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and guanosine triphosphate (GTP) have been described as the
main NTPs in fish erythrocytes. They are negatively charged
phosphates that bind to deoxyhemoglobin but not to
oxyhemoglobin, and both act as negative modulators of
hemoglobin oxygen-affinity (Isaacks and Harkness, 1980;
Nikinmaa, 1990). Nonetheless, the mechanism(s) by which
oxygen tension affects NTP levels is unknown.

In fish, catecholamines are suddenly released from
chromaffin tissues during exposure to deep hypoxia (reviewed
by Randall and Perry, 1992). Increased levels of circulating
catecholamines cause numerous adaptive changes, many of
which are directed towards enhancing oxygen transfer
(Randall, 1990). Increased levels of catecholamines have been
correlated with the release of red blood cells from the spleen
(Nilsson and Grove, 1974; Perry and Kinkead, 1989), red cell
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Jensen et al. (1990) reported that acid–base status may play a
similar important role in fish red cells. These authors showed
that PO

 

∑ and pH significantly affected the red cell NTP content
in carp, Cyprinus carpio. It is possible that intraerythrocytic
NTP levels are affected as a consequence of activation of the
Na+/H+ exchanger by circulating catecholamine as well as by
changes in pH. It has been shown that carbonic anhydrase (CA)
added to the plasma short-circuits the action of catecholamines
on red cell pH (Motais et al. 1989; Nikinmaa et al. 1990).
Adrenergic stimulation activates the Na+/H+ exchanger, which
pumps the protons out of the cell, thus raising intracellular pH
(pHi). An increase in pH is possible if the efflux exceeds the
influx of H+, which is the case when CA is absent from the
plasma because the CO2 hydration/dehydration is uncatalyzed.
Thus, by adding CA to the plasma, we could alter the
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 many different adaptive mechanisms for coping
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ylates in normoxic and hypoxic rainbow trout after
rial injection with either saline or carbonic anhydrase.

rrelationships between NTP levels and blood oxygen
intracellular pH and red blood cell Mg2+ levels are
rted and discussed.

Materials and methods
ater rainbow trout [Oncorhynchus mykiss

m)], weighing 300–600 g, were obtained from a local
 and held outdoors at the University of British
a in dechlorinated Vancouver tap water (8–12 ˚C) for
 weeks before experimentation. The animals were fed

(RBCs) and both were frozen in liquid nitrogen for further
analysis of lactate, catecholamines, adenylates and guanylates
and red blood cell pH (pHi). These fish were not used for the
hypoxia experiments. Since we were dealing with the stress
hormones, catecholamines, we tried to avoid any stress prior
to the infusion and the hypoxia exposure. At the same time that
hypoxia was induced (PO∑=30–35 mmHg; 4.0–4.7 kPa), one
group of fish was infused with saline and another with
approximately 3 ml of carbonic anhydrase solution of
10 000 i.u. (to achieve 0.3 g l21 in the animal) for the duration
of hypoxia exposure (6 h). Blood samples were taken as
described above at 10, 30, 120 and 360 min.

Analytical procedures

Since the experiments reported in the present paper are part
of a larger series, the analytical procedures of some data

. L. VAL, J. LESSARD AND D. J. RANDALL
eek with commercial trout pellets, but feeding was
d 3 days prior to surgery. Under MS-222 anesthesia
 in NaHCO3–buffered fresh water), fish were fitted
sal aortic catheters according to the procedure of
t al. (1975). Following surgery, fish were allowed to
for at least 48 h in a darkened acrylic box with
ting water (8–10 ˚C).

Experimental protocol

 carbonic anhydrase injection after 48 h of hypoxia
xia

eries was designed to investigate the effect of carbonic
e (CA) injection in animals under normoxic and
conditions. Eighteen animals were cannulated and
to recover in individual darkened Perspex boxes, as
 above. After the recovery period, there was a 48 h
ring which aerated water (PO∑=155mmHg; 20.6 kPa)
through the boxes for normoxic animals and
ated water (PO∑=35mmHg; 4.7 kPa) for hypoxic ones.
 acclimation period, nine animals received a bolus

 of 1 mlkg21 bodymass of bovine CA (solution of
.ml21) and nine received a bolus injection of 1 mlkg21

s of saline (Wolf, 1963). Two blood samples of 2 ml

presented here are to be found in Lessard et al. (1995). Blood
and plasma levels of Mg2+ were determined by flame
photometry (Perkin–Elmer, model 2380). Blood levels of
cations were corrected according to the hematocrit values in
order to estimate the levels inside the red blood cell. High
pressure liquid chromatography (HPLC) was used to measure
ATP, ADP and AMP simultaneously with GTP, GDP and
GMP. The procedure was carried out using an LKB 2152
HPLC controller and 2150 titanium pump coupled to a 2220
recording integrator. The separation was performed on an
Aquapore AX-300 7 mm weak anion exchanger (Brownlee
laboratories) eluting at 2 ml min21 at 55 ˚C (Schulte et al.
1992). Analyses of plasma catecholamine levels were
performed by HPLC with electrochemical detection, using a
Brownlee Spheri-5 reverse-phase column (Technical
Marketing, Richmond, BC), a Bioanalytical Systems LC-4A
amperometric detector (Mandel Scientific, Rockwood,
Ontario) and a Spectra-Physics SP8700 solvent delivery
system (Terochem Laboratories Ltd, Edmonton, Alberta), as
described by Primmett et al. (1986).

Statistical methods

Statistical significance of data for the 48 h experiment series

e removed from the dorsal aorta (one at 10 min and the
30 min after the injection). One part of each blood
as centrifuged and 500 ml of plasma was removed,

tely frozen in liquid nitrogen, and then stored in a
t 280˚C for further analysis of catecholamines; another
f plasma was deproteinized with 70 % trichloroacetic
 stored at 220˚C until later analysis for lactate and
tes. The remainder of the blood was used for
it, hemoglobin concentration and ion determinations.

 continuous carbonic anhydrase infusion at the
hypoxia

easurements at rest, one blood sample (1.2 ml) was
om the dorsal aorta and immediately analyzed for
H (pHe), blood and plasma total CO2, hematocrit,

bin and oxygen content. The remainder of the blood
rifuged, plasma was separated from the red blood cells

was determined by Kruskall–Wallis one-way analysis of
variance (ANOVA) or Student’s t-test, as appropriate, with a
fiducial limit of significance of 5 %. When no significant
difference was detected between values for the 10 and 30 min
time intervals after drug administration, the data were pooled
and a mean and respective standard error were calculated and
submitted to further statistical analysis.

Statistical significance of data for 6 h of hypoxia was
determined using a two-way ANOVA followed by a Dunnett
test when comparing the hypoxia values with the resting values
and an unpaired t-test; both with a statistical significance level
of 5%. Data are presented as mean ± standard error of the mean
(S.E.M.).

Results
The mean values of pH and hemoglobin concentrations
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d et al. (1995).
nylate and guanylate concentrations are expressed as
with hemoglobin concentration to avoid the effect of
s in RBC volume. [NTP] ([ATP]+[GTP]) decreased
 the first 10 min of hypoxia and remained more or less
for the saline-infused group (Fig. 1). The NTP levels in

-infused group continued to decrease after the first

all data were combined (Fig. 2). N
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Red blood cell Mg2+ levels dec

0 60 120 180 240 300 360 48 h
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Levels of NTP (ATP+GTP) in red blood cells of rainbow trout
 continuously with saline or carbonic anhydrase for 6 h of deep
 (s, d) or injected once with the same drug after 48 h of deep
 exposure (u, j). * indicates a significant difference between
ic and hypoxic animals. † indicates a significant difference
 saline- and carbonic-anhydrase-infused hypoxic animals.

are mean ± S.E.M., N=7.

0 1 2 3

[ATP] (mmol ml

Fig. 2. Correlation between ATP and 
and carbonic-anhydrase-injected rainb
normoxia and hypoxia for 48 h. D
regression line [GTP]=0.115+0.163[A
cells.
 and became significantly different from control levels
nd from that of saline-infused fish at 6 h (Fig. 1). The

ool of organic phosphates followed the same pattern as
eflecting the large contribution of ATP to the total pool
nic phosphates (data not shown).
ignificant differences were observed in the levels of any
analyzed nucleoside phosphates (ATP, ADP, AMP,
DP, GMP) between 10 and 30 min post-injection after

 acclimation to normoxia or hypoxia (data not shown).
pected significant decreases in ATP and GTP levels
bserved in hypoxic animals, compared with normoxic
ig. 1), but there were no significant differences between

 and CA-injected animals. In addition, animals exposed
poxia exhibited a decrease in the levels of all
ythrocyte adenylates and guanylates (data not shown).
highly significant positive correlation between

ythrocyte levels of ATP and GTP was observed when

injected animals subjected to both normoxic and hypoxic
conditions (Fig. 4A). A highly significant correlation was
detected between Mg2+ levels and NTP levels (Fig. 4B) and
the total pool of organic phosphates (data not shown), although
it is not clear what fraction of the total intracellular Mg2+ is
available for binding to organic phosphates.

Discussion
Reduced intraerythrocytic levels of ATP and GTP have been

extensively reported in fish exposed to environmental or
internal hypoxia (Wood and Johansen, 1972; Tetens and
Lykkeboe, 1985; Monteiro et al. 1987; Boutilier et al. 1988;
Weber and Jensen, 1988; Val et al. 1990). The reduced
intraerythrocytic levels of GTP observed for rainbow trout
exposed to prolonged hypoxia in the present experiment are
similar to those previously reported for this species, but the
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Fig. 4. (A) Red blood cell levels of Mg2+ in rainbow trout injected
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difference between normoxic and hypoxic animals with respect to
injection type. † indicates a significant difference between saline- and
carbonic-anhydrase-infused hypoxic animals. Values in A are mean
els are lower (Boutilier et al. 1988). The [ATP]:
P]:[Hb] ratios during normoxia were similar, bu
 observed during the first few hours of hypoxia
t smaller in saline-infused fish than that reporte
d Lykkeboe (1985), although similar to that rep

s and Christensen (1987).
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rout (A) following exposure to hypoxia for 48 h an
 first 6h of hypoxia. Data were pooled to give the regre
 pHi=7.56120.014[NTP], r=0.69.
production and utilization of these compounds, as well
es in volume of the RBCs. In Fig. 1, we have expressed
as a ratio of the hemoglobin concentration to remove
ts of changes in cell volume, and there is still a large
NTP levels during hypoxia. Thus, changes in NTP
ring hypoxia must be due to changes in either the
n or utilization of NTPs. The release of
mines during hypoxia increases RBC oxygen
tion (Ferguson et al. 1989), resulting in increased ATP
n. In vivo and in vitro studies have related increased
mine levels to significant reductions in erythrocyte
ls (Nikinmaa, 1986; Milligan and Wood, 1987), which
evented by pre-treating the animals with propranolol,
ergic antagonist (Nikinmaa et al. 1984). The effect of
mines on erythrocytes diminishes during prolonged

(Fievet et al. 1988; Thomas et al. 1991) and this could
or the stabilization in NTP levels seen in saline-infused

fish. Infusion of CA at the onset of hypoxia resulted in a larger
drop in NTP levels during hypoxia. In these animals, plasma
pH was lower than in the saline-infused fish. This reduced pH
is known to enhance the effect of catecholamines on
erythrocytes (Nikinmaa, 1990) and could account for the larger
reduction of NTP levels in CA-infused fish.

Increased levels of circulating catecholamines induce the
release from the spleen of immature red blood cells (Nilsson
and Grove, 1974; Perry and Kinkead, 1989), which contain less
NTP than do mature erythrocytes (Lane et al. 1981). Wells and
Weber (1990), however, observed elevated NTP levels in cells
released from the spleen, indicating that this may not be part
of the cause of the reduction in NTP levels in hypoxic fish.

NTP levels may be reduced during hypoxia by a decrease in
the rate of glycolysis due to an inhibition of

+ S.E.M., N=7.
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fructokinase (PFK). PFK is inhibited by a decrease in
 by MgATP. This seems unlikely, however, because
d ATP levels both decreased and because there is no

ion between pH and NTP levels during the period over
TP levels change during the initial phase of hypoxia.

crease in red cell ATP levels may be a direct
ence of reduced oxidative phosphorylation caused by
d oxygen supply, as suggested by Greaney and Powers
Blood oxygen levels, however, were not measured, but
 hypoxic trout they were probably higher than the
 condition (5 mmHg; 0.7 kPa) reported for oxidative
rylation in other cell types (see Nikinmaa, 1990).
 is no relationship between pH and NTP levels at the
 changes in the levels of organic phosphate following
 exposure. After 48 h of hypoxia, however, there is a
rrelation between pH and NTP levels (Fig. 3). The

effects of pH may be masked by the action of

BOUTILIER, R. G., DOBSON, G., HOEGER, U. AND RANDALL, D. J.
(1988). Acute exposure to graded levels of hypoxia in rainbow trout
(Salmo gairdneri): Metabolic and respiratoy adaptations. Respir.
Physiol. 71, 69–82.

FERGUSON, R. A., TUFTS, B. L. AND BOUTILIER, R. G. (1989). Energy
metabolism in trout red cells: Consequences of adrenergic
stimulation in vivo and in vitro. J. exp. Biol. 143, 133–147.

FIEVET, B., CLAIREAUX, G., THOMAS, S. AND MOTAIS, R. (1988).
Adaptative respiratory responses of trout to acute hypoxia. III. Ion
movements and pH changes in the red blood cell. Respir. Physiol.
74, 99–114.

GERLACH, E. AND DUHM, J. (1972). 2,3-DPG metabolism of red cells:
Regulation and adaptive changes during hypoxia. In Oxygen
Affinity of Hemoglobin and Red Cell Acid–Base Status (ed. M. Roth
and P. Astrup), pp. 552–569. Copenhagen, Munksgaard.

GREANY, G. S. AND POWERS, D. A. (1978). Allosteric modifiers of fish
hemoglobins: in vitro and in vivo studies of the effect of ambient
oxygen and pH on erythrocyte ATP concentrations. J. exp. Zool.
lamines, but these decrease with time (Fievet et al.
Thomas et al. 1991), unmasking the action of
rhaps on PFK activity and, therefore, on NTP
ion.
 is a strong correlation between ATP and GTP levels

. The reason for this is not clear. However, the
version reactions of ATP and GTP and the possibility
h are under similar control (Val, 1993) could account
ast part of the observed relationship.
vailability of GTP and ATP to hemoglobin could be

by the concentration of magnesium in the RBCs. GTP
ticularly ATP are readily complexed with magnesium,
reatly reduces their modulatory effect on hemoglobin
affinity (see Houston, 1985). Magnesium metabolism
ated erythrocytes is poorly understood (Houston and

988), as are the dynamics of its movements across the
 membrane. A significant reduction of red blood cell
vels was observed in rainbow trout exposed to hypoxia
CA-injected animals exposed to both hypoxic and
ic conditions (Fig. 4A). Assuming that a constant
on of total magnesium is bound to NTP, significant
 in the total erythrocyte levels of magnesium may

203, 339–350.
HOUSTON, A. H. (1985). Erythrocytic magnesium in freshwater fishes.
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