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Behavioural responses to video and live presentations of females
reveal a dissociation between performance and motivational
aspects of birdsong
Logan S. James*, Raina Fan* and Jon T. Sakata‡

ABSTRACT
Understanding the regulation of social behavioural expression requires
insight into motivational and performance aspects. While a number of
studies have independently assessed these aspects of social
behaviours, few have examined how they relate to each other. By
comparing behavioural variation in response to live or video
presentations of conspecific females, we analysed how variation
in the motivation to produce courtship song covaries with variation
in performance aspects of courtship song in male zebra finches
(Taeniopygia guttata). In agreement with previous reports, we
observed that male zebra finches were less motivated to produce
courtship songs to videos of females than to live presentations of
females. However, we found that acoustic features that reflect song
performance were not significantly different between songs produced
in response to videos of females, and those produced in response to
live females. For example, songs directed at video presentations of
females were just as fast and stereotyped as songs directed at live
females. These experimental manipulations and correlational analyses
reveal a dissociation between motivational and performance aspects
of birdsong and suggest a refinement of neural models of song
production and control. In addition, they support the efficacy of videos
to study both motivational and performance aspects of social
behaviours.

KEY WORDS: Social context, Courtship, Songbird, Zebra finch,
Tempo, Stereotypy

INTRODUCTION
The extent and quality of various social displays, including
communicative and courtship behaviours, reflect an individual’s
motivation and performance.Motivation refers to the ‘drive’ to display
a behaviour, whereas performance refers to the fine motoric aspects of
the behaviour. For example, internal and external states can affect the
likelihood of displaying maternal behaviours (e.g. pup retrieval and
grooming in rodents), and the latency and efficiency of pup-directed
behaviours can vary between individuals, as well as within individuals
over time (Champagne et al., 2003; Clark et al., 2002; Stolzenberg
et al., 2012). Both the motivation to engage in maternal behaviours
and the performance of various components of maternal behaviour
have been found to have important developmental consequences
in rodents, non-human primates and humans, and such findings

highlight the importance of investigating both motivation and
performance to gain a comprehensive understanding of social
behaviour (Meaney, 2001; Rilling and Young, 2014). However,
motivation and performance are often studied independently, and
relatively little is known about the relationship between mechanisms
regulating motivational and performance aspects of behaviour. In
particular, little is known about the extent to which factors that affect
the motivation to display a behaviour similarly affect the performance
of the behaviour.

Birdsong provides an excellent opportunity to assess the degree
to which mechanisms underlying motivational and performance
aspects of social behaviour are shared or independent. When
visually presented with an adult female, adult male songbirds
become motivated to sing, dramatically increasing the likelihood of
producing courtship song and the amount of time spent singing.
Individual differences in this motivation are important because
female songbirds tend to prefer males that display greater motivation
to sing (i.e. produce more song) (Bradbury and Vehrencamp, 2011;
Catchpole and Slater, 2008; Gil and Gahr, 2002; Sakata and
Vehrencamp, 2012). Furthermore, males alter a number of vocal
performance features when producing courtship songs compared
with non-courtship songs (Chen et al., 2016; Moser-Purdy and
Mennill, 2016; Sakata and Vehrencamp, 2012; Toccalino et al.,
2016; Vignal et al., 2004; Woolley and Kao, 2015). For example,
male zebra finches produce songs that are faster and more
acoustically stereotyped when courting female conspecifics than
when singing in isolation (Chen et al., 2016; Cooper and Goller,
2006; Kao and Brainard, 2006; Sossinka and Böhner, 1980;
Woolley et al., 2014). These performance-related song traits can
affect a male’s attractiveness and reproductive success, since female
songbirds prefer the courtship version of an individual male’s song,
as well as males with song features that are generally characteristic
of courtship song (e.g. faster songs; Gil and Gahr, 2002; Podos
et al., 2009; Woolley and Doupe, 2008).

Despite knowledge about the functional relevance of motivational
and performance aspects of birdsong, little is known about how
experimental variation in the motivation to produce courtship song
relates to experimental variation in song performance. Brain areas that
underlie the motivation to sing project to sensorimotor brain regions
that regulate song performance, suggesting that song motivation
could influence song performance (reviewed in Riters, 2012; Riters
et al., 2004;Woolley andKao, 2015). In addition, seasonal changes in
the motivation to produce courtship song have been found to covary
with seasonal changes in song performance (Smith et al., 1997,
1995). On the other hand, some studies have found a dissociation
between song motivation and performance (Alward et al., 2013;
Ritschard et al., 2011; Toccalino et al., 2016).

Here, we investigated variation in vocal performance across
conditions that are known to modulate the motivation to produceReceived 30 April 2019; Accepted 15 July 2019
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courtship song in songbirds. Video playbacks of social stimuli have
been used to elicit a wide range of social behaviours in a variety of
taxa, including invertebrates, fishes, reptiles and birds (Evans and
Marler, 1991; Fleishman and Endler, 2000; Gonçalves et al., 2000;
Guillette and Healy, 2017, 2019; Oliveira et al., 1999; Ophir et al.,
2005; Ord et al., 2002; Rosenthal, 1999; Uetz and Roberts, 2002;
Ware et al., 2016). Video playbacks have also been used to elicit
courtship song in songbirds (Galoch and Bischof, 2007; Ikebuchi
and Okanoya, 1999; Takahasi et al., 2005). Although male
songbirds produce courtship songs toward videos of females, they
have been found to produce fewer courtship songs to videos of
females than to live presentations of females, suggesting that they
are less sexually motivated to produce courtship songs in response
to videos (Ikebuchi and Okanoya, 1999). However, it is not known
whether performance aspects of courtship song (e.g. tempo and
stereotypy) are similarly reduced for songs produced in response to
video presentations of females. Previous studies of other social
behaviours have found that behavioural performance can be distinct
when individuals are presented with video or live presentations of
conspecifics (Balshine-Earn and Lotem, 1998; Ord et al., 2002;
Swaddle et al., 2006). Consequently, we analysed motivational and
performance aspects of male zebra finch song in response to video
and live presentations of females.

MATERIALS AND METHODS
Animals
Adult male zebra finches [Taeniopygia guttata (Vieillot 1817);
>4 months; n=13] were bred and raised in our colony at McGill
University. Males were socially housed in same-sex group cages
and visually isolated from females. Birds were kept on a 14 h:10 h
light:dark photoperiod, with food andwater provided ad libitum. All
procedures were in accordancewith McGill University Animal Care
and Use Committee protocols, as well as guidelines from the
Canadian Council on Animal Care.

Video stimuli
Stimulus females were videorecorded using a Sony DCR-SR 220
HD camcorder at 60 frames per second. We gathered footage of
individual females perched at camera-level in front of a neutral
background. Adobe Premiere 2017 was used for minor white
balance corrections, cropping and trimming. Playback clips featured
a silent, perched female engaged in a moderate level of activity (e.g.
movements of head and along perch but no flying; Movie 1) and
ended on a black screen. A total of six females were filmed with
three clips created per individual.

Behaviour testing and song collection
Fig. 1 illustrates the experimental setup used during song collection.
Male finches were isolated in individual cages (20×20×20 cm) inside
sound-attenuating chambers (‘soundboxes’; TRA Acoustics, Ontario,
Canada) from at least 1 day prior to experiments. All songs were
recorded using an omnidirectional microphone (Countryman
Associates, Inc., Menlo Park, CA, USA) positioned directly above
the male’s cage. During experiments, song was detected, digitized and
recorded using a sound-activated system [Sound Analysis Pro v.1.04
(http://ofer.sci.ccny.cuny.edu/html/sound_analysis.html) digitized at
44.1 kHz]. A Microsoft Surface Pro 3 tablet (2160×1440 pixels) was
used to playback videos and was fixed to a wall of the soundbox. The
tablet was placed in the soundbox at least 10 min before the onset of
testing andwas positioned∼12 cm from themale’s cage.We sized the
video playback window such that the stimulus bird in the video was
approximately life-size at the distance between the cage and tablet.

The screen was blank (black) when not displaying video stimuli. A
camera mounted above the tablet provided a live stream of the
experimental bird formonitoring. All experiments began within 2 h of
lights turning on.

During experiments, we collected courtship songs from male
zebra finches using a design similar to that described by Toccalino
et al. (2016). Specifically, each male was briefly (∼30 s) exposed to
six different females, three via live presentations and three via video
presentations. During live female presentations, an experimenter
opened the soundbox door and placed a cage housing a conspecific
female next to the experimental male’s cage, and then closed the
soundbox door. The female remained in the soundbox for the
duration of the presentation and was removed thereafter. During
video presentations of females, an experimenter opened the
soundbox door, started a video of a female, and then closed the
door to the soundbox.

Males were exposed to a total of 6 randomly chosen stimulus
females from a pool of 6 videotaped females and 12 live females.
Females that were videotaped were distinct from those used for live
presentations. Video and live presentations were grouped into three
blocks (blocks A–C; Fig. 1C), with each block consisting of three
consecutive exposures to either a video or live presentation of an
individual female (exposures 1–3), followed by three consecutive
exposures to the other stimulus type. Within each block of video
presentations, males were exposed to distinct video clips of the same
female. All presentations were separated by 5min intervals. The order
of conditions (video versus live presentation) within a block was
pseudo-randomly determined to balance the order of conditions. The
first condition presented in each block was determined by a coin flip,
and, if the first condition of the first two blocks were the same (e.g.
video first for blocks A and B), the order was reversed for the last
block, ensuring that no experimental session consisted of blocks that
each started with the same condition.

We categorized a male’s song as directed toward the live or video
presentation of a female if at least two of the following conditions
were met during song production: (1) the male approached or
oriented toward the stimulus females; (2) the male fluffed his
plumage; and (3) the male pivoted his body from side to side (James
and Sakata, 2015; Kao and Brainard, 2006; Morris, 1954; Toccalino
et al., 2016). Typically, male zebra finches produce courtship song
within a few seconds of stimulus presentation. Males in this study
each produced a minimum of three courtship songs to live or video
presentations of females [18.0±3.3 and 10.0±2.1 (mean±s.e.m.)
song bouts per male, respectively, toward live and video
presentations of females].

We also collected non-courtship, or undirected (UD) songs (i.e.
songs produced spontaneously when alone) during the experiment
to contrast with courtship songs. Undirected songs were generally
produced during the 5 min intervals between female exposures. In
cases where few UD songs were produced between female
presentations, UD songs produced in the 30 min before and after
the testing period were used for analysis (16.2±2.9 UD song bouts
per male) (e.g. James and Sakata, 2015; Sakata et al., 2008;
Toccalino et al., 2016).

Song analysis
We used the following definitions for our analyses (Fig. 2). ‘Song
bouts’ are defined as epochs of singing that are separated by at least
1 s of silence (e.g. Johnson et al., 2002; Poopatanapong et al., 2006).
Each song bout consists of a stereotyped sequence of vocalizations
called a ‘motif’ that is repeated throughout the bout (Sossinka
and Böhner, 1980; Zann, 1996). Motifs consist of distinct vocal
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elements (‘syllables’) that are separated by at least 5 ms of silence.
The first motif of a bout is preceded by repetitions of brief vocal
elements called ‘introductory notes’.
Our primary measure of courtship song motivation was the total

amount of time (seconds) that males engaged in courtship song
across all exposures to live or video presentations of females (‘time
spent singing’). We also deconstructed this measure into various
components, including the likelihood that males will produce
courtship song on a given exposure and the total duration of song
during each exposure. We additionally broke down the total song
duration during each exposure into the number of bouts produced
during each exposure, and the duration of each of those bouts. Bout
durations were defined as the interval between the onset of the first
syllable to the onset of the last syllable of the bout.
We analysed song features that are consistently affected by social

stimuli and that have been used as indices of song performance
(Sakata and Vehrencamp, 2012). In particular, we measured the
number of introductory notes preceding song, song tempo and the

variability of the fundamental frequency (FF) of syllables with flat,
harmonic structure (Chen et al., 2016; Cooper and Goller, 2006;
James and Sakata, 2014; Kao and Brainard, 2006; Sakata et al.,
2008; Stepanek and Doupe, 2010). For these analyses, we first
manually labelled syllables and introductory notes following
amplitude-based element segmentation using custom software
written in MATLAB (The MathWorks, Natick, MA, USA).
Introductory notes were quantified by starting with the note
immediately preceding the first syllable of the bout and counting
backwards until we reached ≥1 s of silence. Motif duration was
defined as the duration from the onset of the first syllable of the
motif to the onset of the last syllable of the motif and was used as
the metric for song tempo (e.g. James and Sakata, 2015; Kao and
Brainard, 2006; Sakata et al., 2008). We restricted the analysis of
song tempo to the first motif of the bout, because motif durations
have been found to change across the song bout and because bout
durations differ between live and video presentations (see Results;
Chi and Margoliash, 2001; Cooper and Goller, 2006; Glaze and
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Fig. 1. Experimental designs for live and video presentations of females. Schematics representing experimental setup during (A) exposures to live female
stimulus and (B) exposures to videos of females (not drawn to scale). (C) Example of stimulus presentation order for one male. Males were tested in three
blocks (A,B,C), with each block consisting of three consecutive exposures to distinct videos of an individual female and three consecutive live exposures to an
individual female. All presentations were separated by a 5 min interval. Shapes represent different stimulus individuals.
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Fig. 2. Organization of zebra finch song.
Spectrograms plot frequency (kHz) against time (ms)
with brightness reflecting amplitude. (A) An example of
song produced during a 30 s exposure to a video of a
female bird. In this example, the male produced two
song bouts (bouts separated by ≥1 s of silence).
(B) Zoomed-in image of a single song bout; song bouts
begin with the repetition of introductory notes (C) and
consist of a stereotyped sequence of syllables (‘motif’)
that is repeated throughout the bout (D). The motif of
this bird consists of five separate syllables, each
separated by ≥5 ms of silence.
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Troyer, 2006). Finally, we computed the FF of syllables with flat,
harmonic structure (e.g. syllables ‘c,’ ‘d,’ and ‘e’ in Fig. 2D) by
calculating the autocorrelation of a segment of the sound waveform
and measuring the distance (in Hz) from the zero-offset peak to the
highest peak in the autocorrelation function. Wemeasured the FF on
each rendition of the syllable, and then computed the coefficient of
variation (CV; standard deviation/mean) of FF across all renditions
of the syllable (40.7±6.3 renditions) within each condition. The CV
of FF was used as an index of acoustic stereotypy, with low CVs
reflecting high stereotypy (Sakata et al., 2008; Toccalino et al.,
2016). We computed these measures of song performance for UD
songs, songs directed at videos of females [video-directed (VD)
song], and songs directed at live females [live-directed (LD) songs].

Data analysis
We compared song motivation between experimental conditions for
all 13 males. However, five males produced courtship songs only
during live presentations of females; therefore, in our direct
comparisons of song motivation and performance during live and
video presentations of females, data were restricted to the eight
males that produced songs during both live and video presentations
of females. Data were computed for each exposure in which song
was produced (total song duration per exposure, bout duration, first
motif duration, introductory notes and fundamental frequency).
Statistical analyses were conducted in R 2.15.1. We used linear

mixed models (LMMs) and generalized linear mixed models
(GLMMs) within the ‘lme4’ library (Bates et al., 2015) to compare
singing behaviour across experimental conditions. Our experimental
design consisted of three testing blocks (blocks A–C), with each block
consisting of three consecutive exposures to videos of a single female
and three consecutive exposures to a live female (exposures 1–3;
Fig. 1C). Therefore, we ran three-way factorial models with Block
(A–C; ordinal), Exposure (1–3; ordinal), Condition (live versus video;
nominal) and all possible interactions as fixed effects. Because of the
repeated-measures nature of this design, we also included Bird ID as a
random factor. Furthermore, because birds can produce multiple bouts
within an exposure and because bout number can affect some song
features (see Results), we also ran four-way full-factorial models with
the same three fixed effects plus Bout (1–3; ordinal).
In the analysis of the likelihood to produce courtship song, we had

one binary response variable (whether the bird produced at least one
courtship song bout or not during each exposure); therefore, we ran
this model as a GLMM with a binomial error family. The number of
song bouts produced during each exposure and the number of
introductory notes preceding song bouts (see above) were count
responses; consequently, we ran these models as GLMMs with a
Poisson error family. Total time spent singing, total song duration per
exposure, and song bout durations were highly skewed; therefore,
these data were analysed with a gamma error family and a log link
(data plotted following log-transformation for ease of presentation).
Finally, the total number of exposures in which at least one song bout
was produced and the duration of the first motif were analysed with
LMMs with a Gaussian error family. Prior to running the statistical
models, data were visually screened to assess model fit using Q–Q
plots. To test the significance within each mixed model, we ran Type
II Wald χ2 tests using the ‘car’ library (Fox et al., 2011).
We used a different statistical model to analyse experimental

variation in the CV of FF. This is because the CV cannot be
computed for a single rendition and needs to be computed across
multiple renditions of the syllable. To provide reliable estimates of
the CV of the FF of a particular syllable, we measured the CV across
each rendition of a syllable for all songs produced during all blocks

and exposures. The statistical model to analyse variation in the CV
of FF also differs from those described above because birds can
produce multiple syllables for which we calculated the CV of FF
(n=13 syllables with flat, harmonic structure across the eight males).
Consequently, for the analysis of the CV of FF, we ran an LMM
with a Gaussian error family, and with Condition as the fixed effect
and Syllable ID nested in Bird ID as a random effect so that we
could directly compare the CV of the same syllable across
conditions.

In addition to assessing differences in song performance across
VD and LD songs, we also compared song performance of VD and
LD songs with those of UD songs. For these analyses, we computed
data for VD and LD song across all renditions of song (i.e. across
blocks, exposures and bouts) and compared these values with those
for UD song. We ran one-way models with similar parameterization
as before, with Condition as the sole independent variable. We used
a Poisson error family for introductory notes and a Gaussian error
family for first motif durations and the CV of FF. Bird ID was a
random variable for introductory notes and first motif durations, and
Syllable ID nested in Bird ID was a random effect for CV of FF. For
these analyses, we ran Tukey’s tests with the Holm correction using
the ‘multcomp’ library (Hothorn et al., 2008) for post hoc contrasts
across the three conditions.

To gain further insight into the relationship between song
changes across experimental conditions, we also analysed the
extent to which motivational and performance changes driven by
video presentations of females co-varied with motivational and
performance changes driven by live presentations of females. We
correlated the total amount of song a male produced in response to
live presentations of females with the total amount of song a male
produced to video presentations of females. In addition, we
computed the percentage change of song features from UD to VD
song and from UD to LD song, and correlated these changes.
Because we measured the CV of FF of multiple syllables and
because each syllable within a bird could change independently, we
analysed these relationships using LMMs with the Gaussian error
family with Bird ID as a random effect. All other relationships were
analysed using Pearson’s product–moment correlations.

Finally, we examined the extent to which individual variation in
the differential motivation to produce courtship song to video and
live presentations of females covaried with individual variation in
the differential modulation of song performance across video and
live presentations. Specifically, we correlated the difference in the
amount of LD and VD song with the difference in the modulation
of each song feature from UD to LD and UD to VD. Because the
differential motivation to produce courtship song to videos or live
presentations of females is summarised by one value per bird, we
calculated the average change in the CV of FF across all syllables
produced by each bird to relate to motivation (i.e. each bird has only
one data point representing the average percentage change in the
CV of FF of syllables). We used Pearson’s product–moment
correlations for all analyses.

RESULTS
Differences in the motivation to produce courtship song
to video versus live presentations of females
We first counted, for each male (n=13), the number of exposures to
live females or videos of females in which a male produced at least
one bout of courtship song (out of nine exposures per male for each
condition). We found that male zebra finches produced courtship
song on significantly more exposures to live females [6.6±0.7
(mean±s.e.m.)] than they did to videos of females (3.6±0.9;
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x21=19.0, P<0.0001). Upon further inspection, we noted that, while
most birds produced courtship songs to both live and video
presentations of females (n=8), five birds sang exclusively towards
live females (no males sang exclusively towards videos of females).
However, the number of exposures with courtship song remained
significantly higher for live presentations of females even when
analyses were restricted to males that produced courtship song to
both video and live presentations of females (live: 7.8±0.8;
video: 5.9±0.8; x21=8.6, P=0.0034). The reduced courtship song
production in response to videos suggests a lower motivation to
produce courtship song to videos. It should be noted that variation in
female video playbacks did not account for the difference in
courtship song production between the five males that failed to
produce any courtship song to video presentations of females and
the eight males that produced at least one bout of courtship song
to videos of females (see Table S1 and Appendix). Furthermore,
variation in motivation to produce courtship song to live or video
presentations was not linked to general variation in motivation to
produce song as there was no significant correlation between the
number of courtship songs and the number of undirected (UD)
songs produced during the experimental period (r=0.12, P=0.7767),
and no significant difference in the number of UD songs produced
following video or live exposure to females (GLMM with Poisson
error family:x21=0.05, P=0.8245; see also Appendix).
The total amount of time a male spends singing towards a female

is widely considered to be a reliable measure of song motivation. As
such, we compared the total amount of time male zebra finches sang
to live and video presentations of females (i.e. total duration of song
across all exposures). Because this study is focused on experimental
differences in motivation and performance features, and because
performance features of video-directed songs cannot be computed
for males that did not sing to videos of females, we limited our
analyses to birds that sang in both conditions (n=8). Overall, we
found that these birds produced significantly more song towards
live females (116±18 s) than they did to videos of females
(46±8 s;x21=54.5, P<0.0001; Fig. 3A; Table S2).
Differences in the total amount of song produced to live versus

video presentations of females could be caused by a number of
factors, including variation in the probability of producing courtship
song on each exposure, in the total amount of song on each
exposure, in the number of song bouts produced on each exposure,
and in bout durations. We first analysed whether males differed in
their probability of producing courtship song towards live or video
presentations of females on each individual exposure to a female
stimulus. We performed a 3-way GLMM with Condition (live or
video), Block (A–C) and Exposure (1–3; ordinal) as independent
factors, Courtship (0 or 1; binomial) as the response variable,
and Bird ID as a random effect. We found significant effects of
Condition (x21=13.8, P=0.0323) and Block (x22=21.1, P=0.0122),
indicating that birds were significantly more likely to produce
courtship song to live females than to videos of females and that the
likelihood of a male producing courtship song decreased across
blocks (Fig. 3B). In addition, there was a marginally significant
interaction between Condition and Block (x22=7.5, P=0.0588), with
differences across conditions being larger for later blocks.
To further reveal the factors that contributed to the overall

difference in the amount of courtship song produced to live versus
video presentations of females, we examined the total amount of
courtship song produced (in seconds) during each video or live
exposure to a female (each exposure to a female stimulus was 30 s in
duration; Table S2). We found significant effects of Condition
(x21=69.6, P<0.0001), Block (x22=52.0, P<0.0001) and Exposure

(x22=27.8, P<0.0001) on total song duration per exposure (Fig. 3C).
Overall, song durations per exposure were longer in response to live
presentations of females than they were to video presentations, and
durations decreased across blocks and exposures. In addition, there
was a significant interaction between Condition and Block
(x22=20.3, P<0.0001), which was characterized by smaller
changes in song durations across blocks for live presentations
than for video presentations. As such, the difference in song
durations between video and live exposures became larger over the
blocks of testing.

Because birds produce courtship songs in bouts (i.e. epochs of
song separated by ≥1 s of silence), differences in courtship song
duration per exposure could be due to differences in the number of
song bouts produced during each exposure as well as differences in
the lengths of song bouts. Consequently, we first analysed the
number of bouts that male zebra finches produced on each exposure
(Table S2). We found a significant effect of Condition (x21=5.2,
P=0.0221; Fig. 3D), with males producing more song bouts per
exposure to live presentations of females (2.32±0.18 bouts
per exposure) than they did to video presentations (1.70±0.12
bouts per exposure). While the interaction between Condition and
Block was not statistically significant, visual inspections of the data
indicate a trend for the difference between video and live
presentations to become larger over the blocks of testing.

To analyse song bout duration, we ran a four-way factorial mixed
effects model with the same fixed factors as above (Condition,
Block and Exposure) as well as Bout (i.e. the serial order of bouts
within each exposure; ordinal). Because birds rarely produced more
than three bouts in an exposure, we limited our analysis to the first
three bouts per exposure (models were rank deficiency when
data for all bouts were included; Table S2). We found significant
effects for all main factors (Condition: x21=40.3, P<0.0001; Block:
x22=46.5, P<0.0001; Exposure: x22=21.0, P=<0.0001; Bout:
x26=129.6, P<0.0001), as well as three-way interactions between
Block, Exposure and Bout (x28=36.5, P<0.0001), and between
Exposure, Condition and Bout (x24=9.8, P=0.0431; Fig. 3E). We
also observed a significant interaction between Block and Exposure
(x24=10.6, P=0.0318) and a marginal interaction between Block and
Bout (x24=8.4, P=0.0795). Overall, bout durations were longer for
songs produced to live presentations of females than for songs
produced to video presentations of females. Additionally, bout
durations decreased across blocks, across exposures within blocks,
and across bouts produced within each exposure to a female
stimulus.

Because of the complexity of the four-way model, we conducted
another analysis limited to the data from the first bout (i.e. Bout not
included as an effect in the model) to obtain a simplified depiction of
variation in song bout duration (Table S2). We observed significant
main effects for all three factors (Condition: x21=38.7, P<0.0001;
Block: x22=34.1, P<0.0001; Exposure: x

2
2=30.1, P=0.0001), as well

as significant interactions between Block and Exposure (x24=18.3,
P=0.0011) and between Block and Condition (x22=9.9, P=0.0071;
Fig. 3F). Overall, the duration of the first bout of courtship song was
longer for songs produced to live presentations of females than for
songs produced to video presentations, and bout durations became
shorter across blocks and exposures. The interactions were
characterized by larger decreases across exposures during block A
than during blocks B and C, and by larger decreases across blocks for
video presentations than for live presentations.

Together, these analyses indicate that differences in total amount
of courtship song in response to video and live presentations of
females were due to differences in the likelihood of producing
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courtship song, the number of song bouts per exposure and the
duration of individual song bouts.
Despite differences in the amount of courtship song produced to

live versus video presentations of females, it is possible that
individual variation in the motivation to produce courtship songs
to videos of females is related to variation in the motivation to
produce courtship songs to live presentations of females.
Therefore, we correlated individual variation in the total amount
of time males spent singing to live and video presentations of
females. Consistent with the notion that motivation to court videos
of females is related to the motivation to court live females, we
found a significant correlation between the total amount of song
produced to live versus video stimuli (n=8; r=0.73, P=0.0382;
Fig. 3A).

Lack of differences in performance features of courtship
songs produced tovideoversus live presentationsof females
Our results suggest that male zebra finches are less motivated to
court videos of females than live females, and we next sought to
determine whether performance aspects also varied across
songs directed at live or video presentations of females. To this
end, we compared various measures of song performance (see
Materials and Methods) between VD and LD songs among males
that produced both types of songs (n=8 birds).

To analyse differences in the number of introductory notes
preceding song, we first ran a four-way factorial model with
Condition, Block, Exposure and Bout (limited to the first three
bouts; see above) as fixed effects, Bird ID as a random factor, and the
number of introductory notes before each bout of song as a Poisson
response variable (Table S3). Importantly, we found no significant
effect of Condition or interaction between Condition and other
variables for the number of introductory notes. We only observed an
effect of Bout (x26=123.9, P<0.0001), with the number of
introductory notes decreasing across consecutive bouts produced
during an exposure to a stimulus (Fig. 4A). We also ran a similar
analysis with data limited to the first bout of courtship song on each
exposure (Bout excluded as a factor) and, again, found no significant
variation across conditions, blocks and exposures (Fig. 4B).

To analyse variation in song tempo between VD and LD song, we
calculated the duration of the first motif of each song bout and
analysed experimental variation in first motif durations using the
same four-way factorial model as above (only first three bouts for an
exposure). Only the first motif in each bout was analysed for this
comparison because motif durations change as bout length increases
(e.g. Chi and Margoliash, 2001; Glaze and Troyer, 2006; James and
Sakata, 2014; James and Sakata, 2015) and because bout lengths
differed between VD and LD song (Fig. 3; Table S2). There was no
significant effect of any factor, including Condition, on song tempo
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(Fig. 4C). We also ran a three-way factorial model using only data
from the first bout produced per exposure and, again, found no
significant effects (Fig. 4D).
The FF of syllables with flat, harmonic structure is less variable

from rendition-to-rendition when males direct song at females
(Sakata and Vehrencamp, 2012; Woolley and Kao, 2015). We
calculated the CV of FF across all syllable renditions in every bout
of song and compared this variability between conditions (i.e.
Condition is the only independent variable). We found a marginally
significant difference between Conditions (x21=3.7, P=0.0545;
Fig. 4E) with VD song tending to have lower CVs than LD song.
However, no significant difference between VD and LD song was
observed when only data from the first bout were analysed (x21=2.3,
P=0.1266; Fig. 4F). This difference in the magnitude of differences
between VD and LD song is primarily due to a decrease in the CV of
FF for LD song when only the first bout of courtship song per
exposure was analysed (compared with analysis of all bouts).
In our analyses of song motivation, we generally found the largest

difference in the amount of courtship song in Block 3 (Fig. 3).
Therefore, to further evaluate the relationship between song

motivation and performance, we analysed performance measures
only during Block 3. Consistent with the analyses of all blocks,
there was no significant difference between LD and VD song for
introductory notes (x21=0.5, P=0.4719), motif duration (x21=0.04,
P=0.8504) or the CV of FF (x21=0.5, P=0.3062).

Courtship songs produced to video or live presentations of
females are distinct in performance from undirected song
Overall, the preceding analyses indicate a lack of difference between
VD and LD songs for three performance measures: the number of
introductory notes, song tempo and spectral stereotypy. However,
these analyses do not explicitly indicate whether VD songs are
distinct from non-courtship songs (undirected or UD songs) in the
same way that LD songs differ from UD songs. We therefore
compared performance measures of every VD and LD song of a
male to all his UD songs. We found a significant effect of Condition
for introductory notes (x22=51.3, P<0.0001) with post hoc contrasts
indicating that both VD and LD songs were preceded by more
introductory notes than UD songs and that VD songs were preceded
by more introductory notes than LD songs (P<0.0030 for all). We
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also found a significant effect of Condition on first motif duration
(x22=39.7, P<0.0001), with post hoc contrasts indicating that motifs
were shorter during VD and LD songs than during UD songs
(P<0.0001 for both). Finally, we found a significant effect of
Condition on the CV of FF (x22=8.8, P=0.0120) with post hoc
contrasts indicating that the CV of FF was lower for VD songs
compared with UD songs (P=0.0089).
The preceding analyses indicated that VD songs were distinct

from UD songs, with mixed results regarding LD songs. However,
our analyses above highlight how performance features can change
across bouts (Fig. 4) and how the number of bouts produced per
exposure differed between video and live presentations of females
(Fig. 3); consequently, the previous results are confounded by
experimental variation in the number of bouts per exposure. To
examine variation without this confound, we conducted the same
analyses with data restricted to the first bout of song per exposure. In
addition, we limited our UD song data to songs preceded by at least
30 s of silence to approximate the first bout restriction for VD and
LD songs (see Materials and Methods). Differences between UD
song and either LD or VD song were consistent in this analysis as
with the previous analysis that included data from all bouts. The
number of introductory notes was significantly affected by
Condition (x22=67.4, P<0.0001; Fig. 5A), with VD and LD songs
being preceded by more introductory notes than UD song
(P<0.0001 for each); the duration of the first motif was
significantly different across Conditions (x22=34.3, P<0.0001;
Fig. 5B), with first motif durations being shorter for VD and LD
songs than for UD song (P<0.0002 for each); and the CV of FF was
affected by Condition (x22=6.6, P=0.0366; Fig. 5C), with the CV of
FF being significantly lower during VD song than during UD song
(P=0.0318). Importantly, when data from only the first bout of LD
and VD song were analysed, all song features were not significantly
different between VD and LD songs. Taken together, these data
indicate that males change their song performance when directing
songs at video presentations of females and that the nature and
degree of these changes are comparable between VD and LD songs.
To further investigate whether the modulation of VD and LD

songs was consistent within individuals, we correlated individual
variation in the magnitude of change in song performance from UD

song to VD song with individual variation in the magnitude
of change from UD song to LD song (data from first bout only).
The relationship was significantly positive for the number of
introductory notes (r=0.72, P=0.0430; Fig. 6A) and the CV of FF
(x21=14.4, P=0.0015; Fig. 6C). The relationship was positive but not
statistically significant for first motif duration (r=0.53, P=0.1766;
Fig. 6B).

Lack of relationship between experimental variation in
motivational and performance aspects of song
The lack of difference between various aspects of LD and VD song
performance contrasts with the difference in the motivation to
produce LD and VD song. This suggests that the motivation to
produce songs to live versus video presentations of females is
independent of song performance. To further investigate the
relationship between motivational and performance aspects of
song, we assessed whether individual variation in the differential
motivation to produce courtship songs to video versus live
presentations of females correlated with individual variation in the
differential modulation of performance features (introductory notes,
motif duration and variability of FF) fromUD (baseline) song to VD
or LD song (first bouts only). Specifically, we calculated the
difference in motivation as the difference in total time spent singing
LD andVD song and correlated this differencewith the difference in
performance modulation, measured as the difference in percentage
change from UD to LD song (modulation when singing LD song)
and from UD to VD song (modulation when singing VD song).
Overall, we observed no significant correlations between
experimental variation in motivation and performance (Fig. 7;
introductory notes: r=−0.15, P=0.7219; first motif duration: r=0.39,
P=0.3380; FF of CV: r=0.51, P=0.1975). Relationships were also
not significant when we correlated differences in motivation with
the differences between LD and VD songs (i.e. performance
measures not normalized by UD song).

DISCUSSION
Male songbirds direct songs at females as part of their courtship
ritual to secure copulations. This aspect of courtship can be analysed
from both motivational and performance perspectives, with the
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former referring to the ‘drive’ to produce courtship song and the
latter referring to the acoustic features of courtship song (e.g. song
tempo and stereotypy). Both aspects of courtship song are important
because deficits in either component can affect attractiveness and
mating success (Gil and Gahr, 2002; Heinig et al., 2014; Sakata and
Vehrencamp, 2012; Woolley and Doupe, 2008). However, little is
known about the extent to which these aspects of courtship song are
regulated by similar or distinct mechanisms. Indeed, because neural
circuits regulating the motivation to sing project to brain areas that
regulate song performance (Riters, 2012), it is possible that
motivational and performance aspects of courtship song are linked.
Here, we took advantage of previous studies that outline

experimental manipulations that affect the motivation to produce
courtship song and assessed the degree to which such motivational
variation was associated with variation in vocal performance.
Previous studies indicate that male songbirds will produce courtship
songs to videos of females but tend to be less motivated to sing to
videos of females than to live presentations of females, as indicated
by a reduction in the amount of time spent singing to video
presentations (Galoch and Bischof, 2007; Ikebuchi and Okanoya,

1999; Takahasi et al., 2005). Consequently, we analysed whether
the vocal performance of courtship songs produced to videos of
females was distinct from songs produced to live females.
Consistent with previous studies, we found that male zebra
finches produced courtship songs to video presentations of female
conspecifics but were less motivated to produce courtship songs to
video presentations of females than live presentations of females.
Specifically, males produced less than half the amount of courtship
song during video presentations of females than during live
presentations, and this difference was due to males being less
likely to produce courtship songs during video presentations and
producing shorter songs when courting videos of females (Fig. 3).
Furthermore, whereas all males in this study produced courtship
songs to live females, five males (out of 13) did not produce any
courtship song to videos of females. Although other factors such as
fatigue are important to consider in interpreting differences in the
amount of song, we interpret variation in courtship song production as
a reflection of variation in the motivation to court. Importantly,
whereas zebra finch males appeared less motivated to produce
courtship songs to videos of females, they produced courtship songs to
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videos that were indistinguishable in most ways from courtship songs
produced to live females. In particular, the number of introductory
notes preceding song, song tempo, and the variability of the
fundamental frequency of syllables with flat, harmonic structure
were not significantly different between VD and LD songs (Fig. 5).
Consequently, these data support the notion that the motivation to
produce courtship song is controlled by mechanisms independent of
the regulation of song performance, a notion that is further supported
by the finding that individual variation in motivation to produce VD
and LD songswas not related to individual variation in themodulation
of VD and LD performance (Fig. 7).
Such a dissociation between motivational and performance aspects

of song has also been reported in previous studies (Cornil and Ball,
2010; Hampton et al., 2009; Kao and Brainard, 2006; Ritschard et al.,
2011; Toccalino et al., 2016). For example, Toccalino et al. (2016)
document that the familiarity of a female (i.e. repeated presentations of
the same female) decreases the motivation of a male Bengalese finch
to direct courtship song to that female but does not affect performance
aspects of his courtship song. In addition, Alward et al. (2013)
discovered that testosterone implants into the medial preoptic area
increased the number of songs that male canaries produced to females
but did not affect song performancemeasures such as song stereotypy.
Collectively, these data suggest that distinct mechanisms contribute to
motivational and performance aspects of birdsong and encourage
experiments that further tease apart these aspects. Indeed, studies that
revealed a dissociation between appetitive and consummatory aspects
of copulatory behaviour (Moses et al., 1995; Pfaus et al., 1990; Riters
et al., 1998; Seredynski et al., 2013) deeply shaped perspectives on
social behavioural control and inspired a range of different
experiments (Balthazart and Ball, 2007; Cornil et al., 2018).
Additionally, this interpretation suggests a need to revisit or build

upon existing models of song motivation and control. Catecholamine
(e.g. dopamine) release from midbrain and hindbrain circuits is
hypothesized to contribute to the motivation to produce courtship
song. For example, individual variation in the motivation to produce
courtship song is correlated with variation in the number of
dopamine-synthesizing neurons in the ventral tegmental area
(VTA) of male zebra finches (Goodson et al., 2009), and
manipulations of catecholaminergic neurons affect the likelihood
that male zebra finches will produce courtship song to females
(Barclay et al., 1996; Vahaba et al., 2013). The medial preoptic
nucleus (POM) provides input to the VTA and the periaqueductral
gray (PAG), and these inputs have also been proposed to influence the
motivation to produce courtship song (Alward et al., 2013; Riters and
Alger, 2004). Dopaminergic neurons in the VTA and PAG, and
noradrenergic neurons in the locus coeruleus (LC) in turn project to
various brain areas that regulate song control, including the avian
basal ganglia nucleus Area X and the sensorimotor nucleus HVC
(Appeltants et al., 2000; Castelino and Schmidt, 2010; Hamaguchi
andMooney, 2012;Maney, 2013; Tanaka et al., 2018), and dopamine
or norepinephrine release into these areas affects neural activity and
song performance (Cardin and Schmidt, 2004; Castelino and Ball,
2005; Ding and Perkel, 2002; Ihle et al., 2015; Leblois and Perkel,
2012; Leblois et al., 2010; Matheson and Sakata, 2015; Sasaki et al.,
2006; Sizemore and Perkel, 2008; Solis and Perkel, 2006; Woolley,
2019). Taken together, this model suggests that variation in
motivation should lead to variation in the amount of dopamine or
norepinephrine released into areas like Area X or HVC, which should
lead to variation in song performance. Our data do not support this
model, suggesting that modifications or additional data are required.
For example, further knowledge about the precise neural populations
that regulate the repetition of introductory notes (e.g. Rajan, 2018;

Rajan and Doupe, 2013), song tempo (Long and Fee, 2008; Zhang
et al., 2017) and the variability of fundamental frequency (reviewed in
Woolley and Kao, 2015), and about the extent towhich these specific
populations receive catecholaminergic inputs would allow us to refine
these models that link motivation and performance. Furthermore,
discovery of neurochemical systems that independently modulate
song motivation or performance would greatly contribute to our
understanding of this dissociation.

In addition to addressing models of vocal communication and
social behaviour in songbirds, our results also extend previous studies
in important ways by demonstrating that video presentations of
female conspecifics lead to comparable changes to song performance
as live presentations of females. The lack of significant differences in
acoustic features between VD and LD song (Fig. 5) and the
correlations in the degree of vocal modulations when males directed
songs at live or video presentations of females (Fig. 6) indicate that
videos of females are effective at eliciting the same suite of vocal
performance changes as live presentations of females. From a
mechanistic perspective, these data also suggest that videos of
females engage the neural circuits for song performance to a
comparable extent as live presentations of females. Neural activity in
the anterior forebrain pathway (AFP) regulates context-dependent
changes in the variability of fundamental frequency (reviewed in
Brainard and Doupe, 2013; Murphy et al., 2017; Sakata and
Vehrencamp, 2012;Woolley and Kao, 2015), whereas neural activity
in the vocal motor pathway (VMP) has been proposed to regulate
context-dependent changes to temporal features of songs such as song
tempo or the number of introductory notes preceding song (Hampton
et al., 2009; Matheson et al., 2016; Rajan and Doupe, 2013; Stepanek
and Doupe, 2010). Although positive behavioural correlations do not
necessarily indicate shared neural mechanisms, our data suggest that
videos of females modulate neural activity in these circuits in the
sameway and to the same extent as live females and encourage future
studies to measure such activity.

While the spectral and temporal features of songs measured in the
current study are consistent with previous examinations of song
performance (e.g. Sakata and Vehrencamp, 2012;Woolley and Kao,
2015; Murphy et al., 2017), total song duration has been interpreted
as reflecting motivation as well as performance. Total song duration
has been used as a proxy for male sexual motivation, as influenced
by endocrinological activity or female attractiveness (e.g. Alward
et al., 2013; Arnold, 1975; Cate, 1985; Cordes et al., 2015; Gil et al.,
2006; Riters, 2012; Ritschard et al., 2011; Rutstein et al., 2007).
However, other studies have considered song duration as a
performance-related trait because courtship songs are longer than
non-courtship songs and because female songbirds prefer males that
produce more and longer songs (Gil and Gahr, 2002; Wasserman
and Cigliano, 1991). Additionally, others have proposed that total
song duration reflects both motivation and performance, since song
duration can be modulated by female responses during courtship
(Riebel, 2009). While we prefer the interpretation of song duration
as a measure of motivation, it is important to acknowledge variation
in explanations. Regardless of the interpretation, our analyses
suggest that song duration is regulated by processes that are distinct
from those controlling introductory notes, song tempo and acoustic
stereotypy.

The reason for differences in the motivation to produce courtship
song to live versus video presentations of females remains
unknown. One possibility is that variation in female behaviour
across conditions could account for this difference. For example,
females in the videos were quiet and provided no real-time feedback
to courting males. In contrast, although the behaviour of female
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stimulus animals was not quantified, live stimulus females can
vocalize or posture during exposures to males. These behaviours
could serve as feedback signals to the male and affect his motivation
to produce song. As such, it is possible that male zebra finches
perceived the females in the video as inattentive or uninterested in
the male, which could have led to the male producing fewer and
shorter songs towards these females (e.g. Rutstein et al., 2007; Ware
et al., 2016). Furthermore, the lack of ultraviolet content in our
videos could have influenced behavioural variation towards videos
of females as ultraviolet visual information has been shown to be
biologically important in avian mating behaviours (e.g. Johnsen
et al., 1998). In this regard, a useful next step would be to assess
how videos with different degrees of female vocalizations and
movements influence the motivation to produce courtship song in
male zebra finches (see also Carouso-Peck and Goldstein, 2019).
Broadly speaking, our results support the notion that video

playbacks are a powerful tool to reveal the mechanisms by which
individuals alter evolutionarily important behaviours, including
vocal performance (Heinig et al., 2014; Podos et al., 2009; Sakata
and Vehrencamp, 2012; Woolley et al., 2014). These findings also
suggest that a standardized set of video stimuli can be used to reveal
neural mechanisms underlying song motivation and performance
(see Tables S1–S3) and provide additional impetus to evaluate how
specific visual and/or auditory information regulate song motivation
and performance.

APPENDIX
Variation in the efficacy of videos to elicit courtship song
from male zebra finches
We observed notable variation between videos of different females in
the likelihood of eliciting courtship song from experimental males.
The 13 experimental male zebra finches were exposed to videos of six
individual female zebra finches (three distinct video samples per
female). Each female stimulus was presented 19.5±2.6 (mean±s.e.m.)
times, andmales produced courtship song on 40±10% of exposures to
these video stimuli. We observed a large range in stimulus efficacy,
where the most effective female videos elicited courtship song on
every exposure (high efficacy videos), and the least effective stimulus
female elicited courtship song on 25% of exposures (low efficacy
videos; Table S1). When comparing males that did not produce any
VD song bouts (n=5 males; ‘noVD males’) to males that produced at
least one bout of VD song (n=8 males; ‘VD males’), we did not find
that noVD males were exposed only to lower efficacy videos. noVD
males were exposed to videos of four different females (all females
except ‘bl5b’ and ‘p47’), and while these videos did not evoke
courtship song fromnoVDmales, these same videos evoked courtship
on 47-92% of exposures to VD males. Importantly, the videos of the
other two females led to VD song on 25% and 100% of exposures to
VD males (Table S1). As such, the ‘efficacy’ of the videos of females
presented to noVDmales to elicit courtship song was within the range
of efficacies observed for other videos that VD males were presented
with. While the range of females used for video presentations are
limited in this study, this analysis suggests some males did not
produce VD song because they were simply less motivated to produce
courtship songs to videos of females and not because thesemales were
exposed to videos of ‘lower quality’ females.

Lack of relationship between the motivation to produce
undirected (UD) song and the motivation to produce
courtship songs
We analysed the relationship between the motivation to produce UD
song and the motivation to produce courtship (VD+LD) songs. To

this end, we quantified the number of UD songs produced between
video and live presentations of females and found that the number of
UD songs during this period did not significantly correlate with the
total number of directed songs (VD+LD songs; r=0.12, P=0.7767).
This suggests that that motivation to produce courtship song is
distinct from motivation to produce UD song.
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recherche du Québec–Nature et technologies (258824 to R.F.), Master’s research
scholarship (B1 to R.F.) and a Heller award (L.S.J.).

Supplementary information
Supplementary information available online at
http://jeb.biologists.org/lookup/doi/10.1242/jeb.206318.supplemental

References
Alward, B. A., Balthazart, J. and Ball, G. F. (2013). Differential effects of global

versus local testosterone on singing behavior and its underlying neural substrate.
Proc. Natl Acad. Sci. USA 110, 19573-19578. doi:10.1073/pnas.1311371110

Appeltants, D., Absil, P., Balthazart, J. and Ball, G. F. (2000). Identification of the
origin of catecholaminergic inputs to HVc in canaries by retrograde tract tracing
combined with tyrosine hydroxylase immunocytochemistry. J. Chem. Neuroanat.
18, 117-133. doi:10.1016/S0891-0618(99)00054-X

Arnold, A. P. (1975). The effects of castration and androgen replacement on song,
courtship, and aggression in zebra finches (Poephila guttata). J. Exp. Zool. 191,
309-325. doi:10.1002/jez.1401910302

Balshine-Earn, S. and Lotem, A. (1998). Individual recognition in a cooperatively
breeding cichlid: evidence from video playback experiments. Behaviour 135,
369-386. doi:10.1163/156853998793066221

Balthazart, J. and Ball, G. F. (2007). Topography in the preoptic region: differential
regulation of appetitive and consummatory male sexual behaviors. Front.
Neuroendocrinol. 28, 161-178. doi:10.1016/j.yfrne.2007.05.003

Barclay, S. R., Harding, C. F. and Waterman, S. A. (1996). Central DSP-4
treatment decreases norepinephrine levels and courtship behavior in male
zebra finches. Pharmacol. Biochem. Behav. 53, 213-220. doi:10.1016/0091-
3057(95)00183-2
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