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Summary
The metabolic cost and the mechanical work of running at different speeds and

gradients were measured on five human subjects. The mechanical work was partitioned
into the internal work (Wint) due to the speed changes of body segments with respect to
the body centre of mass and the external work (Wext) due to the position and speed
changes of the body centre of mass in the environment. Wext was further divided into a
positive part (W+ext) and a negative part (W2ext), associated with the energy increases and
decreases, respectively, over the stride period. For all constant speeds, the most
economical gradient was 210.6±0.5 % (S.D., N=5) with a metabolic cost of
146.8±3.8 ml O2 kg21 km21. At each gradient, there was a unique W+ext/W2ext ratio (which
was 1 in level running), irrespective of speed, with a tendency for W2ext and W+ext to
disappear above a gradient of +30 % and below a gradient of 230 %, respectively. Wint

was constant within each speed from a gradient of 215 % to level running. This was the
result of a nearly constant stride frequency at all negative gradients. The constancy of
Wint within this gradient range implies that Wint has no role in determining the optimum
gradient. The metabolic cost C was predicted from the mechanical experimental data
according to the following equation:

where eff 2 (0.80), eff + (0.18) and eff i (0.30) are the efficiencies of W2ext, W+ext and Wint,
respectively, and el2 and el+ represent the amounts of stored and released elastic energy,
which are assumed to be 55 J step21. The predicted C versus gradient curve coincides
with the curve obtained from metabolic measurements. We conclude that W+ext/W2ext

partitioning and the eff +/eff 2 ratio, i.e. the different efficiency of the muscles during
acceleration and braking, explain the metabolic optimum gradient for running of about
210 %.

Introduction

In a recent paper, Minetti et al. (1993) examined the mechanical determinants of the
metabolic cost of human walking at various gradients. The cost of walking 1 km is
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minimized at a gradient of 210 % (negative values refer to downhill slopes) and increases
at both more negative and more positive gradients (Margaria, 1938). This pattern appears
to be the result of residual positive mechanical work during downhill walking. Unlike an
ideal locomotor machine, which minimizes the oscillations of the system centre of mass
(a bicycle, for example), a human walks as if on a rimless spoked wheel (McGeer, 1990)
with continuous raising and lowering, and accelerations and decelerations, of the body.
These deviations from movement along a straight path at a constant progression speed are
responsible for the positive (raising and acceleration) and negative (lowering and
deceleration) work that the muscles must perform during walking. On a bicycle, we
expect to use only negative work when riding downhill, in order to brake the system; and
it is possible to conceive of a way of pedalling uphill that would maintain the progression
speed as constant as possible by doing positive work to account for the potential energy
increase only. For walking on a level surface, the total mechanical work was expected
(from physics) to be partitioned into two equal positive and negative parts. However, a
motion analysis of gradient walking revealed that braking activity is negligible above a
gradient of +15 %, while accelerative activity disappears below an incline of 215 %.
Within this interval, both positive and negative mechanical work are required according
to a sigmoidal relationship about the 0 % gradient (Minetti et al. 1993, see their Fig. 3).
The other crucial factor required to explain the metabolic minimum gradient for walking
is that our muscles use much less fuel when doing negative work (braking activity) than
when doing positive work. The muscle efficiency (work done/metabolic energy spent) for
negative work has been estimated to be 3–5 times higher than that for positive work
(Abbot et al. 1952). The combination of the ratio between positive and negative work and
their different efficiencies allowed us to predict the metabolic cost of walking from
mechanical measurements; a good match with the metabolic measurements was found
(Minetti et al. 1993).

In the first paper reporting the metabolic optimum walking gradient, Margaria (1938)
also showed that the energetic cost of running was minimized at a gradient of
approximately 210 % (see also Margaria et al. 1963, and see Fig. 3). Margaria’s
technique for calculating the efficiency of locomotion was to relate the metabolic energy
consumption to an estimate of the mechanical work performed. He considered only the
minimum changes in potential energy (from continuous raising or lowering of the centre
of mass) occurring during the movement and provided reasonable results for walking for
a gradient range (below 220 % and above +20 %) over which the mechanical work
consists of only one component (either the negative or the positive component,
respectively; Minetti et al. 1993). For running, the gradient range investigated, limited by
metabolic constraints on aerobic performance, was too narrow to establish constant
(asymptotic) values for the efficiency.

Davies et al. (1974), using similar methods to Margaria (1938), measured the
energetics of running humans and estimated the mechanical work by considering only the
work done to lift (or lower) the body centre of mass. Buczek and Cavanagh (1990) used a
force platform installed along a 17 m downhill walkway to measure the knee and ankle
joint power at a slope of about 28 %. Iversen and McMahon (1992) developed a model
predicting the pattern of motion of gradient running. Apart from these papers, no other
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study, to the authors’ knowledge, has appeared that describes the relationship between
measured mechanics and energetics of human running, particularly in relation to the
optimum gradient.

The purpose of this study was to measure the metabolic cost and mechanical work of
gradient running and, from the relationship between them, to try to explain the
determinants of the optimum gradient.

Materials and methods

Five healthy males (25.2±6.9 years old, mass 72.8±6.3 kg, height 1.81±0.09 m; mean ±
S.D.) ran on a motor-driven treadmill at different gradients (from 215 % to +15 % in 5 %
increments) at speeds of 2.20, 2.48, 2.72, 2.99 and 3.29 m s21. For each condition,
simultaneous mechanical and metabolic measurements were taken.

Biomechanical measurements

Each speed/gradient trial was recorded by means of an opto-electronic motion analysis
system (ELITE System, B.T.S., Italy) with four cameras sampling at a rate of 100 Hz. A
dedicated computer automatically recognizes for each camera the shape of reflective
markers, illuminated via stroboscopic infrared light. Ten reflective hemispherical spots
(diameter 1 cm) were placed on each side of the body in order to identify the subject’s
segments of interest: the head-trunk (ear lobe – iliac crest), thigh (great trochanter – knee
joint), shank (knee joint – ankle malleolus), foot (heel – toe), upper arm (shoulder –
elbow) and forearm (elbow – wrist). The three-dimensional positions of segment
extremities were stereometrically calculated by the apparatus. Each acquisition lasted 5 s
and the stride frequency was calculated by analysing the periodicity of the vertical
coordinates and by counting the number of frames for a stride.

Values for segment mass, centre of mass position and radius of gyration were taken
from standard tables (Dempster et al. 1959). Positive Wint was computed using the
method of Cavagna and Kaneko (1977). In order to account for the kinetic energy
changes of segments whose movements do not affect the position of the overall centre of
mass (i.e. symmetrical limb displacements), we used König’s theorem from mechanics.
This theorem states that the total kinetic energy of a multi-link system can be divided into
two parts: (a) the kinetic energy of the segments arising from their change of speed with
respect to the overall centre of mass, and (b) the kinetic energy of the overall centre of
mass. The second term is included in the Wext computation, while the first is the internal
work, Wint. Other details of the experimental design were reported by Minetti et al.
(1993).

The three-dimensional displacement of the body centre of mass was calculated for each
frame from the positions of the 12 body segments. Positive W+ext and negative W2ext were
obtained by summing the increments and the decrements, respectively, of the total energy
(= potential + horizontal kinetic + vertical kinetic) curve of the body centre of mass
position versus time. Total external work (Wext) was computed as the sum of W+ext and
W2ext.

All the data processing and statistics were performed on an Olivetti M380 XP5

213Mechanics and energetics of gradient running



computer and an Apple Macintosh Quadra 700 computer. Low-pass filtering of the
measured spatial coordinates was performed using the procedure of D’Amico and
Ferrigno (1990), in which optimal filter cut-off frequencies are automatically selected.
The range of cut-off frequencies was 5.0–9.0 Hz using this procedure. A custom-built
program, created using LabView 2/Macintosh (National Instruments, USA), analysed the
three-dimensional data and calculated the biomechanical variables for 209 strides. The
procedure for data differentiation, needed to compute marker speed, was the simple dx/dt,
dy/dt and dz/dt calculation on the filtered coordinates.

Metabolic measurements

Standard open-circuit respirometry was used. O2 and CO2 partial pressures were
measured by gas analysers (OM-11 and LB-2, Beckman Inc., USA) and these values,
together with a signal proportional to the displacement of a respirometer bell, were
continuously fed into a MINC 11-23 computer (Digital Inc., USA) for conversion to STPD

of ventilation and O2 uptake values. Laboratory temperature was always within 21–24 ˚C.
Data for the standing subjects were subtracted from the steady-state values, reached after
about 4 min of running, to obtain the net energy expenditure for each gradient/speed trial.
V̇O∑max was assessed in a subsequent experimental session for each subject with an
incremental test (Ellestad, 1980) and was used to exclude from the calculations of the
average running costs the trials corresponding to an oxygen consumption higher than
90 % of V̇O∑max.

Mechanical and metabolic work values in the present paper are expressed per kilogram
of body mass and per kilometre travelled. Mechanical results have been expressed in
metabolic units assuming that 1 ml O2=20.9 J (for a mean respiratory quotient of about
0.95).

Results

Fig. 1 shows, for each gradient, the metabolic cost associated with running at each
constant speed. The optimum gradient for running, at which the metabolic cost is
minimal, was estimated from the coefficients of third-order polynomial regressions for
each speed, as given in Table 1. We chose a cubic polynomial in order to avoid the
symmetry of descending and ascending limbs of a parabolic regression. The mean
optimum gradient for all speeds was 210.63±0.52 % (S.D.). The small variability in this
value suggests that the optimum gradient is practically independent of speed. Owing to
their small variation with speed, the external mechanical work (Wext) and its constituents
W+ext and W2ext were calculated from pooled values for each gradient and are represented
as single values in Figs 2 and 3, respectively. In Fig. 3, the values for walking (Minetti
et al. 1993) have been added for comparison. Stride frequency and Wint are given for each
speed as a function of gradient in Figs 4 and 5.

Discussion

Metabolic cost per unit distance travelled (Fig. 1) was dependent on gradient but not on
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Fig. 1. The metabolic cost of running at different speeds and gradients. Each point represents
the mean value for subjects capable of sustaining the exercise level at less than 90 % of their
V̇O∑max (the number of subjects for each experimental condition is shown in the table below
the figure). Standard deviations have been omitted for clarity. Coefficients of variation were
3.5 % at 215 % gradient, 4.9 % at 210 %, 4.9 % at 25 %, 4.1 % at 0 %, 2.7 % at +5 %, 6.4 % at
+10 % and 4.0 % at +15 %.

Table 1. Regression coefficients for each running speed

Optimum
Speed gradient
(m s−1) a b c d r2 (%)

2.20 233.870 10.843 0.389 −0.005 0.999 −10.78
2.48 237.943 12.564 0.118 −0.026 0.996 −11.27
2.72 224.785 11.918 0.183 −0.024 0.997 −10.57
2.99 223.501 12.847 0.036 −0.042 1.000 −9.82
3.29 218.102 11.009 0.290 −0.014 1.000 −10.70

The regression coefficients are for the equation C=a+bi+ci2+di3 for each running speed, where C is
the metabolic cost of running in ml O2 kg−1 km−1 (data given in Fig. 1) and i is gradient in %.

The optimum gradient is calculated for each speed as the lowest solution of: .
−2c ± √4c2 −12bd

6d



speed, except for at the steepest positive inclines (+10, +15 %), where the metabolic cost
per unit distance travelled was lower at higher speeds. At the highest speed and the
steepest inclined gradient, the metabolic demand probably exceeded the subjects’ aerobic
capacities. Thus, for these measurements, the rate of oxygen consumption probably
underestimated the total metabolic energy required. For downhill gradients, the
variability due to speed was low and the minimum cost can be estimated (from the
regressions in Table 1) to be 146.8±3.8 ml O2 kg21 km21. The curve for the relationship
between external mechanical work (Wext) and gradient is flatter for running than for
walking (Fig. 2; Minetti et al. 1993) and the partitioning of Wext into W+ext and W2ext

(represented as W2ext/Wext in Fig. 3) follows a linear trend with gradient. This suggests
that, during running, W+ext and W2ext become negligible below a gradient of about 230 %
and above a gradient of +30 %, respectively. In order to validate this prediction, we asked
two subjects to run for a few seconds at gradients below 215 % and above +15 %. W+ext

and W2ext values from these experiments (filled triangles in Fig. 3) confirm our prediction.
However, since prolonged running at these extreme gradients (particularly for uphill
gradients) is beyond the aerobic capacity of most human subjects, extension of the curve
to gradients of ±30 % is of interest only from a biomechanical point of view.

Before directly comparing the mechanical and metabolic results, we must also consider
the mechanical internal work, Wint, an important component of the total mechanical work.
As shown in Fig. 5, Wint remained nearly constant at all downhill gradients, but increased
with positive gradients. These changes in Wint parallel the measured changes in stride
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Fig. 2. External work, Wext (the sum of W+ext and the absolute value of W2ext), per unit distance
at different gradients. Values are the means for all subjects and all speeds ±1 S.D.



frequency (Fig. 4). The lack of change in Wint at negative gradients suggests that Wint has
little influence on the optimal gradient. In addition, Wint is, by definition, formed from
equal positive and negative components at all gradients (Minetti et al. 1993). The lesser
dependence of Wint on speed during running than during walking (Minetti and Saibene,
1992) is due to the flight time, which allows the limbs to move more slowly with respect
to the progression speed during the swing phase in running.

Fig. 6A represents the first attempt to predict the metabolic cost of running C from the
measured mechanical data (see the legend for details) using the following equation:

where eff 2 (0.80), eff + (0.18) and eff i (0.30) are the efficiencies of W2ext, W+ext and Wint,
respectively. Each term of the equation is represented (in metabolic units) in Fig. 6. The
choice of values for eff 2 and eff + follows the results obtained for gradient walking
(Minetti et al. 1993), while the higher eff i value reflects (a) the partially ballistic
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characteristics of the swing phase, and (b) overestimation of the mechanical work of the
limbs due to splitting of the total work into internal and external components (Alexander,
1989). As stated above, whatever the value chosen for eff i , the shape of the curve would
be the same.

There is an obvious discrepancy between the predicted and the measured metabolic
values (open and filled squares, respectively, in Fig. 6A). This is the result of applying
values for muscle efficiencies to the total mechanical work, i.e. including that done by
non-muscular tissues. The high running efficiencies reported previously (40–80 %,
Cavagna and Kaneko, 1977) arose because of an overestimation of the mechanical work
attributable to muscle activity, i.e. elastic storage and release of energy was neglected.
Those efficiencies referred to the ability of the whole locomotor system (bones, joints,
tendons and muscles) to maintain the high energy levels required for motion. The present
paper deals with the determinants of the measured metabolic minimum, and this can be
estimated only by subtracting the work stored and recovered from elastic tissues from the
total work. The structures that store elastic energy are the muscle tendons (mainly the
Achilles tendon) and ligaments in the arch of the foot, and these are not metabolically
active. With this in mind, we can extend equation 1 to give:

(2)W−ext −el−
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eff +

Wint

eff i
+ +C = ,
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Fig. 4. Stride frequency at different speeds as a function of gradient. Values are means for all
subjects. Symbols are as in Fig. 1. Standard deviations have been omitted for clarity.



where el2 and el+ represent the amounts of stored and released elastic energy,
respectively. Equation 2 was used to calculate the values shown in Fig. 6B with the
following rationale (see also Table 2). At each gradient, we can assume a constant
maximum amount of elastic energy per step that can be stored and later released by the
springs (tendons and ligaments). During this process, we have to consider (a) that the
elastic energy stored must be less than the measured W2ext, (b) that the elastic energy
released must be less than the elastic energy stored and less than the measured W+ext, and
(c) that the elastic energy released must be smaller than the elastic energy stored because
of energy dissipation within the springs (95 % in this case, a value compatible with the
literature; Ker, 1981).

This algorithmic framework was created on a spreadsheet (Excel 4, Microsoft Corp.,
USA, see Table 2 for details); we used average values for metabolic cost, stride
frequency, W+ext, W2ext and Wint as input values. We were encouraged to do this simulation
by the constant shape and/or amplitude of our measurements (see Figs 1–5). We
obtained, by trial and error, the best correspondence with the experimental metabolic
results when el2 was equal to about 55 J step21 (open and filled squares are almost
coincident in the graph, the discrepancy at a gradient of +15 % being largely due to
metabolic constraints at high gradients).

Our predicted value for the degree of elastic energy storage in tendons and ligaments is
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gradient. Values are means for all subjects. Symbols are as in Fig. 1. Standard deviations have
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in agreement with values from the literature. Alexander and his co-workers (Alexander,
1988; Ker et al. 1987) estimated that the amount of elastic energy stored during a running
step was 35 J for the Achilles tendon and 17 J for the arch of the foot (a total of 52 J for an
average body mass of 70 kg). However, we are aware of the problems inherent in
assuming constant efficiencies (of positive and negative work) for all experimental
situations. Running at different gradients could require different postures and,
consequently, inefficient muscle usage (i.e. operating in disadvantageous parts of the
power/velocity curve or with lower ‘transmission’ efficiency or effectiveness; Lafortune
and Cavanagh, 1983). It has been suggested (Alexander, 1991) that the coupling between
muscles and tendons may reduce the importance of such disadvantages.

The efficiency values used in the present paper are in agreement with values from the
literature (Aura and Komi, 1986a,b, Minetti et al. 1993). Even taking into account that the
efficiency of muscular contraction in running could be different from that during walking
because of the higher shortening and lengthening speeds involved, it is also important to
remember (Minetti et al. 1993) that the shape of the predicted metabolic curve will not
change while the eff 2/eff + ratio is kept constant (at about 5; as reported by Abbot et al.
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Fig. 6. Mechanical explanation of the minimum energy expenditure in downhill running. In A
and B, the predicted metabolic equivalents of W+ext (+ symbols), W2ext (2 symbols), Wint (open
circles) and total mechanical work (open squares) are shown. Filled squares are values for the
measured metabolic cost of running (obtained by pooling all values for all speeds). Lines
starting from the origin represent the metabolic equivalent of the positive and negative
minimum external work (Minetti et al. 1993) according to the following equations:

where g is the acceleration due to gravity and i is gradient (in the equations, W2ext,min and
W+ext,min are in J kg21 m21). (A) Metabolic equivalent of the mechanical work calculated using
the efficiency coefficients from Table 2 and not including any elastic storage or release of
energy (see equation 1). (B) Metabolic equivalent of the mechanical work calculated
including the energy saving due to elastic storage and release at each step (equation 2 and the
algorithm illustrated in spreadsheet format in Table 2).
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1952). In addition, Hof (1990) found a broad plateau in the efficiency versus speed curve
of calf muscles such that there was no great change in efficiency (within 90–100 %) over
a fivefold range of contraction speed that included both walking and running.

Another point of interest in Fig. 6B is the tendency of the corrected values for the W2ext

and W+ext curves to approach the lines representing the minimum work expected for
downhill and uphill gradients (left and right lines starting from the origin, respectively). It
is also of note that the corrected values for W2ext and W+ext tend to vanish outside the
gradient range of ±15 %, in agreement with the results of gradient walking (Minetti et al.
1993).
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Fig. 7. Graphical summary of the mechanical explanation of both gradient walking and
gradient running (the upper part of this figure is taken from a previous paper on gradient
walking, Minetti et al. 1993). This plot shows that the optimum gradient for walking (about
210 %) is determined by the presence of W+ext in downhill gradients (width of the light cross-
hatched histograms) and by the remarkable difference between the efficiencies of the positive
and negative mechanical work (histogram heights). In this representation, the histogram area
corresponds to the metabolic equivalent of positive or negative external work, and their sum is
a prediction of the overall metabolic cost of walking at each gradient. The lower bank of
histograms, related to the optimum gradient for running, shows how this gait is similar to
walking with respect to the division between negative and positive work, provided that the
mechanical measurements have been corrected for the storage and release of elastic energy
(i.e. when the stippled and dark cross-hatched histograms are removed, the proportions
between the left-most and right-most histograms, at each gradient, are similar to those in the
walking ones).



We summarise the present results in Fig. 7, together with values for gradient walking
(from Fig. 1 in Minetti et al. 1993), to illustrate the similarity between the two gaits. The
apparent differences reside in the W2ext/W+ext ratio (see Fig. 3), which results in an absence
of an optimum gradient from the predicted metabolic values (see Fig. 6A). When the
effects of elastic storage and release have been removed, the metabolic equivalents of
W2ext and W+ext in running (light grey and white areas, respectively) and their ratios are
rather similar to those for walking, and the minimum cost is found at the same optimum
gradient.

Kram and Taylor (1990) and Alexander (1991, 1992) have pointed out that the
mechanical work cannot be used per se to calculate the total metabolic cost of walking
and running since muscles use extra fuel when they exert force without producing
mechanical work, for example during isometric contractions. In particular, Kram and
Taylor (1990) suggested that, during level running, a crucial variable needed to predict
the metabolic cost is the time of contact between the feet and the ground. A longer contact
time implies lower average values for the vertical ground reaction force during the stance
period and thus a lower cost. Fig. 8 shows the foot contact time, taken from motion
analysis data (note that the use of vertical thresholds to assess the foot contact time from
spatial coordinates may lead to some inaccuracies). It is intriguing that the time of contact
tends to be highest at the optimum gradient (and, interestingly, that the stride frequency
shows a corresponding minimum at 210 % at all speeds, see Fig. 4). The flatness of the
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subjects, symbols as in Fig. 1). Standard deviations have been omitted for clarity.



contact time versus gradient curves and the success obtained in this study and that of
Minetti et al. (1993) in matching mechanical work to metabolic cost, without taking
contact time into account, support the hypothesis that in human gradient walking and
running the mechanical work is the major determinant of the metabolic cost. In addition,
the flatness of the curves in Fig. 8 corresponds with the constancy of the peak values of
the normal-to-treadmill reaction force in the gradient range 220 to 0 %, found by Iversen
and McMahon (1992) using a treadmill-mounted dynamometric platform. The approach
proposed by Kram and Taylor (1990) for level running appears not to apply to gradient
running. Their hypothesis also implies that, within each gradient, for a speed increase by a
factor k the contact time should be scaled by 1/k in order to keep the metabolic cost
constant (combine their equations 1 and 2). In our experiments, with a speed range scope
of 1.495, we obtained a value for k of 1.251±0.025 (S.D.), indicating that the average
vertical force per se cannot explain the metabolic requirements of gradient running.
However, since there is no doubt about the potential metabolic contribution of isometric
muscular contractions (and co-contractions), it is possible that in certain locomotory
situations the combination of the cost of generating work and the cost of exerting force
must be considered.

In conclusion, the mechanics of uphill and downhill running elucidate the relationship
between the constraints associated with the human locomotor machinery (i.e. the excess
power required for acceleration and braking inherent in a legged animal) and the
metabolic requirements. The overall metabolic trend and the minimum cost of gradient
running at a gradient of about 210 % depend on the differences between the ideal
energetic requirements (Wmin lines in Fig. 6B), due to potential energy changes alone, and
the actual requirements, reduced by the metabolically inexpensive storage and release of
elastic energy by tendons and ligaments. This difference originates from the combination
of acceleration (W+ext) and braking (W2ext) effects on the body centre of mass and the
different efficiencies associated with the different work they perform, as also happens in
gradient walking (Minetti et al. 1993).

The authors are in debt to Professor R. McNeill Alexander and Dr Robert Ker,
Department of Pure and Applied Biology, University of Leeds, UK, for their help in
revising the manuscript.
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