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blood ammonia levels than terrestrial animals. In teleost fish,
plasma total ammonia concentrations may vary between 0.05
and 1 mmol l

 

21 (e.g. Wright 

 

et al. 1993), but when plasma
ammonia levels approach 2 mmol l21 in arctic char, flaccid
paralysis results (Lumsden et al. 1993). In contrast, blood
ammonia levels greater than 0.05 mmol l21 can be toxic to the
central nervous system of most mammals (Meijer et al. 1990).

Ammonia exerts its toxic effects at many different levels (for
a review, see Cooper and Plum, 1987). Elevated levels of
ammonia modify the properties of the blood–brain barrier
(Sears et al. 1985), interfere with amino acid transport (Mans
et al. 1983), disrupt cerebral blood flow (Andersson et al.
1981), impede excitatory amino acid neurotransmitter
metabolism, particularly that of glutamate and aspartate
(Hindfelt et al. 1977), and cause morphological changes in
astrocytes and neurons (Gregorios et al. 1985). NH4+ interrupts
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amphibians, excrete mostly ammonia. Ammonia is highly
soluble in water and permeates cell membranes relatively
easily. Despite its high solubility, an animal must use 400 ml
of water to dilute every gram of ammonia to maintain ammonia
concentrations below toxic levels. Only animals that respire in
water, therefore, excrete ammonia as their major nitrogen
waste product.

During the evolution of terrestrial animals, water
conservation became an important concern. Most terrestrial
animals convert ammonia to either urea or uric acid,
compounds that can be concentrated in body fluids to a greater
extent than ammonia with no toxic effect. Urea requires about
10 times less water than ammonia for excretion, whereas uric
acid is highly insoluble and requires about 50 times less water.
Terrestrial animals, therefore, can simultaneously conserve
water and eliminate nitrogenous wastes. A classic example of
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mmonia metabolism and
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ere are diverse physiological functions of nitrogen end
cts in different animal groups, including excretion,

base regulation, osmoregulation and buoyancy.
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REVIEW

ITROGEN EXCRETION: THREE END PRODUCTS, MANY P
ROLES

PATRICIA A. WRIGHT
Department of Zoology, University of Guelph, Guelph, Ontario, Canada
mals excrete three main nitrogen products, ammonia,
nd uric acid (Fig. 1), as well as some minor nitrogen
ory products, including trimethylamine oxide, guanine,
e, creatinine and amino acids. The term ammonia will
d to indicate the total ammonia, whereas NH3 and NH4+

refer to non-ionic ammonia and ammonium ion,
tively. Whether an animal excretes predominantly
nia, urea or uric acid depends upon a number of factors
 animal’s environment. But one major problem that all
ls face is the relatively toxicity of ammonia when it is
ntrated in body tissues.
atic animals are generally more tolerant of elevated

nerve conduction by direct
exchange mechanisms (B
Furthermore, ammonia has b
and fat metabolism and ATP
in other tissues as well (Wiec
toxic effects is most detrimen
they can result in convulsio
Therefore, nitrogen excretor
avoid the toxic accumulation

Aquatic versus

Aquatic animals, includin

als excrete a variety of nitrogen waste products, but
nia, urea and uric acid predominate. A major factor
termining the mode of nitrogen excretion is the
bility of water in the environment. Generally, aquatic
ls excrete mostly ammonia, whereas terrestrial
ls excrete either urea or uric acid. Ammonia, urea
ric acid are transported across cell membranes by
ent mechanisms corresponding to their different

invertebrates and verteb
organic compounds as int
marine invertebrates, NH
compartments to increase b

Key words: ammonia, urea, 
membrane transport, acid–base 
nitrogen.

Who excretes what?
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Hydrolysis

Amino acids

Retention

Glutamine

Cellular proteins
are nitrogen end products formed?
mostly formed from the catabolism of proteins
ngested and cellular proteins are hydrolysed to
 amino acids that can be used to form new
rowth and basic protein turnover. Unlike
nd lipids, amino acids cannot be stored to any
animal tissues (although they are retained as

HCO3−

Retention

Excreted

itrogen excretory products are highlighted in boxes.
ence of water availability on nitrogenous excretion is
amphibians during development. As tadpoles, Rana
ana live in water and excrete about 80 % of their
 wastes as ammonia. But during metamorphosis,
 involved in urea synthesis are induced and a gradual
ation occurs from ammonia to urea excretion (Brown

59; Atkinson, 1994).

How 
Ammonia is 

(Fig. 1). Both i
form a pool of
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carbohydrates a
great extent in 

Excreted

Urea Uric acid

Ammonia

Excreted

tention

eneral overview of nitrogen metabolism and excretion in animals. The three main n
Unusual patterns of nitrogen excretion

 availability is clearly an important factor in the mode
en excretion; however, it is not the whole story. For

, some terrestrial snails (Speeg and Campbell, 1968),
reenaway and Nakamura, 1991; De Vries and Wolcott,
d isopods (Wieser and Schweizer, 1969; Wright and

ell, 1993) excrete a significant portion of their nitrogen
y ammonia volatilization. In contrast, a completely
eleost fish, Oreochromis alcalicus grahami, living in
agadi (pH 10), excretes no ammonia, only urea
 et al. 1989; Wood et al. 1989). Elasmobranch fish that
ea as an osmolyte (see below), such as the marine
Squalus acanthias), also excrete most of their nitrogen
s urea (urea 98 %, ammonia 2 %; C. M. Wood, P. Part
. Wright, in preparation).

osmolytes in some marine animals, see below). The excess
amino acids, not used in protein production, are catabolised to
ammonia, which is either excreted or converted to urea or uric
acid in the liver. In animals that are very sensitive to ammonia,
such as mammals, ammonia is transported in the blood as
glutamine, before it is converted to urea for excretion. In
addition to amino acid catabolism, nitrogenous end products
may also result from purine, methylamine and creatine
metabolism.

Ammonia metabolism

As stated above, the major route for ammonia formation is
through amino acid catabolism, usually in the liver. Most L-
amino acids are first transaminated to form glutamate,
catalysed by a group of transaminase enzymes. Glutamate is
then deaminated to form NH4+ and a-ketoglutarate, catalysed
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Table 1. Enzymes concerned with nitrogen metabolism for which a cDNA clone is available

y Animal group Enzyme Reference

ine–urea cycle Mammals Carbamoyl phosphate synthetase I Adcock and O’Brien (1984)
Ornithine transcarbamylase Takiguchi et al. (1984)
Argininosuccinate synthetase Freytag et al. (1984)
Argininosuccinate lyase O’Brien et al. (1986)
Arginase Ohtake et al. (1988)

Amphibians Carbamoyl phosphate synthetase I Helbing et al. (1992)
Ornithine transcarbamylase Helbing et al. (1992)
Arginase Xu et al. (1993)

Elasmobranchs Carbamoyl phosphate synthetase III Hong et al. (1994)
ysis Mammals Uricase Wu et al. (1989)
nia synthesis Mammals Glutamate dehydrogenase Amuro et al. (1989)

Das et al. (1987)
Phosphate-dependent glutaminase Shapiro et al. (1991)
AMP deaminase Debatisse et al. (1988)

id synthesis Mammals Glutamine synthetase deGroot et al. (1987)
 of uric
1991).

ammals
teleosts
ntioned
mounts
t limit
psanus
 Ratha,

he full
s, some
d (e.g.
, 1991;
sent in
ime of
. 1995).
ing the
rsists in
mental

 to why
tamate dehydrogenase (GDH). Transdeamination is the
given to this two-step process. Ammonia can also be
ed from urea by the action of urease, present in some
sc (Speeg and Campbell, 1969) and coral (Barnes and
land, 1976) tissues and contained in microorganisms in
er tissue of two shark species (Knight et al. 1988), but

importantly in the digestive tract of most animals.
 best illustration of digestive microbial activity is in
ants; urea produced in the liver is recycled through the
, where it is degraded to ammonia by microbial urease
ch, 1975). The ammonia produced supports microbial
n synthesis, an especially important process for animals
-protein diets (Kay et al. 1980).

Uric acid metabolism

c acid is formed from the metabolism of adenine- and
e-based purines. In animals that lack the uric acid
ation enzyme uricase, birds, reptiles (except chelonians
esic, semi-aquatic and aquatic habitats; Campbell et al.

, some amphibians (e.g. Phyllomedusa sauvegei,

1990). Urea may also be formed from the degradation
acid or arginine (for a review, see Campbell, 
Elasmobranchs, the coelacanth, amphibians and m
utilize the OUC, whereas most invertebrates and 
synthesize urea by uricolysis or argininolysis. As me
above, a few teleostean species synthesize significant a
of urea in response to environmental conditions tha
ammonia excretion (O. a. grahami, Randall et al. 1989; O
beta, Walsh et al. 1990; Heteropneustes fossilis, Saha and
1989). These species are unique in expressing t
complement of OUC enzymes, but in other adult teleost
of the genes for OUC enzymes appear to be represse
Wright, 1993; for reviews, see Campbell and Anderson
Mommsen and Walsh, 1991). Key OUC enzymes are ab
adult rainbow trout, but are expressed around the t
hatching in larval trout (Dépêche et al. 1979; Wright et al
Hence, OUC genes may be retained and expressed dur
early life stages in all teleosts, but a functional OUC pe
mature fish only in cases where unusual environ
conditions predicate ureotelism. The question remains as

Birds Glutamine synthetase Campbell and Smith (1992)
mantis xerampelina; Dantzler, 1989) and most insects
ran, 1985), uric acid constitutes the major nitrogenous
roduct. Uricase is also not expressed in hominoid

tes (Varela-Echavarria et al. 1988) and uric acid has
d to be a powerful radical scavenger and antioxidant in
human tissues (Becker, 1993). However, elevated blood
cid levels can lead to the painful condition termed gouty
is.
 final enzyme in the uric acid formation pathway,
ne dehydrogenase, is missing in arachnids and,
quently, guanine is the major excretory product in these
ls (Anderson, 1965).

Urea metabolism

a is synthesized from NH4+ and HCO32 in the liver via
nithine–urea cycle (OUC; for a review, see Meijer et al.

larval trout express OUC enzymes; possibly the OUC is used as
a ‘safeguard’ mechanism to prevent ammonia toxicity during a
particularly sensitive stage of neural development.

How is synthesis regulated?
Regulation of enzyme synthesis

Metabolic control can be separated into the regulation of de
novo protein synthesis and the regulation of ‘pre-existing’
enzymes. Table 1 is a partial list of enzymes related to nitrogen
metabolism for which a cDNA clone is available. Most of the
cloning studies have concentrated on mammalian species.
Recently, genes for OUC enzymes have been cloned in
amphibians (Helbing et al. 1992: Xu et al. 1993) and
elasmobranchs (Hong et al. 1994). A single glutamine
synthetase gene has also been identified in elasmobranch liver
that codes for two isoenzymes expressed in different dogfish
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 acanthias) tissues (Campbell and Anderson, 1991).
on, Campbell and Smith (1992) have cloned the gene
mine synthetase in the chicken. As the same or similar
e cloned in various animals, evolutionary relationships
etermined. For instance, glutamine synthetase has been
n various plant and animal species and has proved to
d molecular clock, i.e. the rate of gene evolution is
etween phylogenetically diverse species (Pesole et al.

Regulation of ‘pre-existing’ enzyme

cation of pre-existing enzymes, may involve 
teric regulation, (2) covalent modification, (3) changes
rate of enzyme turnover or degradation and/or 
lation of the assembly states of proteins or enzyme
es. The first three regulatory mechanisms are
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Fig. 2. Transport mechanisms for ammonia, uric acid and urea.
Dashed lines indicate non-specific permeation pathways through the
lipid bilayer, whereas solid lines refer to transport through specialized
protein carriers or channels. Ammonia can substitute for K+ or Na+

in the Na+/K+-ATPase pump, in Na+/2Cl2/K+ cotransport, in Na+/H+

exchanger (1) or in the K+ channel (2). Urate may be transported by
either a urate uniporter (3) or a urate/anion exchanger (4). There may
be several types of urea transporters (5), some requiring the presence
of ions, some of which may be active and some of which are
vasopressin-sensitive, but in many tissues the evidence supports a
facilitated transporter that is sensitive to inhibition by phloretin and

Anion
d in any biochemistry textbook, so I will only 
ulation of enzyme complexes, a relativel

ent. It has been proposed that the major func
complexes is to provide a means of direct tran
s or modulators from one enzyme to anoth
 see Srere, 1987; Somero and Hand, 
ling of substrates from enzyme to enzyme in th
 demonstrated in mammals (Wanders et al

1985; Cheung et al. 1989). Watford (1989) de
 as a ‘metabolon’, spanning both the mitoch
osolic compartments. To my knowledge,
ing has not been investigated in animals oth
ls. The enzyme responsible for the first step
, carbamoyl phosphate synthetase, an
ndrial/cytosolic distribution of OUC enzymes a
 in fish and mammals (Mommsen and Walsh, 

Transport of nitrogen end products
Ammonia

onia exists in solution as both NH3 and NH4

4+ ratio varies with pH, the pK of the reaction

5. NH3 is a small molecule (molecular mass 17), is
ely lipid-soluble and penetrates cell membranes
y lipid-phase permeation (Fig. 2). Although most cell

nes are highly permeable to NH3, recent studies
that gastric gland cells (Waisbren et al. 1994), the
ck ascending limb tubule cells (Garvin et al. 1988;
t al. 1989; Flessner and Knepper, 1993) and Xenopus
lasma membranes (Burckhardt and Frömter, 1992) are
y impermeable to NH3. NH3 levels are higher in more

compartments (e.g. extracellular fluid), but total
a levels are higher in more acidic compartments (e.g.
ular fluid), because NH3 diffuses across the cell
ne, picks up H+ and is ‘trapped’ as NH4+ (Wright et
a,b). Thus, in the kidney (Knepper et al. 1989) and
right et al. 1989), an acidic disequilibrium pH in the
men or in the water next to the gill surface facilitates
retion.

NH4+ transport across cell membranes is dependent on both
the concentration and the electrical potential gradient. Owing
to its charge, NH4+ cannot easily penetrate the lipid bilayer and
requires specialized transport pathways (Fig. 2). NH4+ has the
same hydrated ionic radius as K+ and can substitute for K+ in
the Na+/K+-ATPase transporter (Towle and Holleland, 1987)
and the Na+/2Cl2/K+ cotransporter (Good et al. 1984). NH4+

also has a limited ability to penetrate K+ channels (for a review,
see Knepper et al. 1989). In many epithelial tissues, NH4+ also
interacts with the H+/Na+ exchanger, substituting for Na+

(Kinsella and Aronson, 1981).

Uric acid

Uric acid has a pK1 of 5.4 and, consequently, it is present

urea analogs.
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urate salt of K+, Na+ or NH4+ under most physiological
ion. In insect Malpighian tubules (O’Donnell et al. 1983)
rtebrate renal tubules (Dantzler, 1989; Abramson and
itz, 1990), uric acid is actively secreted; however, there
 to be differences in the mechanism of transport between
l groups. Evidence for both a urate/anion exchanger
rter) and a urate uniporter exists (Fig. 2).

Urea

a crosses cell membranes by two fundamental ways,
h specialized membrane transporters or through non-
c aqueous pores (for a review, see Marsh and Knepper,
 Urea permeability varies widely; for example, in the
alian kidney, values range from 0.431025 cm s21 in the
l collecting duct to 6931025 cm s21 in the terminal

n of the inner medullary collecting duct (Knepper and
 1995). Although specific urea transporters are thought
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 hibernation is to
excess HCO32

excretion during
 rates have been
each each study.

l. 1961; King and
present in many animal tissues (Schmidt-Nielsen and
owitz, 1964; Kaplan et al. 1974; Katz et al. 1981; Walsh
994), very little is known about the molecular nature of

transport systems. On the basis of their physiological
teristics, however, it appears that several types of urea-
orting proteins may be present in animal tissues.
tly, the complementary DNA for a urea transporter from
renal medulla has been isolated and characterized (You
993). Using this cDNA as a probe, researchers can now
 for similar transporters in other tissues and species.

Regulation of acid–base balance
Ammonia

re has been a large amount of research on the role of
nia in acid–base regulation. Anaerobic metabolism
 exhaustive exercise results in muscle acidification and
ormation from adenylate metabolism. Ammonia formed
rcising muscle is mostly retained during the recovery
 and is believed to play a role in intracellular buffering
y and Terjung, 1985; Mommsen and Hochachka, 1988).

monia synthesis and excretion in the kidney play an

equivalents. However, uric acid excretion is no
the systemic acid–base state in locusts (Harris
1994). Alkalosis is accompanied by an in
excretion in snakes (Dantzler, 1968), but whet
is present in other uricotelic organisms is unk

Urea

It has been proposed that hepatic urea s
central role in regulating chronic acid–ba
(Atkinson, 1992). Clearly, urea production 
acid–base perturbations (Haussinger and
Atkinson, 1992), but there is no direct ev
synthesis plays a primary role in regulating
mammals and fish (Halperin et al. 1986; Ba
1993). It has been suggested, however, tha
significance of urea recycling in bears during
regulate acid–base status by eliminating 

Fig. 3. Percentage increase in renal ammonia 
acidosis in various vertebrate groups. Excretion
normalized so that control rates are 100 % in 
(Modified from Wolbach, 1955; Yoshimura et a
Goldstein, 1983a,b; Knepper et al. 1989.)
tant role in regulating chronic acidosis. Although most
 research has been done in mammals, there is evidence
similar response in other animal groups (Fig. 3). The
se in renal ammonia excretion results in an increase in
id excretion (ammonia excretion + titratable acid

ion 2 bicarbonate excretion), returning systemic blood
ards normal values. Glutamine metabolism to NH4+ and

2 is increased during chronic metabolic acidosis (Wright
1992; for a review, see Tannen, 1992). The HCO32

ed is retained by the kidney and returned to the systemic
tion, while NH4+ is excreted in the urine (for a review,
epper et al. 1989).

Uric acid

 data are sketchy on uric acid excretion and acid–base
tion. It might be predicted that acidosis would result in
rease in uric acid excretion, thereby retaining base

(Guppy, 1986). The acid–base status of hibernating bears has
not been measured, primarily because of the practical
difficulties of working with such large carnivores. Bears do not
urinate or defecate during hibernation, but if HCO32 is
released as CO2 through the lungs (Nelson et al. 1975), then
no advantage would be gained by incorporating HCO32 into
urea. Radiotracer studies of urea metabolism along with blood
acid–base measurements in hibernating bears are necessary
before this interesting question can be resolved.

Osmoregulation and nitrogen metabolism
Many marine invertebrate species (Simpson et al. 1959),

hagfish (Robertson, 1976) and elasmobranchs (for a review,
see Goldstein and Perlman, 1995) accumulate amino acids in
intracellular compartments to counterbalance the osmotic
pressure of sea water. The most commonly occurring amino
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olytes in these organisms are glycine, alanine, proline,
e and taurine (for a review, see Yancey et al. 1982).
 of amino acids for osmoregulation is not limited to
pecies. Heilig et al. (1989) have demonstrated that, in
ed rats, amino acids accumulate along with
mines and polyols in brain tissue.
r Smith (1936) first discovered that marine
ranchs retain relatively high levels of urea and
lamine oxide (TMAO) as a strategy for
ulation. Subsequent studies on the coelacanth revealed
r scenario (Griffith et al. 1974). Urea is known to
ze macromolecules, but a 2:1 ratio of urea:TMAO
cts these effects and stabilizes proteins (Yancey et al.
Several amphibian species (for a review, see
ahan et al. 1994) and estivating lungfish (Smith, 1930)
ate urea when dehydrated. During dormancy, high
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 the potentially harmful effects of elevated interstitial
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, 1991).
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