lighton,
s, only DVC frequency is modulated
tus both DVC frequency and burst

in a linear, predictable fashion. The
 M. julianus are therefore atypical.
cy and burst volume in an apparently
with M. pergandei, an increase in O phase V·CO∑ was
sible for increasing burst volume as V·CO∑ increased; O
duration remained unchanged as a function of V·CO∑

). By ANCOVA, the relationship between O phase
and overall V·CO∑ in all discontinuously ventilating
s and castes shared a common slope of 1.2 (ANCOVA;
 Fig. 10), but the O phase V·CO∑ of the workers was
cantly lower, corresponding to a significantly lower
pt (10 % of the female alate value; ANCOVA:
1; Fig. 10).

capricious fashion, quite unlike the more stereotypical
modulation observed in the other species examined to date.
Neither burst frequency nor burst volume change with V·CO∑ in
ways that suggest tight regulation of one parameter or the other.

Direct comparisons of our ventilation modulation data with
those presented in the papers cited above are complicated,
however, by the relatively small range of V·CO∑ shown by our
ants, which were investigated at a single temperature. In the
other investigations, V·CO∑ was changed over a much wider
range by altering the ambient temperature. It is possible (but
speculative as yet) that DVC modulation by V·CO∑ may differ
if it is measured at single temperatures and/or over narrow
ranges versus a wide range of temperatures and V·CO∑ values.

Nevertheless, some informative principles emerge from our
data. The modulation characteristics of the alates of both
species were generally similar (Figs 7–11). However, as a
function of overall V·CO∑, the workers of M. julianus modulated
DVC frequency tenfold more, and burst volumes 3.4-fold less,
than did M. julianus alates (Fig. 11; equation 3). The low O
phase V·CO∑ of the M. julianus workers explains their reliance
on the modulation of burst frequency, rather than burst volume,
with changing V·CO∑; this is very clearly shown in Fig. 10. This
aspect of their respiratory physiology is particularly
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red in the light of the apparent
congeneric species M. pergandei to

under the conditions of our

at the alates of both Messor species
continuously, while the workers of
orly – with over 50 % of each DVC
 the workers of M. pergandei do so
he basis of this difference between
ture becomes clearer if we consider
mely diffusive gas exchange by an
ng the O phase at a rate equal to
f CO2 or ‘overall V·CO∑’. Such an
tinuous ventilation. Its ‘O phase’ is
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ous process of diffusion. At the other extreme, an insect
ts CO2 very rapidly during its O phase, and therefore
es the relative duration of its O phase, must ventilate
iscontinuously. Between these two extremes is a broad
m in which O phase rates of CO2 release exceed steady-
tochondrial-level V·CO∑ by variable margins. Obviously,
r an insect approaches the line of equality between O

CO∑ and overall V·CO∑, the more marginal is its capacity
ntinuous ventilation. In this respect, Fig. 10 is highly
ive. Because the O phase V·CO∑ of the M. julianus
, as a function of their overall V·CO∑, is tenfold lower than
he female alates, the workers are barely above the line
ity between O phase V·CO∑ and overall V·CO∑ at which the
st break down. In addition, M. julianus workers devote
nough proportion of their DVC to the O phase to draw
se to the line of equality at which the DVC becomes a

be induced to ventilate discontinuously. This stimulus is likely
to be hypoxia and/or hypercapnia of the degree (currently
unknown) to which workers are exposed within the nest itself.
This hypothesis is readily testable. The advantage (if any) that
accrues to maintaining continuous ventilation in normoxic, dry
air remains problematic.

Is discontinuous ventilation necessary?

A cautiously comparative approach yields a working
hypothesis concerning the puzzlingly patchy distribution of
discontinuous ventilation in adult insects. We note that
discontinuous ventilation is common in insects likely to
encounter high concentrations of CO2 (or low concentrations
of O2) in their natural environments. For example,
subterranean ant nests are generally assumed to be hypoxic and
hypercapnic, and in the case of cockroaches, the burrows

. R. B. LIGHTON AND D. BERRIGAN
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us ‘O phase’ (Fig. 6). Note that burst CO2 emission
 scale as body mass to the power 1.67 in M. julianus
m Table 2). Thus, in the O phase, female alates of M.
release 11 times more CO2, or 2.6 times more CO2 per
y mass, than do workers of that species.
ows that M. julianus workers barely utilize the strategy
tinuous ventilation, although the alates of both species

 a very marked extent. Further, M. pergandei workers
tilize discontinuous ventilation at all, but are situated
nes of equality in Figs 6 and 10, a position in no way
e of poor adaptation to xeric environments, as they
es (quite apart from the examples of Eleodes and
) prove. Is this lack of discontinuous ventilation
by physiological necessity, i.e. limited maximal gas
e rates?
 context, it is important to realize that, in the case of
us workers at least, the O phase V·CO∑ data in Fig. 10
 means indicative of maximal V·CO∑. We infer this from
rvation that M. julianus workers (like M. pergandei
 are active at temperatures more than 15 ˚C above those
in the present investigation, corresponding to a
 increase in V·CO∑ without even taking the effects of

into account. Unless three- to tenfold changes in trans-

beneath stones in which they generally live in nature are poorly
ventilated. Many of the Namib Desert tenebrionids known to
ventilate discontinuously spend most of their time buried in
sand, where because of slow diffusion their immediate
environment is likewise likely to be hypoxic and hypercapnic.
In contrast, their confamiliar American representatives
generally do not burrow or sand-swim, but seek shelter by
creeping under vegetation where conditions are close to
normoxic and normocapnic, as is also presumably the case
with the natural haunts of Tenebrio.

The trend is suggestive, although as yet we lack the broad base
of comparative data required to progress beyond speculation.
And, as always, phylogeny may introduce unwelcome if
potentially heuristic complications, such as normoxic insects that
ventilate discontinuously on a somewhat capricious basis (see,
for example, Hadley and Quinlan, 1993). A clear mechanistic
determinant of the trend towards continuous ventilation in
normoxic environments is, however, obvious. It is impossible to
initiate a net flux of CO2 or O2 from areas of low to high partial
pressures. The endotracheal volume of an insect must, of
necessity, be hypoxic and hypercapnic relative to its environment
or metabolically useful diffusion-driven flux cannot occur. An
insect can solve the conundrum of diffusive gas exchange in
r diffusion gradients occur, which is unlikely, any
 in overall V·CO∑ must be accompanied by decreased
n of the spiracles and/or by active ventilation.
 the rather mediocre performance of M. julianus
 as discontinuous ventilators and the failure of M.
ei workers to ventilate discontinuously do not reflect
gical constraints imposed by low maximal rates of
tput. In addition, their ventilation strategy does not
o exact a water loss penalty. Certainly, in the case of
ndei workers, failure to ventilate discontinuously has
ted their overall water loss rates to unusual levels; on
ary, the species thrives in arid areas (see Introduction)
ater loss rates of workers are low and typical of xeric

ds (Edney, 1977; Lighton et al. 1995).
 the appropriate stimulus, it is therefore likely that
onounced discontinuous ventilation can be elicited
 julianus workers and that M. pergandei workers can

significantly hypoxic and hypercapnic environments in two
distinct ways. First, it may open its spiracles maximally for long
periods, thus increasing net diffusive flux and compensating to
some extent for a shallow partial pressure gradient. However,
unless the insect’s environment is perfectly water-saturated, this
strategy may impose an unacceptable water loss penalty; overall
water loss rates can increase several-fold while the spiracles are
open (Lighton et al. 1993b). The second alternative is to sequester
CO2 and deplete O2 within the tracheal system for as long as
physiologically feasible. In this case, the partial pressure gradient
will increase until a brief period of spiracular opening can effect
the required net flux. Hence, discontinuous ventilation.

In normoxic and normocapnic environments, the DVC may
be considered a somewhat intemperate strategy because of the
far steeper partial pressure gradients driving net fluxes of O2

into, and CO2 out of, the insect’s tracheal system, and it may
not, in fact, be necessary. We infer this from the observed
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ce of discontinuous ventilation in some successful
ns of xeric habitats (Tenebrio and Eleodes). The
tages, if any, accruing to this more sedate ventilatory
y are problematic, particularly because the partial pressure
nt driving the diffusive uptake of O2 is approximately
, while that driving the diffusive release of CO2 is only
4 kPa (Levy and Schneiderman, 1966). This explains the
term respiratory exchange ratio of approximately 0.2
 the steady-state, diffusive F phase of those insects in
 it has been measured (Lighton, 1988a; J. R. B. Lighton,
paration). Obviously, the F phase is not an indefinitely
nable gas-exchange strategy. For continuous diffusion-
 gas exchange to be practical, O2 and CO2 partial pressure
nts need to be similar, which can be accomplished by
ing O2 partial pressure gradients (at the expense of
sing spiracular diffusion rates and presumably entailing a
loss penalty) or by elevating endotracheal CO2 partial
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res approximately fivefold (with problematic, if not
tous, effects on pH regulation). From this we deduce that
orm of continuous active, convective ventilation is likely
mpany any shift away from discontinuous gas exchange.
correct balance between active ventilation and passive
on is found, however, one potential benefit of continuous
hange may be a more constant internal environment (see
s and Scheid, 1982). The detailed nature of this
tory strategy awaits investigation, but it is not unduly
ssian to infer that some selective advantage must
pany the trend away from discontinuous gas exchange in
highly xeric insects. It is, in any event, clear that the
tory physiology of adult insects may be more subtle,
ticated and varied than is generally supposed.
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