
 

Several studies have examined the anatomy and motor
innervation of the oviductal system in insects (Lange and
Orchard, 1984

 

a; Stoya et al. 1989; Thorn and Truman, 1989;
Kalogianni and Pflüger, 1992) and the pharmacology of the
oviductal muscle (Lange and Orchard, 1984b; Orchard and
Lange, 1986; Cook et al. 1984). However, with the exception
of Locusta migratoria (Lange et al.1984b; Orchard and Lange,
1986), no information is available on the innervation of the
oviductal muscle, the firing pattern of the oviductal motor
neurones, the origin of the rhythmic drive to the oviductal
neurones or its interaction with other neuronal centres.

Many rhythmic motor patterns in both deafferented and
intact animals are generated by central neural networks (central

pattern generators, CPGs, Bässler, 1986; Delcomyn, 1980). In
crickets and locusts, the neural network that is responsible for
the generation of the oviposition digging rhythm (a motor
pattern elicited at the first stage of egg laying) is distributed in
the last two abdominal ganglia (genital ganglia) and is
activated by release from descending inhibition, originating
from the thoracic and cerebral ganglia (Carrow et al. 1982;
Thompson, 1986). During oviposition digging in the locust,
rhythmic contractions of the oviducts are elicited that prevent
the passage of the eggs to the ovipositor (Lange et al. 1984a,b).
These contractions are generated by three identified bilaterally
paired neurones and are modulated by two groups of dorsal
unpaired median (DUM) neurones (Kalogianni and Pflüger,

The Journal of Exp

 

Printed in Great B

The ovi

 

ons
(Orthopter six
bilaterally ale
Calliptamus ted
by three bil nth
abdominal and
staining, fiv ons
and the thr ere
physiologic ree
oviductal n tor
function. In  for
motor func ctal
neurones th  the
oviductal fied
neurones o ilar
to that o ical
characteris ials
(30–40 mV) are
similar to th nes
which are ons
The oviduc  of
contraction  the

Su

MOTOR UC
OVIDU O

TI

I* 
Labo  of 

00

ed 7

*Present address: Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, England.

Introduction
507

,
.

fast contractions being produced by spontaneous potentials
(30–40 mV) generated by some oviductal muscle fibres; and
(b) neurogenic contractions caused by the rhythmic spiking
of the oviductal motor neurones. This motor pattern is
produced by the oviductal central pattern generator, a
neural network residing in the last two abdominal ganglia
(seventh and terminal abdominal ganglia) of the species
examined here. When isolated both anteriorly and
posteriorly, the seventh abdominal ganglion generates
rhythmic oviductal contractions of lower frequency and
amplitude than those recorded when the connectives
between the genital ganglia are intact. The oviductal
pattern generator is activated through release from
descending inhibition, which originates, in Calliptamus sp.,
from the compound metathoracic ganglion (fused
metathoracic and first three abdominal neuromeres) and
in, D. albifrons, from the first free abdominal ganglion
(fused second and third abdominal neuromeres).

Key words: insect oviduct, motor neurones, oviductal contractions,
Calliptamus sp., Decticus albifrons.
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n D. albifrons and Calliptamus sp., the oviductal DUM
s are also rhythmically activated (in time with the
l motor neurones) when the genital ganglia are isolated
 rest of the nerve cord (Kalogianni and Theophilidis,

It thus appears that, in these species, the network
g the oviductal motor pattern is very similar to that

ng the oviposition digging rhythm in the locust.
, Facciponte and Lange (1993) suggested that the
abdominal ganglion (the site of the oviductal motor
s) is the main site of generation of the oviductal rhythm
ts.
im of the present study is to present an account of the
 and physiology of the oviductal neuromuscular
in two orthopteran species. In Calliptamus sp., the
s similar to that of the locust, but D. albifrons presents
ifferences, which are outlined here. In addition,

on a wax platform with minuten pins. The ganglionic sheath
was treated with a 1 % solution of Protease (Sigma type XIV)
for 30 s to facilitate microelectrode penetration. Intracellular
recordings were obtained from the cell bodies of the motor
neurones with glass microelectrodes filled with 6 % cobalt
hexammine (resistance 70–100 MV). All recordings were
displayed on a digital oscilloscope and the data were stored on
a computer for subsequent analysis and printing. The motor
neurones were stained by passing 500 ms depolarising pulses
of 10 nA, at 1 Hz, for 20 min through the microelectrode. The
dye was left to diffuse for 1 h and the cobalt was precipitated
with ammonium sulphide. The ganglia were then silver
intensified (Bacon and Altman, 1977), dehydrated and cleared
in methyl salicylate, and selected preparations were drawn
using a camera lucida attached to a microscope.

. KALOGIANNI AND G. THEOPHILIDIS
 lesions of the nerve cord were made while monitoring
uctal rhythmic contractions, in order to locate precisely
uctal CPG, to examine its relationship to the other parts
entral nervous system (CNS) and to define the site of
f the descending inhibition that is exercised on it in
t preparations. The morphology of the nerve cord in
ons has enabled us to locate more precisely the higher
y centres in this species.

Materials and methods
e female grasshoppers Calliptamus sp. (Catantopidae)

h crickets Decticus albifrons (Tettigonidae), collected
 vicinity of Thessaloniki, Greece, were used in this

Physiology

nimal was mounted ventral side uppermost and an
 was made along the ventral midline to expose the
 and the seventh abdominal ganglion. Intracellular
gs were obtained from the oviductal muscle fibres with
mounted glass microelectrodes (Woodbury and Brady,
filled with a 2 mol l21 potassium acetate solution

Anatomy

Backfills of the oviductal motor neurones were obtained by
immersing a part of the oviductal muscle, with its innervation
intact, in a Vaseline well filled with 6 % cobalt hexammine.
This method was used because it was difficult to isolate the
numerous fine branches that supply the oviducts in the
Vaseline well. Furthermore, it ensured that only neurones
supplying the oviducts would be stained. The preparation was
left for 12–24 h at 4 ˚C and the cobalt was precipitated with
ammonium sulphide and intensified as outlined above. At least
20 backfills were made in each of the two species.

To reveal the fine structure of the oviductal muscle, it was
embedded in Spurr’s resin, prior to cutting transverse semi-
thick sections (5–10 mm) from the lateral oviducts of both
species, using standard light microscopy techniques. The
muscle profiles were then drawn using a camera lucida.

Results
Anatomy of the oviductal muscle

In both Calliptamus sp. and D. albifrons, a pair of ovaries
is located in the anterior part of the abdominal cavity. They
ce 20–50 MV) while the preparation was constantly
 with saline (NaCl, 140 mmol l21; KCl, 5 mmol l21;
mmol l21; Hepes, 5 mmol l21, pH 6.8). Extracellular

gs were obtained en passant from the oviductal nerve
ilver hook electrodes. To monitor the neurogenic
l contractions, the anterior end of the lateral oviduct
ched by a thread to a Grass isometric force transducer;
re positioned at the junctional area of the oviduct to
detection of the contractions of the other side of the
. To measure the myogenic contractions, the oviducts
moved from the animal, placed in a Petri dish and
ly perfused with saline. The thread of a force
er was attached to the posterior end of the common
and the lateral oviducts were immobilized with fine

cord intracellularly from the oviductal motor neurones,
nth abdominal ganglion was stabilized, ventral side up,

open posteriorly into a pair of muscular lateral oviducts (LO,
Fig. 1A,C) which, at their posterior end, join to form the
common oviduct (CO). Transverse sections of the lateral
oviduct in both species reveal a network of muscle fibres
surrounding an inner layer of epithelial cells (EL, Fig. 1B,D,
see also insets). In D. albifrons, there are two layers of muscle
fibres: an inner discontinuous layer of longitudinal fibres (LL,
Fig. 1B) and an outer layer of circular fibres (CL). The
longitudinal layer consists of muscle bundles located at the
folds of the epithelial layer, whereas the circular layer is
superficial (Fig. 1B). Some longitudinal fibres are scattered at
the surface of the oviduct (LF, Fig. 1B). In Calliptamus sp.,
the circular layer (Fig. 1D) is directly adjacent to the
epithelium, whereas the longitudinal fibres are superficial and
form a continuous layer.

In both species, the oviduct is innervated by a nerve branch
(oviductal nerve) originating from the seventh abdominal
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Semi-diagramatic drawings of the ovidu
s albifrons (A,B) and the grasshopper Ca
1 of the seventh abdominal ganglion (A
n (AG7). In D. albifrons, the seventh abdominal
n has one pair of segmental nerves, termed nerve N1

ig. 1A). In this species, the oviduct is innervated by
 N1B2 of nerve N1 of AG7 (Fig. 1A), whereas in
amus sp. it is innervated by branch N2B of the sternal
N2 of AG7 (Fig. 1C). In both species, the oviductal
gives rise to two secondary branches innervating the
or part of the lateral oviduct, the anterior part of the
n oviduct and their junctional area (Fig. 1A,C). A more

d account of the peripheral innervation of the oviducts
en in Kalogianni and Theophilidis (1993). The

nomenclature used in this study was based on that used for the
locust by Lange and Orchard (1984a) and Kalogianni and
Pflüger (1992).

Motor innervation of the oviductal muscle

Cobalt backfills of the terminals on the oviductal muscle of
the efferent oviductal neurones revealed their cell bodies and
central projections. In both species, three clusters of cell bodies
were stained in the seventh abdominal ganglion: a lateral
cluster of bilaterally paired neurones, located at the
ventrolateral region of the ganglion (AG7 in Fig. 2A,B) and

of the lateral oviduct of Decticus albifrons showing the epithelial layer (EL), the inner longitudinal muscle layer (LL), the outer circular
layer (CL) and the superficial longitudinal muscle fibres (LF). (C) In Calliptamus sp., nerve branch N2B originating from nerve 2 (N2)
venth abdominal ganglion innervates the lateral oviduct and the common oviduct. (D) A hemisection of the lateral oviduct of Calliptamus
ing the epithelial layer, the inner circular layer and the outer longitudinal layer.
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and (B) in Calliptamus sp. revealed the cell bodies and the central projections
inal ganglion (AG7). Six bilaterally paired neurones (oviductal neurones 1–6,

s (A), whereas three bilaterally paired neurones (oviductal neurones 1–3,
pen circles in AG7 indicate the cell bodies of the bilaterally projecting oviductal
inal ganglion (AG6) of Decticus albifrons (A). Arrow in B indicates the large
us sp.
AG7

Decticus albifrons

ackfills of the oviductal nerve (A) in Decticus albifrons
iductal bilaterally paired neurones in the seventh abdom
VN6) innervated the oviducts of Decticus albifron
VN3) innervated the oviducts of Calliptamus sp. (B). O

. Note the large sensory arborizations in the sixth abdom
nvading the contralateral neuropile of AG7 in Calliptam
sters of bilaterally projecting neurones (open circles in
 located at a median position in AG7 (the latter were
d by Kalogianni and Theophilidis, 1993). The number

e morphology of the oviductal bilaterally paired
s differed, however, in the two species. In D. albifrons,
e cell bodies (diameter 30–35 mm) formed the cluster
ctal bilaterally paired neurones. They possessed dense
tions that extended dorsally in the ipsilateral neuropile,
 had a number of branches in the contralateral neuropile
, AG7). In contrast, in Calliptamus sp., the cluster of
uctal bilaterally paired neurones consisted of only three
dies (diameter 25 mm) (Fig. 2B, AG7). The overall
ng pattern of these cells in the seventh abdominal
n differed from that of the homologous neurones of D.
s mainly in the presence of a thick (approximately

10 mm) contralateral neurite (arrow in Fig. 2B) which sent its
arborizations to the contralateral neuropile (see also Fig. 5C).

Backfills of the oviductal nerve also revealed a dense
dendritic field in the sixth abdominal ganglion of D. albifrons
(AG6, Fig. 2A). This is probably of sensory origin and is
formed by axons that, without entering the neuropile of AG7,
ascended to the next anterior ganglion (AG6) and ramified
extensively in its medioventral neuropile. Some arborizations
crossed the ganglionic midline. In Calliptamus sp., only a
single axon ascending through the ipsilateral connective to the
AG6 could be detected (AG6, Fig. 2B).

Identification of the oviductal motor neurones

D. albifrons

Four large action potentials with different amplitudes
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four large potentials of different amplitude could be distinguished (OVN1, OVN2, OVN3,
cell body of OVN2 and extracellular recordings from the oviductal nerve (OVNv) show that
tial. (B) Multiple sweeps are superimposed to show that each soma potential of OVN2 was
Physiological and morphological identific
e oviductal nerve (OVNv, lower trace), 
. Paired intracellular recordings from the 
produces the second largest action poten
ctal neurones 1–4, OVN1–OVN4, Fig. 3A, second trace)
e distinguished in extracellular recordings monitoring

neous activity in the oviductal nerve (OVNv).
aneous extracellular recordings from the oviductal nerve
tracellular recordings from the cell bodies of the
tal bilaterally paired neurones enabled the physiological
rphological identification of OVN2, OVN3 and OVN4.
urone producing the largest action potential, designated
1, was active in a few preparations and only at the start

experiments, so it could not be reliably characterised.
ma spike of OVN2 was 5–7 mV in amplitude and was

followed at a short and constant latency (Fig. 3B) by the
second largest extracellular action potential in the oviductal
nerve (Fig. 3A). After physiological identification, the neurone
was stained intracellularly to reveal its morphology. Its cell
body is approximately 30 mm in diameter and it has dense
arborizations in the ipsilateral dorsal neuropile (OVN2,
Fig. 3C). It also sends some projections into the contralateral
neuropile. The neurones producing the third and the fourth
largest action potentials (OVN3 and OVN4, Fig. 3A) were also
physiologically and morphologically identified. OVN3, which
had the third largest action potential, arborizes mainly

d by an action potential in the oviductal nerve. (C) The intraganglionic morphology of OVN2, OVN3 and OVN4 as revealed by
lular cobalt injection, following physiological characterisation of the motor neurones. Whereas OVN2 and OVN3 have arborizations
in the ipsilateral half of the ganglion, OVN4 projected to both the ipsilateral and contralateral neuropile.
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N6, had much larger soma spikes (30–40 mV) with a
rhyperpolarising phase (see OVN6 in Figs 4B, 6D).
re identified with paired intracellular soma recordings
tracellular nerve recordings (Fig. 4B) and their
ogy, as revealed by intracellular cobalt injection
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tions of all five oviductal neurones, which were
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ce in B) and very small axon
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). Their morphology, however, as
by intracellular staining (A), was
ilar to that of OVN2 and OVN3,
 Fig. 3.
. Each neurone was fully stained in at least two and
r preparations.

us sp.

 action potentials of different amplitude can be
ished in the extracellular recordings from the oviductal
hich correlate to the three bilaterally paired oviductal

s revealed by backfills. Simultaneous intracellular
gs from the cell body of one of the three oviductal
s of Calliptamus sp. (OVN2, Fig. 5A) and extracellular
gs from the oviductal nerve (OVNv) showed that each
ularly recorded spike was followed by an extracellular
otential (Fig. 5A). Intracellular cobalt staining of
showed that it projects both ipsilaterally and

terally into the seventh abdominal ganglion (Fig. 5B),
 very similar to that of OVN4 of D. albifrons. In
to OVN2, OVN3 (which produced the largest

recordings from the cell body of OVN4 (Fig. 6C) showed
largely tonic activity, with an increase in its firing frequency
during the bursts of OVN2 activity (Fig. 6C). OVN3 fired at a
low frequency during the bursts of OVN2 and OVN4 (not
shown). In contrast, the firing frequency of the remaining two
oviductal neurones (OVN5 and OVN6) was reduced during the
bursting phase of OVN2 and OVN4 (for OVN6, see Fig. 6D).

In Calliptamus sp., intracellular recordings from a muscle
fibre of the common oviduct (OVM, Fig. 7A) also revealed
bursts of EJPs, in which two different amplitudes could be
distinguished. These were generated by OVN1 and OVN2, as
revealed by paired intracellular recordings from their cell
bodies and from an oviductal muscle fibre (for OVN1,
Fig. 7A). The bursts of EJPs occurred synchronously on the
left and right sides of the oviductal muscle, as revealed by
simultaneous intracellular recordings from left and right
muscle fibres (Fig. 7B). These bursts of EJPs generated
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oviductal muscle (OVC, lower trace in Fig. 7C), which
 after the isolation of the oviduct from the seventh
inal ganglion (not shown). A similar synchronous
ction of the left and right sides of the oviductal muscle

and the neurogenic origin of the oviductal contractions were
also established in D. albifrons (see Fig. 10). Other aspects of
the oviductal rhythm are described in Kalogianni and
Theophilidis (1993).

Stimulation of the oviductal nerve in Calliptamus sp. with

50 mVOVN4

0.1 s
OVN4OVN2

N6

Nv

The firing pattern of the oviductal neurones (OVN2, OVN4, OVN6) of Decticus albifrons. Bursts of EJPs recorded intracellularly from
uctal muscle fibre (OVM, A) were produced by OVN2, which had a phasic firing pattern (B). OVN4, in contrast, fired tonically (C).
fired during the interbursts of OVN2 (D). Note the large amplitude and the prolonged undershoot of the soma potentials of OVN6 (D).
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.
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 albifrons, repetitive stimulation at 1 Hz also evoked
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t higher frequencies (Fig. 8E), the contraction reached
mal value rapidly after the onset of stimulation but this
lowed by a decrease in the force generated by the
l muscle. For example, at 30 Hz stimulation, the
ion amplitude declined to 50 % of its maximal value
 the onset of stimulation. The contraction maintained
e until the end of stimulation. Maximal responses of
uctal muscle, i.e. maximal peak contraction strength,
 at 30 Hz stimulation (Fig. 8E).

uctal motor programme and its central generation

iescent preparations, isolation of the seventh and

records were obtained 1 h after dissection and at 10 min
intervals after each connective lesion. Each series of lesions
shown in Figs 9 and 10 is derived from one individual, and is
regarded as representative of the total of 10 successful
experiments performed for each species.

Calliptamus sp.

When the nerve cord of Calliptamus sp. was intact, the
oviduct exhibited contractions that had no rhythmicity
(Fig. 9A). In a few individuals, however (one in five animals),
the oviducts showed large rhythmic contractions (Fig. 9B). In
some quiscent preparations, decapitation or transection of the
connectives between the mesothoracic and metathoracic
ganglia evoked a rhythmic activation of the oviducts. However,
lesion of the connectives between the metathoracic (MTG) and
the first free abdominal ganglion (fourth abdominal ganglion,
AG4, see Fig. 9 inset) consistently induced rhythmic oviductal
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tal contractions (as in Fig. 9B), isolation of the
inal from the thoracic ganglia had no detectable effect.
isolation of AG7 from the anterior nerve cord, by
tion of the connectives between AG4–AG5, AG5–AG6
6–AG7, had no apparent effect on the induced
tions (Fig. 9D). Under these conditions, isolation of the
 abdominal ganglion from the terminal abdominal
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after reaching its peak,
ed and then maintained this
alue (marked with arrows in

te the individual contractions
reasing amplitude, at 1 Hz
tion of the oviductal nerve in
rons (E).
n (TAG) caused a reduction in both the amplitude and
cy of the oviductal contractions (to approximately 25 %

original amplitude and 75 % of the original frequency,
). These contractions were of neurogenic origin,

e they ceased when the oviducts were isolated from the
y severing the oviductal nerve. The above data indicate
t, in quiescent preparations, the oviductal CPG is under
ding inhibition, which derives from the compound
oracic ganglion – the metathoracic (MTN) and the first
bdominal neuromeres (AN1–AN3) fused – and (b) that
tions between the seventh and terminal abdominal
 are necessary for the expression of the oviductal
, as elicited during oviposition behaviour.

frons

ythmic contractions were recorded from the oviduct
the nerve cord was intact (Fig. 10A), but, as for the

had no detectable effect on the oviductal contractions (for
lesion, see unmarked arrow in inset). Similarly, isolation of the
seventh abdominal ganglion from the terminal abdominal
ganglion led to a decrease in the frequency and amplitude of
oviductal contractions (to 30 % of the original amplitude and
60 % of the original frequency, Fig. 10D), which ceased after
transection of the oviductal nerve (Fig. 10E). It is thus evident
that the oviductal CPG in D. albifrons is also under descending
inhibition. The different structure of its nerve cord enables us
to locate its site of origin more precisely; i.e. in the first free
abdominal ganglion (second and third abdominal neuromeres
fused). As in Calliptamus sp., elements of the oviductal CPG
seem to be distributed in both genital ganglia.

Myogenic oviductal activity

A common feature of visceral muscles is that, when isolated
from the CNS, they undergo spontaneous myogenic
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 frequency of the oviductal contractions. For sites

ere; MTG, metathoracic ganglion.
ons (Fig. 11A), which do not occur when the
l motor rhythm is elicited. The oviducts of both the
studied here exhibited two different modes of
c contractions: (a) slow peristaltic contractions of very
litude occurring mainly in the lateral oviducts (SC,
) and (b) strong fast contractions occurring mainly in

Ovid

The muscle fibr
sp., as revealed by
similar to that des
et al. 1984; in l
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cordings of the oviductal contractions in Calliptamus sp. during stepwise isolation
ve cord (see inset). (A,B) Two different degrees of activation of the oviduct in in
fter isolation of the abdominal ganglia (AG) from the thoracic ganglia (oviductal
l ganglion from the anterior nervous system had no effect on the induced contraction
terminal abdominal ganglion (TAG) resulted in a decrease in both the amplitude and
tive transections, see inset. AN, abdominal neuromere; MTN, metanthoracic neurom
rior part of the common oviduct (FC, Fig. 11A,B).
ular recordings from the muscle fibres of the lateral
 did not reveal any action potentials. Recordings from
fibres in the anterior part of the common oviduct,
, did show large potentials (30–40 mV) with a
d depolarising phase (upper trace, Fig. 11B), which
nd to be temporally correlated with fast myogenic
ons (Fig. 11B). These potentials appeared to be
ble for the generation of the phasic contractions, as can

from the paired intracellular recordings from an
l muscle fibre and tension measurements from the
 oviduct (Fig. 11B). They were present in only a
umber of muscle fibres located on each side of the
part of the common oviduct. As the intracellular
 was moved to a more central position on the common
the potentials decreased in amplitude, and they could
corded from muscle fibres located near the midline of

on oviduct.

consists of an inner layer of circular muscle fibres, directly
adjacent to the epithelium, surrounded by a layer of
longitudinal fibres. In D. albifrons, however, there exists an
additional discontinuous inner longitudinal layer similar to that
in the lateral oviduct of the stick insect Carausius morosus
(Thomas, 1979) and in the junctional area of the locust oviduct
(Lange et al. 1984b). The different muscle fibre layers are
related to the multiple modes of contraction expressed by the
insect oviduct. When isolated from the CNS, the oviductal
muscle, although under direct neural control, also displays
slow peristaltic and fast phasic myogenic contractions (Cook
et al. 1984; Lange et al. 1984b). The peristaltic contractions
appear to result from contractions of the circular muscle fibres,
but both the neurogenic and the fast myogenic contractions
could result from the excitation of longitudinal muscle fibres.
The present study shows that the fast myogenic contractions
are produced by spontaneous action potentials with a long
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 in a decrease of the amplitude and frequency of the oviductal contractions. These cont
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fibres at the midline of the common oviduct, could
e that some fibres act as pacemaker cells and the
ials then spread electrotonically to the neighbouring

Orchard and Lange (1986) have shown that locust
tal muscle fibres are both electrically and dye coupled
uggested a similar pattern of propagation of these
ials. It is possible that the phasic myogenic contractions
uced during the second stage of oviposition, i.e. during
tual egg laying when the eggs are expelled from the
tal system, after they have been propelled to the
on oviduct by the slow peristaltic contractions of the
 oviducts. During this phase, there is no neurogenic
tal rhythm. The oviductal myogenic contractions,
d to be induced by neurohormonal factors (Okelo, 1971;
ara, 1986), can be modulated by a wide variety of
nces, such as glutamate, octopamine and proctolin (Cook
eola, 1978; Orchard and Lange, 1986). Kalogianni and

The location of the bilaterally paired neurones that innervate
the internal genital tract of female insects within the CNS is
variable (Cook et al. 1980; Stoya et al. 1989; Sugawara, 1986).
There is also diversity in the number of oviductal bilaterally
paired neurones found in different species (Stoya et al. 1989,
Thorn and Truman, 1989; Lange and Orchard, 1984a;
Kalogianni and Pflüger, 1992). Morphological
characterisation, by intracellular staining of the three oviductal
bilaterally paired neurones in Calliptamus sp., shows that they
possess an almost identical morphology to that of the
previously identified oviductal motor neurones in Locusta
migratoria (Kalogianni and Pflüger, 1992). Physiological
experiments have also shown that they generate rhythmic
neurogenic contractions of the oviductal muscle. Intracellular
recordings from the muscle fibres of the common oviduct
revealed two EJPs of different amplitude, which is in accord
with a previous report on the spatial distribution of the
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the same pattern as the oviductal unpaired median neurones of
D. albifrons, described elsewhere (Kalogianni and
Theophilidis, 1993).

The possibility that these neurones have a modulatory rather
than a motor function could also help to interpret the response
of the oviductal muscle of D. albifrons to electrical stimulation
of the oviductal nerve. The oviduct of Calliptamus sp. responds
to high-frequency nerve stimulation with a slowly rising
contraction which maintains its peak value throughout
stimulation, and is thus similar to that of the locust oviduct
(Lange et al. 1984b). In D. albifrons, in contrast, electrical
stimulation at 1 Hz induces individual contractions of
decreasing amplitude, and high-frequency stimulation initiates
a fast-rising contraction which, after reaching a peak value,
stabilizes at a decreased plateau value. The delayed decline of
the contraction amplitude, if not due to failure of stimulation,

. KALOGIANNI AND G. THEOPHILIDIS
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A) In vitro contractions, measured from the oviduct after its
from the CNS. Two modes of contraction can be

shed: slow peristaltic contractions, of low amplitude (SC)
r fast phasic contractions (FC). (B) The latter were produced
-amplitude action potentials (upper trace) generated
ously by the oviductal muscle fibres (OVM).
l motor neurones on the locust oviduct, showing that
mon oviduct is innervated by two out of the three
l motor neurones (Kalogianni and Pflüger, 1992).

eurones, termed OVN1 and OVN2, are homologues of
nd OVN2 in Calliptamus sp. The third motor neurone

gratoria (OVN3), which appears to be homologous to
f Calliptamus sp., was found to innervate only the

al oviductal area (Kalogianni and Pflüger, 1992).
ronal innervation of the oviductal muscle by a
m of three motor neurones, reported for L. migratoria
 and Lange, 1986), has also been established in both

mus sp. and D. albifrons (recorded from muscle fibres
nctional area). In the latter, however, backfilling and
ular recording experiments have shown that six pairs
rally paired neurones supply the oviductal muscle. The
fferent EJPs could account for OVN2, OVN3 and
which, according to this study, have physiological
es typical of motor neurones. In D. albifrons, OVN2
a lesser degree, OVN3 have a phasic firing pattern,
o that of OVN1 of Calliptamus sp. and L. migratoria
nni and Pflüger, 1992). OVN4 of D. albifrons has a

ing pattern and is probably homologous to OVN2 of

could be attributed to the effect of some neuromodulatory
substance released during high-frequency stimulation of the
oviductal nerve. Neurosecretory cells, such as the DUM
neurones, that innervate the oviduct, have been reported in both
species (Kalogianni and Theophilidis, 1993) and their
counterparts in the locust inhibit neurogenic contractions of the
oviduct (Kalogianni and Pflüger, 1992). This, however,
suggests that the oviductal neurosecretory cells of D. albifrons
release different transmitters onto the oviduct from those
released in Calliptamus sp. and/or that the excitation of OVN5
and OVN6 is responsible for the different response of the
oviductal muscle in D. albifrons. Although it has been
established that unpaired median neurones act as modulators
of both neurogenicity and myogenicity, we know of no other
bilaterally paired neurones with a modulatory function like that
suggested for OVN5 and OVN6. However, additional
experiments are required to exclude the possibility of a failure
in the electrical stimulation of the oviductal nerve. In addition,
immunocytochemical studies would be required to identify the
transmitters released by OVN5 and OVN6, so that their
putative modulatory role could be tested.

Central generation of the oviductal rhythm
mus sp. and L. migratoria (Kalogianni and Pflüger,
owever, only three EJPs of different amplitude were
 from the muscle fibres of D. albifrons. The possibility
e are muscle fibres receiving innervation from more

ee neurones cannot be excluded but, if this is not the
is discrepancy might be explained in a different
 involving the functional properties of oviductal
s 5 and 6 (OVN5, OVN6). These neurones support
ma spikes, with a characteristic afterhyperpolarisation.
features are similar to those of the putatively
inergic dorsal unpaired median (DUM) neurones
ing the locust oviduct (Lange and Orchard, 1984a;
nni and Pflüger, 1992), the oviduct of D. albifrons and
mus sp. (Kalogianni and Theophilidis, 1993) and many
eletal muscles (Heitler and Goodman, 1978; Brookes

evers, 1988). These cells (OVN5 and OVN6) fire in
se with the other oviductal motor neurones, following

The oviductal motor pattern is generated by a neural circuit
located in the genital ganglia. The capacity of this network to
generate the pattern in the absence of sensory information has
been shown previously (Kalogianni and Theophilidis, 1993),
establishing the concept of a CPG initiating the oviductal
rhythm. Many motor patterns related to egg laying reside in
the abdominal nerve cord; the isolated abdomen of locusts,
crickets and moths (Thompson, 1986; Carrow et al. 1982;
McCracken, 1907) is able to perform ovipositional
movements, upon isolation of the abdominal cord from
thoracic and cerebral centres. Activation of a motor pattern by
release from descending inhibition has also been implied for
motor programmes as diverse as copulation in the male mantis
(Roeder et al. 1960) and the calling song in crickets (Bentley
and Hoy, 1970). This also appears to be the case for the
initiation of the oviductal rhythm. In the present study, the use
of species with anatomically different nerve cords allowed a
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recise localisation of the anterior inhibitory centres. In
. albifrons and Calliptamus sp., removal of the cerebral,
racic and mesothoracic neuromeres failed to initiate the
tal pattern, as it also fails to induce oviposition digging
usta migratoria (Thompson, 1986). In Calliptamus sp.,
l of the compound metathoracic ganglion (i.e.
ation of inhibition originating from this ganglion) is

ary for the expression of the rhythm, as it is for the
on of locust oviposition (Thompson, 1986). In D.
ns, however, it was only removal of the second and third
eres, which in Calliptamus sp. are fused with the

oracic and first abdominal neuromere, that always
d the oviductal pattern. These results suggest that the
ding inhibition of the oviductal circuit derives in D.
ns, and possibly also in Calliptamus sp., from the
 and/or the third abdominal neuromeres. A similar
ion of the oviposition digging rhythm may involve a

to be similar. Thus, the results of this study, by providing
insight in the anatomy and physiology of the oviductal system
of two insect species, could be further extended to identify the
interneurones that generate the oviductal rhythm and to study
the role of neuromodulatory elements and sensory information
in the shaping of oviductal contractions during egg-laying
behaviour.
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Technology Branch). Special thanks to Philip Newland, Tom
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on the manuscript.
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