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ABSTRACT

Organisms use changes in photoperiod to anticipate and exploit
favourable conditions in a seasonal environment. While species living
at temperate latitudes receive day length information as a year-round
input, species living in the Arctic may spend as much as two-thirds of the
year without experiencing dawn or dusk. This suggests that specialised
mechanisms may be required to maintain seasonal synchrony in polar
regions. Svalbard ptarmigan (Lagopus muta hyperborea) are resident at
74-81°N latitude. They spend winter in constant darkness (DD) and
summer in constant light (LL); extreme photoperiodic conditions under
which they do not display overt circadian rhythms. Here, we explored
how Arctic adaptation in circadian biology affects photoperiodic time
measurement in captive Svalbard ptarmigan. For this purpose, DD-
adapted birds, showing no circadian behaviour, either remained in
prolonged DD, were transferred into a simulated natural photoperiod
(SNP) or were transferred directly into LL. Birds transferred from DD to
LL exhibited a strong photoperiodic response in terms of activation of the
hypothalamic thyrotropin-mediated photoperiodic response pathway.
This was assayed through expression of the Eya3, Tshs and deiodinase
genes, as well as gonadal development. While transfer to SNP
established synchronous diurnal activity patterns, activity in birds
transferred from DD to LL showed no evidence of circadian
rhythmicity. These data show that the Svalbard ptarmigan does not
require circadian entrainment to develop a photoperiodic response
involving conserved molecular elements found in temperate species.
Further studies are required to define how exactly Arctic adaptation
modifies seasonal timer mechanisms.

KEY WORDS: Photoperiodism, Circadian, Seasonal reproduction,
Pars tuberalis, Eyes absent, Deiodinase, Svalbard ptarmigan

INTRODUCTION

Animals in temperate and high latitudes use changes in photoperiod
(day length) to anticipate upcoming seasons and adjust physiology
and behaviour accordingly. The involvement of circadian clocks in
this photoperiodic time measurement was first suggested by Erwin
Biinning, who proposed a so-called ‘external coincidence’
mechanism. According to the Biinning hypothesis (Biinning,
1936), organisms express an innate circadian rhythm of photo-
inducibility and light exposure coinciding with the photo-inducible
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phase of this thythm triggers a photoperiodic response. In order to test
the Biinning hypothesis, experimental approaches based on artificial
light exposures, such as night break experiments, have been
employed (Biinning, 1936; Elliott et al., 1972; Follett and Sharp,
1969; Follett et al., 1992; Gwinner and Eriksson, 1977; Hammer and
Enright, 1967; Pittendrigh, 1972). Night break experiments trigger a
long day response by combining a short photoperiod with a nocturnal
light pulse that occurs in the photo-inducible phase. Positive results of
these experiments across diverse taxonomic groups favour a
circadian-based photoperiodic readout mechanism.

In birds and mammals, photoperiodic effects on reproduction depend
on changes in hypothalamic gonadotrophin releasing hormone (GnRH)
secretion at the median eminence, and recent evidence points to a
coincidence timer mechanism in the adjacent pars tuberalis (PT) as the
key upstream control mechanism (Dardente et al., 2010; Hazlerigg
and Loudon, 2008; Lincoln et al., 2002; Masumoto et al., 2010; Nakao
etal., 2008; Yasuo et al., 2003; Yoshimura et al., 2003). Within the PT,
long photoperiods (LPs) stimulate the expression of the thyroid
stimulating hormone (TSH) B subunit gene (7s45) (Nakao et al., 2008).
LP-induced expression of TSH leads to increased Dio2 expression in
the mediobasal hypothalamus (MBH), through a cAMP-dependent
pathway in neighbouring ependymal cells known as tanycytes
(Bolborea et al., 2015; Hanon et al., 2008; Nakao et al., 2008; Ono
et al., 2008). DIO2 locally converts thyroxine (T4) to the bioactive
triiodothyronine (T3) by outer ring deiodination, thus increasing
hypothalamic T concentration under LPs. In long day breeding birds
and mammals, this in turn increases the release of GnRH in the median
eminence, ultimately leading to gonadal activation (Yamamura et al.,
2004, 2006; Yoshimura et al, 2003). Conversely, under short
photoperiod, low levels of TSH in the PT coincide with increased
type III iodothyronine deiodinase (Dio3) expression in tanycytes,
keeping the hypothalamic T concentration low and promoting gonadal
inactivation (Yasuo et al., 2005). The reciprocal regulation of Dio2/Dio3
expression and the resulting bioactive T3 concentration in the MBH is at
the core of photoperiodic control of seasonal reproduction and has
become a central paradigm in photoperiodic time measurement.

Several lines of evidence suggest that this PT-mediated readout
system is circadian based. First, in both birds and mammals so-
called ‘clock genes’ show characteristic rhythmical expression in
the PT/MBH region, consistent with a possible coincidence timer
mechanism (Johnston et al., 2005; Lincoln et al., 2002; Tournier
et al., 2007; Yasuo et al., 2003, 2004). Secondly, in the Japanese
quail (Coturnix japonica) photoperiodic induction of Dio2 and
downstream physiological responses can be triggered by night break
experiments (Yoshimura et al., 2003), implying control through a
coincidence timer mechanism. Further evidence for the circadian
basis on the hypothalamic long day response derives from research
on eyes absent 3 (EYA3). In mammals, EY A3 has been proposed to
act as a transcriptional co-activator at the Tshf gene promoter and
analysis of the ovine Eya3 promoter demonstrated that its expression
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is controlled by circadian clock genes (Dardente et al., 2010;
Masumoto et al., 2010).

Circadian-based models for photoperiodic time measurement
place an emphasis on robust circadian cycles of clock gene
expression. This raises the question of what happens in species
living at Arctic latitudes. Light—dark cycles are absent for extended
periods of the year and under such circumstances daily rhythmicity in
behaviour and endocrinology breaks down completely (Reierth and
Stokkan, 1998; Reierth et al., 1999; Stokkan et al., 1994; van Oort
et al., 2005, 2007). Loss of behavioural and endocrine circadian
rhythmicity does not necessarily imply loss of circadian-based
photoperiodic response circuits, especially in birds where circadian
organisation involves multiple circadian oscillators (Cassone, 2014).
Moreover, in temperate bird species, lesioning studies resolve
behavioural organisation from photoperiodic sensitivity (Binkley
et al., 1972; Menaker and Keatts, 1968; Menaker et al., 1970; Rani
et al., 2007; Siopes and Wilson, 1974; Wilson, 1991). Nevertheless,
adaptation to the Arctic might have had a substantial impact on the
entire circadian system, which could also affect circadian-based
photoperiodic induction. Fibroblast cultures from reindeer show
arrthythmic clock gene expression (Lu et al., 2010) and in silico
analysis on clock genes revealed mutations that might impact
circadian rhythm generation (Lin et al., 2019). If Arctic animals
cannot sustain circadian rhythmicity in the polar day and polar night,
this might limit photoperiodic responses through coincidence timing
to those phases of the year with a robust light—dark cycle.

To investigate this, we have performed photoperiod manipulations
in captive Svalbard ptarmigan (Lagopus muta hyperborea Sundevall
1845), the northernmost resident herbivorous bird species (Fig. 1).
Svalbard ptarmigan are highly seasonal in their breeding physiology
(Steen and Unander, 1985; Stokkan et al., 1988, 1986) and become
behaviourally arrhythmic around the solstices (i.e. during the polar
night and the polar day) (Reierth and Stokkan, 1998). Similar
dampening of melatonin rhythmicity has also been observed (Reierth
et al., 1999).

In order to test if a light—dark cycle is necessary to induce a long
day response in Svalbard ptarmigan, we transferred birds, acclimated
to constant darkness (DD), either into a gradually increasing
photoperiod or directly into constant light (LL). The former group
therefore received a rhythmic light—dark cycle while the latter did not.
The control group remained in DD. We measured gonadal mass and
behavioural activity as well as Eya3, Tshf, Dio2 and Dio3 expression
in the PT/MBH region.

MATERIALS AND METHODS

Experimental animals and housing

All animals were kept in accordance of the EU directive 201/63/EU
under a licence provided by the Norwegian Food Safety authority
(Mattilsynet, FOTS 7971). Chicks were hatched from eggs laid
by captive adult Svalbard ptarmigan at the University of Tromse

(69°39'N, 18°57'E). Hatching took place between 24 June and 1
August 2017. The chicks were raised either indoors with a
photoperiod corresponding to the onset and offset of natural civil
twilight in Tromse or outside on the ground. Upon reaching a body
mass of 400-500 g, 29 birds (Table S1) were transferred into
individual cages (1.5 mx0.5 m) in light- and temperature-controlled
rooms. All birds were transferred at the end of September 2017.
Food (standardised protein food; Norgesfor, OK 2400 070316) and
water were provided ad libitum throughout the study. Female and
male birds were housed together.

Controlled lighting was provided by fluorescent strip lights
(Osram, L 58 W 830 Lumilux) delivering approximately 1000 Ix at
floor level. All rooms were further equipped with permanent red
illumination (Philips, BR125 IR 250 W). During the initial
acclimation phase, the photoperiod was gradually decreased until
reaching DD (red light excepted) on 22 December 2017. Birds in
DD were held under red light to allow for husbandry. The birds
remained in DD for 5 weeks prior to experimental light treatments.

Experimental light treatment and sampling

After 5 weeks of DD, 5 individuals were sampled as an initial
control group. This marked the start of the experiment (point 0).
Thereafter, the three experimental groups were transferred to their
respective light treatments (Fig. 2 and Table S1). Six birds remained
in DD until the end of the experiment, 9 birds were directly
transferred into LL and 9 birds were exposed to a simulated natural
photoperiod (SNP). The SNP treatment reflected an increase in day
length following the progression of civil twilight onset and offset of
Longyearbyen, Svalbard (78°13'N 15°38E; Table S2).

Four individuals were sampled after 38 h in LL. This sampling
time was chosen to coincide with acute photoperiodic gene
induction as previously reported in the quail MBH and PT
(Nakao et al., 2008). Subsequent samplings aimed to investigate
chronic changes in gene expression, and were undertaken at single
time points on the following days: After 5 weeks, 4 individuals were
sampled from the SNP group as they reached LD 12:12. This
sampling was performed 3.5-4.5 h after lights on. After 10 weeks of
light treatment, all remaining birds from all groups were sampled.
The SNP group had reached LL through a gradual increase in
photoperiod 4 days before the final sampling. All groups were
euthanised between 09:00 h and 15:00 h local time. The DD group
was euthanised on the day after the LL and SNP group. Sampling of
birds in DD was performed under dim red light only. Brains were
removed after euthanasia and rapidly transferred onto a cooled metal
block until stored at —80°C. Testes and ovaries were removed and
measured post mortem.

Activity
Locomotor activity of all experimental birds was continuously
recorded as movement per minute by passive infrared sensors,

Fig. 1. Svalbard ptarmigan (Lagopus muta hyperborea)
and where to find them. (A) A male in white winter plumage
and a female in brown summer plumage (photo credit: Ida-
Helene Sivertsen). (B) The Svalbard ptarmigan is a sub-
species of the rock ptarmigan (Lagopus muta) and inhabits the
High Arctic archipelago of Svalbard (74—81°N latitude).
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Fig. 2. Experimental design. Constant darkness-adapted (DD) birds were
either transferred into constant light (LL), simulated natural photoperiod (SNP)
or retained under DD. Red arrowheads indicate sampling points.

mounted on the cage doors. Data were collected by an Actimetrics
CL200 USB interface coupled to ClockLab data acquisition software
(version 2.61).

cDNA cloning and in situ hybridisation

Probe synthesis and in sifu hybridisation were performed as described
in Lomet et al. (2018). RNA was extracted from Svalbard ptarmigan
brain tissue using TriReagent (Sigma) and converted into cDNA
using Omniscript RT kit (Qiagen). The Icelandic rock ptarmigan
genome (Kozma et al., 2016) was used to design PCR primers to
amplify cDNA fragments for 7shf, Eya3, Dio2 and Dio3. PCR was
performed with Tag DNA polymerase (Qiagen). PCR products of
correct sizes were extracted and cloned into pGEMT easy vectors
(Promega). The inserts (Table S3) were sequenced (Eurofins
Sequencing services, Germany) and verified against the reference
genome.

Cloned vectors were stored at —20°C until further use. Prior to
hybridisation, vectors were linearised and transcribed using a
Promega transcription kit in combination with a 3°S-UTP isotope
(PerkinElmer) to obtain radioactively labelled complementary
riboprobes. The riboprobes were purified with illustra MicroSpin
G-50 columns (GE healthcare) and incorporation of 33S-UTP was
measured by a liquid scintillation counter (Triathler multilabel
tester, Hidex).

Frozen brains were cryosectioned at 20 pm and sections containing
PT and MBH were mounted to pre-coated adhesion slides (SuperFrost
Plus, VWR). Brain sections were fixed in 4% paraformaldehyde
(0.1 mol 1! phosphate buffer) for 20 min at 4°C and rinsed twice with
0.1 mol I~! phosphate buffer for 5 min. Fixed sections were acetylated
with 3.75% v/v of acetic anhydride in 0.1 mol1=! triethanolamine
buffer (0.05 mol ™' NaOH) and rinsed twice with 0.1 moll™
phosphate buffer for 5 min. Sections were subsequently dehydrated
with stepwise increasing ethanol solutions (50%, 70%, 96%, 100% for
3 min each) and dried under vacuum for at least 1 h.

Dried sections were hybridised with 10° cpm of riboprobe per slide
in hybridisation buffer (50% deionised formamide, 10% dextran
sulfate, 1x Denhardt’s solution, 300 mmol 1! NaCl, 10 mmol 1!
Tris-HCI, 10 mmol 17! DTT, 1 mmol 1=} EDTA, 500 pg mI~! tRNA).
Hybridisation was performed at 56°C overnight. Hybridised sections
were washed with 4x saline sodium citrate (SSC) solutions (3%5 min)

and treated with RNase-A solution (500 mmol 17! NaCl, 1 mmol 17!
Tris-HCI, 1 mmol I=! EDTA, 20 ug ml™!) for 30 min at 37°C.
Subsequent stringency washes were performed in SSC (supplemented
with 1 mmol I=' DTT) of decreasing concentration: 2x SSC
(2x5 min), 1x SSC (1x10 min), 0.5x SSC (1x10 min), 0.1x SSC
(30 min at 60°C), 0.1x SSC (rinse).

Slides were dehydrated afterwards in stepwise increasing ethanol
solutions (50%, 70%, 96%, 100% for 3 min each) and dried under
vacuum. Dried sections were exposed to autoradiographic films
(Carestream Kodak BioMax MR film) for 9 to 12 days. Exposed
films were developed, fixed and digitalised with an Epson
transmission scanner. Optical density (OD) was measured with
Imagel (version 1.51k).

Analysis

Actograms were produced with the ActogramlJ plugin for Imagel]
(Schmid et al., 2011) and period length of activity was measured by
chi-squared periodograms produced by the same program. Graphs of
gene expressions in the PT/MBH region and gonadal mass were
prepared in GraphPad Prism 8 (version 8.0.2). The results were
plotted as each replicate with lines going through the respective mean
of each group at each sampling point. Statistical comparisons were
made by one-way ANOVA and Tukey’s post hoc tests, performed on
log transformed values to ensure homogeneity of variances; the
threshold for significance was P<0.05. Individual values for gene
expression with the corresponding gender can be found in Table S1.

RESULTS

Activity rhythms

Prior to the experimental treatment, all birds in DD exhibited short
episodic bouts of activity with no clear periodicity (Fig. 3, Figs S1
and S2), and for birds continuing on DD the same pattern was
maintained. In birds transferred to LL, episodic activity continued,
sometimes with ultradian periodicity. Period lengths were typically
in the range 3-20 h, and highly variable between individuals. Birds
transferred to SNP, based on Svalbard civil twilight progression,
showed robust daily rhythms with a period of 24 h (P<0.05).

Gonads

Testes and ovaries were initially regressed in all groups (Fig. 4A,B)
and subsequent development depended on photoperiodic treatment
(P<0.0001 by one-way ANOVA in both cases). Exposure to LL
strongly stimulated gonadal maturation for both testes and ovaries,
so that after 10 weeks masses increased 22-fold and 93-fold,
respectively (P<0.0001 by Tukey’s post hoc test in both cases).
Gonadal maturation in birds maintained in DD and in female birds
under SNP, was negligible (DD, 1.4-fold; SNP, 1.1-fold compared
with initial values) while male birds transferred to SNP showed a
more modest (3.2-fold) but nonetheless statistically significant
increased testicular mass by the end of the study (P<0.001 by
Tukey’s post hoc test).

Eya3 and Tshp expression

The expression of Tshf and Eya3 over the course of the study was
dependent on photoperiod (P<0.0001 by one- way ANOVA in both
cases) (Figs 4C,D and 5). Expression of both genes was below the
detection threshold at week 0, and rose dramatically 38 h after the
transfer to LL (P<0.001 in both cases by Tukey’s post hoc test).
Thereafter expression of both genes was maintained at high levels
until the end of the study (week 10). In birds exposed to SNP, levels
of both genes remained undetectable 5 weeks after the transfer,
when the photoperiod had increased to 12 h of light. Subsequently,
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Fig. 3. Representative actograms and their respective chi-squared periodograms. (A—C) Birds adapted to constant darkness (DD) were transferred to their
respective light treatments on day 10 of the recording (red line) or retained in DD. Actograms (top) are double plotted and grey shadings indicate periods of
darkness. Chi-squared periodograms (bottom) were produced for 20 days for the DD group (A) or 10 days before and within experimental photoperiod for the LL
and SNP group [B,C; upper periodogram: 10 days before light treatment (DD), lower periodogram: 10 days in light treatment]. Qp values above the red line in the
periodograms indicate significant periods (P<0.05). IDs of representative birds are given in the respective actograms and periodograms.

after the photoperiod had progressively increased to LL, expression
of'both genes increased dramatically to values similar to those in the
LL treatment group (P<0.001 compared with initial values by post
hoc Tukey’s test). In birds maintained on DD, expression levels of
both genes remained at basal levels throughout the experiment.

Dio2 and Dio3 expression
Dio2 and Dio3 in the ependymal region of the MBH showed
reciprocal changes in expression over the course of the study

(P<0.0001 by one-way ANOVA) (Figs 4E,F and 5). Initial Dio2
expression was relatively weak, while Dio3 expression was
relatively strong (week 0). Transfer to LL increased Dio2
expression 2.5-fold within 38 h (week 0 vs 38 h LL; P<0.05 by
post hoc Tukey’s test), while over the same period, Dio3 expression
was suppressed to background levels (45-fold decrease; P<0.01 by
Tukey’s post hoc test). Under continued LL exposure, elevated Dio2
levels and suppressed Dio3 levels were maintained to the end of the
experiment.
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Fig. 4. Gonadal development and gene expression in the MBH measured by in situ hybridisation. (A,B) Gonad mass was measured post mortem.
(C—F) Hypothalamic gene expression was measured before (point 0) and 10 weeks after the transfer into the respective light regime. Additionally, gene
expression was measured after 38 h in LL and 5 weeks after the transfer into the simulated natural photoperiod (LD 12:12). The gene expression is given in optical
density (OD) and each replicate is plotted with dotted lines passing through the respective mean.

Expression levels of Dio2 and Dio3 from birds under SNP gradually
increased and decreased, respectively, over the course of the study. In
both cases, expression levels after 5 weeks under SNP did not differ
from initial values, while levels at week 10 were increased 2.3-fold for
Dio?2 and decreased 60-fold for Dio3 (P<0.05 and 0.01, respectively, by
post hoc Tukey’s test). Under constant darkness, no significant changes
in either Dio2 or Dio3 expression were observed (Figs 4E,F, 5).

DISCUSSION
In our experiment, we transferred DD-acclimated Svalbard
ptarmigan either into a simulated natural photoperiod or directly

into LL. Both photoperiodic treatments caused increased Eya3 and
Tshp expression and changes in the expression of downstream
deiodinases, but birds transferred from DD to LL displayed no
circadian behaviour. This absence of circadian rhythmicity, in
combination with the lack of an external light-dark cycle, might
question the circadian basis of the long day response in Svalbard
ptarmigan.

According to theory, a circadian-based rhythm of photo-
inducibility triggers a photoperiodic response if light exposure
occurs during the photoinducible phase (Biinning, 1936). Modern
formulations of Biinning’s model focus on events in the PT and
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Fig. 5. Representative in situ hybridisation radiographs for each gene and
each sampling point. Top picture is a whole-brain radiograph for Dio2
highlighting the region of interest [pars tuberalis (PT) and mediobasal
hypothalamus (MBH)]. Radiographs for the respective sampling points show
the PT/MBH region (bottom).

MBH, where night-break protocols induce a long day response in
local Tshp expression and downstream effects on hypothalamic
deiodinase genes (Dardente et al., 2010; Masumoto et al., 2010;

A Sustained
rhythm

B Damped
rhythm

C Hourglass
mechanism

D Expression
level in the
MBH

Yoshimura et al., 2003). In sheep, promoter analysis of Eya3, a
co-activator for Tshf3, demonstrates transcriptional control through
clock genes, further emphasising the circadian basis for
photoperiodic time measurement (Dardente et al., 2010).

In contrast, previous studies on Arctic animals report the absence
of circadian rhythmicity and suggest this as a possible adaptation to
polar latitudes, allowing around the clock foraging in constant
Arctic light conditions (Lin et al., 2019; Lu et al., 2010; Reierth and
Stokkan, 1998; Reierth et al., 1999; van Oort et al., 2005, 2007).
Our study confirms the absence of circadian activity rthythms in DD
and LL. In a separate experiment, we further found no evidence of
circadian body temperature rhythms in DD and LL (D.A., A. Nord,
D.G.H. and G.C.W., unpublished results).

This absence of behavioural and physiological rthythmicity does
not exclude the possibility of latent circadian rhythmicity persisting
in a coincidence timer mechanism. In non-Arctic bird species, LL
can disrupt circadian activity rhythms but still triggers a
photoperiodic response in reproduction (Agarwal et al., 2017,
Lumineau and Guyomarc’h, 2003; Simpson and Follett, 1982;
Wever, 1980). Moreover, Japanese quail show sustained
hypothalamic expression of clock genes in LL, despite
behavioural arrhythmicity (Lumineau and Guyomarc’h, 2003;
Simpson and Follett, 1982; Yasuo et al, 2003). It therefore
remains possible that a sustained rhythm of photo-inducibility may
also persist within the PT/MBH region of Arctic Svalbard
ptarmigan in constant photic conditions. Consequently, the DD-
to-LL treatment triggers a long day response as light coincides with
the photoinducible phase repeatedly after the transfer (Fig. 6A).
Alternatively, the transition from DD to LL might initiate a
dampening rhythm of photo-inducibility (Fig. 6B), either by direct
induction or by bringing internally desynchronised cellular rhythms
into phase (Balsalobre et al., 1998; Nagoshi et al., 2004; Welsh
et al., 2004). This scenario would have similar consequences to the
persistent rhythmical photo-inducibility described previously and
they might prove difficult to resolve from one another.

Finally, we do not formally exclude that an hour-glass type
mechanism operates in these birds. Under this scenario, induction
relies on the progressive accumulation of a light dependent factor
under LL (Fig. 6C). However, we favour a rhythm-based model
since our molecular characterization of the photoperiodic response
shows broad conservation with species known to rely on

Fig. 6. Proposed mechanisms of photoperiodic
time measurement in the Arctic. Svalbard
ptarmigan show hypothalamic gene expression
characteristic for seasonal reproduction when
transferred from DD (grey shading) into LL (white;
D). This process has been proposed to consist of a
circadian rhythm of photo-inducibility and coinciding
light. (A) Despite absent rhythm in activity, a light
sensitivity rhythm might be sustained in the PT and
MBH throughout constant conditions. (B) The
rhythm of photo-inducibility might also be initiated by
one dawn either by inducing the rhythm or by
synchronising individual cells. (C) Lastly, the
photoperiodic response might be circadian
independent and instead based on the
accumulation of a light-dependent factor.
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coincidence timing, such as quail (Nakao et al., 2008; Yasuo et al.,
2005; Yoshimura et al., 2003) or sheep (Dardente et al., 2010).

Similarly to Svalbard ptarmigan transferred from DD to LL, birds
subjected to a simulated light-dark cycle also showed increased
Eya3 and Tshf expression, and changes in the expression of
downstream deiodinases at the final sampling point in LL, but not
earlier in the study when the birds were on LD 12:12 (Fig. 4E,F).
This is consistent with other mammals and birds which require a
photoperiod of between 12.5 and 14 h for acute changes of
photoperiodic genes in PT and MBH (Hanon et al., 2010, 2008;
Krdletal., 2012; Nakao et al., 2008; Ono et al., 2008). By the end of
the study, birds in the SNP group showed only limited gonadal
development (Fig. 4A,B). This is in line with earlier reports that
wild Svalbard ptarmigan undergo a delay of several weeks in
gonadal development even after exposure to long days (Stokkan
et al., 1986).

In summary, our study showed that a High Arctic bird relies on
the same molecular photoperiodic factors in the PT and MBH to
initiate reproduction as other seasonal mammals and birds. Similar
responses were measured in birds going through a SNP and birds
directly transferred from DD to LL. The latter observation can
reasonably be explained by a variant form of coincidence timer
mechanism similar to that seen in temperate species. Further
experiments using night break or Nanda Hamner protocols
(Saunders, 2005) provide a route to test this hypothesis.
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