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Summary
The locomotory behaviour of workers of 12 ant species belonging to four different

genera (Formicinae: Cataglyphis, Formica, Lasius; Myrmicinae: Myrmica) was studied
by filming individuals walking on smoked-glass plates. Subsequent multivariate analyses
of footfall positions and walking kinematics revealed a set of constant features
characterizing ant locomotion. The alternating tripod gait prevails over a wide range of
speeds. The temporal rigidity of tripod coordination is paralleled by spatially rigid
footfall patterns. Tripod geometry is preserved irrespective of speed and curvature. When
walking around curves, tripods are rotated relative to the walking trajectory. Whereas
stride length on the inner side of the curve is shortened, that on the outer side is
independent of curvature.

Introduction

During recent decades, terrestrial locomotion of insects has become the subject of a
steadily growing number of studies focusing on the neural background and the
morphological and mechanical constraints of locomotion. There is now detailed
knowledge of how temporal and spatial coordination of the legs is brought about in some
insects (Carausius morosus: Bässler, 1985; Cruse, 1985a,b; Cruse and Schwarze, 1988;
Cruse and Knauth, 1989; Dean, 1989; Periplaneta americana: Delcomyn, 1985, 1991a,b)
and important insights into the functional relationship between walking mechanics, gait
patterns and body morphology have been obtained (Acheta domestica: Harris and
Ghirardella, 1980; Blatella germanica: Franklin, 1985; Carausius morosus: Cruse, 1976;
Jander, 1985; Dean, 1991; Periplaneta: Full and Tu, 1990, 1991; Full et al. 1991;
Carabidae: Evans, 1977).

The studies presented here focus on interleg coordination patterns in ants. Ants appear
to be especially well suited for comparative studies, as this taxon exhibits a high degree of
inter- and intraspecific variability, with respect to both morphology and behaviour. The
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analyses shed some light on three different, but mutually connected, aspects of insect
locomotion.

Part I of the studies provides a basic description of the constant and variable
components of spatiotemporal interleg coordination. Part II (Zollikofer, 1994a) analyzes
the role of body morphology (size, species, caste) and mechanical constraints on walking
kinematics, and part III (Zollikofer, 1994b) deals with alterations in the locomotory
behaviour observed in ant workers carrying loads.

Materials and methods

Animals

Colonies of four species of Cataglyphis from Tunisia (C. bicolor, C. bombycina,
C. albicans and C. fortis) were held in the laboratory under constant conditions (30 ˚C,
50 % relative humidity, 14 h:10 h light:dark cycle). Individuals belonging to the genera
Formica (F. pratensis, F. lefrançoisi, F. rufa), Lasius (L. niger, L. fuliginosus, L. flavus)
and Myrmica (M. ruginodis) were collected at different sites and kept in boxes.

Data acquisition and analysis

Data sampling consisted of filming the ants walking on smoked-glass plates. This
method, first used by Manton (1952) in semiquantitative analyses of arthropod stepping
patterns, still provides an elegant means of measuring tarsal imprints and body position
simultaneously.

A video camera (50half-framess21) was placed above the walking area (30cm330 cm
Perspex box). Smoked-glass plates (7cm310 cm or 9 cm312 cm) were calibrated with a
reference point grid using an x,y-plotter and were then positioned beneath the visual field of
the camera. During the tests, the ant was allowed to move in any direction and to stop and to
resume walking at any point of its path. Each individual had to perform at least 15 runs, the
glass plates being replaced after 1–2 runs. At the end of the test series, the ants were killed
and weighed to the nearest 0.1mg (body mass m). The position of the centre of mass was
determined by suspending the ant on a nylon fibre glued to the thorax and moving the point
of attachment until the ant assumed a horizontal position. The influence of leg positions was
accounted for by repeating centre of mass determination with the legs cut off at the coxae.
Morphological dimensions (Table 1) were measured to the nearest 0.1mm.

Video data sampling was performed by copying frame-by-frame the position of the
head of the ant and the direction of the longitudinal axis of the body onto a tracing foil
overlay placed on the monitor screen. The reference points imprinted on the glass plates
were sampled for later calibration. The successive body positions (frame interval 20 ms)
were digitized (MOP digitizer; 0.1 mm resolution) and transmitted to a Cromemco
Minicomputer. Image distortions due to the video system were corrected for by referring
the coordinate values of each sampled data point to the nearest reference grid points. For
further analyses, the original data (head position and body axis vector) were replaced by
the coordinates of the centre of mass.

The footprints, as well as the calibration marks, were identified on photographic replicas of
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Table 1. A list of the variables describing body morphology, footfall geometry and
walking kinematics

Variables describing body morphology
L1, L2, L3 Length of fore-, mid-, and hindlegs (mm)
m Body mass (mg)
Th Thorax length (mm)

Variables describing footfall geometry

Tripod shape [distance between tarsal positions (T) of a tripod]
d12 Distance between T1 and contralateral T2
d13 Distance between ipsilateral T1 and T3
d23 Distance between contralateral T2 and T3

Tripod position (lateral distances from longitudinal axis of the body)
l1 Lateral distance of T1
l2 Lateral distance of T2
l3 Lateral distance of T3

Distances from midleg to succeeding tripod
i21 Distance from T2 to next ipsilateral T1
i23 Distance from T2 to next ipsilateral T3
s2 Distance from T2 to next ipsilateral T2,

stride length of the midleg

Distances from a fore- or hindleg to succeeding tripods
c31 Distance from T3 to next contralateral T1,

contralateral span
i13 Distance from T1 to next ipsilateral T3
i32 Distance from T3 to next ipsilateral T2
s1 Distance from T1 to next ipsilateral T1,

stride length of the foreleg
s3 Distance from T3 to next ipsilateral T3,

stride length of the hindleg

Variables describing walking kinematics
c Curvature=1/radius of curvature (mm−1)
f Stepping frequency (s−1)
s Stride length=(s1+s2+s3)/3
v Speed (mm s−1)

Leg lengths (L1, L2 and L3) are measured from the coxofemoral joint to the tips of the tarsal claws.
The description of the footfall geometry is based on distances between the tarsal imprints of the fore-

(T1), mid- (T2) and hindlegs (T3), respectively.
The variables are grouped according to the results of an intercorrelation analysis.
The basic footfall pattern is the alternating tripod gait; each tripod consists of the simultaneous

footfalls of the ipsilateral fore- and hindlegs and the contralateral midleg. Tripod shape is determined by
the distances between the tarsal imprints belonging to one tripod (d12, d13 and d23); tripod position is
determined by the lateral perpendicular distances of the tarsal imprints from the longitudinal axis of the
body (l1, l2 and l3); stride lengths are defined as the distances between two successive footfall positions
of the same leg (s1, s2 and s3). All remaining variables indicate distances between tarsal positions of
successive ipsilateral (i21, i23, i13 and i32) and contralateral (c31) footfalls. Variables describing
walking kinematics are explained in Materials and methods



the glass plates (enlargements 2:1–5:1). The smoke layer put onto the plates was sufficiently
fine to be pierced by the tarsal claws and basal bristles of the distal tarsal segments, yielding
individually discernible footprints. Digitizing followed similar procedures to those described
for body positions. Both body and tarsal position data were then match-merged into a
common coordinate system by referencing to the calibration grid. The accuracy of the tarsal
data was checked by making direct measurements of the distances between tarsal imprints on
the glass plates themselves and comparing the results with data obtained by digitizing. The
sampling error of the video data was estimated by analyzing repeated measurements of a
single test run. The tolerance of positional information was ±0.15mm for tarsal distances,
and the reproducibility of velocity values was at least ±3%.

The geometry of stepping patterns was sampled by a set of 14 variables specifying the
distances between footprints as well as their orientation relative to the walking trajectory.
Variables were defined without presuming the existence of any regular coordination (e.g.
tripod) pattern, but were systematically grouped and named according to the results of the
intercorrelation analysis presented below (Table 1). It should be pointed out that stride
lengths are defined on purely geometric criteria, i.e. as the distance between successive
imprints of a given tarsus. Stride length s (the mean value of the stride lengths of the legs
that act in phase) measures the distance travelled in a full stride (Alexander, 1977).

The movement of the centre of mass was described by speed (v, determined from two
consecutive positions of the centre of mass) and the local radius of curvature (r,
determined from three consecutive positions). Average values of v and r were attributed
to each stepping cycle. Calculations of averages were based on the consecutive body
positions (time intervals 20 ms) situated within the polygon outlined by the tarsal
positions belonging to one cycle.

Further data handling and statistical analyses were performed with SAS (Statistical
Analysis Software) utilities and procedures. The test runs of each animal were analyzed
with SAS procedure VARCLUS. This procedure performs a covariance analysis on the
correlation matrix of all variables (in this case a 14314 matrix) and subsequently cluster-
analyzes the results to specify groups of highly intercorrelated variables.

The fact that stride length increases with increasing speed suggests that speed may act
as a strong correlator on intertarsal geometry. In order to eliminate speed effects, the
analyses are based on partial correlations, i.e. correlations between any variables, but
keeping constant speed.

Results

The analysis of interleg coordination follows a three-step procedure. First, the temporal
correlation of footfalls is investigated. Second, the spatial correlations between footfall
positions are screened for constant patterns. Third, the influence of walking speed and
curvature on spatial patterns is examined.

Temporal coordination of the legs

The temporal pattern of interleg coordination of worker ants is simple: at speeds
ranging from slow walking to high-velocity running, ants exhibit a fairly strict alternating
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tripod pattern (Fig. 1) (Hughes, 1952). The fore- and hindlegs of one body side together
with the contralateral midleg move in phase relative to each other and in antiphase
relative to the opposite legs, yielding the footfall pattern L1R2L3 alternating with
R1L2R3, where L is the left and R is the right side and 1, 2 and 3 represent the fore-, mid-
and hindlegs, respectively.

At very low speed, when resuming locomotion after a stop or when walking on
strongly bent trajectories, the tripod gait is replaced by metachronal coordination.

Spatial coordination of the legs

A graphic examination of the stepping pattern geometry (Fig. 2) reveals that the spatial
arrangement of the legs is highly regular and reflects the rigidity of the temporal patterns.
The analysis of intercorrelations between the variables describing footfall geometry
yielded tree diagrams of the correlative fit for each individual ant. As no substantial
differences between individuals or between species could be revealed, the following
results apply to worker ants in general. An overall outcome of the analysis is that
geometric tripods between legs L1R2L3 and/or R1L2R3 are shown to be spatially
constant entities. Furthermore, the size and the shape of tripods depend neither on the
distance between them nor on their orientation relative to the walking direction.

In quantitative terms, these results are expressed as follows. Each individual tree
diagram consists of four subsets comprising variables which are highly intercorrelated to
each other (r2>0.6; P<0.02). Each subset of variables characterizes a distinct geometric
property of the footfall patterns (see Table 1). (1) Subset A, all variables describing the
size and shape of a tripod (L1R2L3 and R1L2R3); (2) subset B, all variables describing
the position of a tripod relative to the trajectory (inclination and lateral shift); (3) subset
C, distances from a midleg tarsus (R2 or L2) of a given tripod to tarsal positions of the
subsequent tripods; (4) subset D, distances from foreleg and hindleg tarsi (L1 and L3, or
R1 and R3) to subsequent tripods.

Whereas subsets A and B describe intratripod geometry, subsets C and D represent
distances between subsequent tripods. Moreover, subsets C and D correspond to
distances measured from opposite body sides of a given tripod. This indicates decoupling
of right and left leg movements, a point that will be discussed under curve-walking.
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Fig. 1. Tripod gait pattern in Cataglyphis bicolor (mean speed 60 mm s21; slow walk).
Adjacent and opposite legs swing in antiphase (black bars represent stance phases; L, left, R,
right body side; 1, 2 and 3, fore-, mid- and hindleg).



Effects of speed and curvature on stepping pattern geometry

This analysis tests the correlation of footfall geometry with speed and curvature, based
on linear regression models. Each individual was analyzed separately. The results
presented here (Table 2) refer to workers of all species, as scale effects or species-specific
differences could not be detected.

Speed

Speed is positively correlated with all variables indicating distances between
subsequent tripods (subsets C and D of the above analysis; Fig. 3A). However, there is no
correlation between speed and any of the variables describing tripod shape and position
(subsets A and B; Fig. 3B). Thus, speed has no influence on the spatial relationship
between the legs acting together as a tripod (Table 2, tripod shape and position). With
increasing speed, the tripods are simply placed further apart from each other (Table 2,
stride lengths; Fig. 2A,B), without any shape alteration.

Curvature

When walking along curved paths (Fig. 2C), the tripod L1R2L3 supporting the body
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Fig. 2. Locomotion in Cataglyphis bombycina (body mass 17.9 mg) at a mean velocity of
17 mm s21 (A), 43 mm s21 (B) and 15 mm s21 (C); the mean radius of curvature in C is
30 mm. Solid-line triangles, tripods R1L2R3; dashed-line triangles, tripods L1R2L3; the
longitudinal axis of the body is indicated from head position (dot) to centre of mass (end of
line); time intervals are 20 ms; walking direction is from left to right.



during a left turn is geometrically similar to R1L2R3 in a right turn, as in both cases the
tarsus of the midleg is placed on the concave (inner) side of the curve. Correspondingly,
tripod L1R2L3 in right turns is equivalent to R1L2R3 in left turns. Data have been
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Fig. 3. Correlation of footfall geometry with speed (v) and curvature (c) (Cataglyphis
albicans, body mass 2.8 mg). Stride length (s) is extended with increasing speed (A). Tripod
position, measured by the lateral distances of the foreleg (l1) and midleg (l2), does not depend
on speed (B), but does depend on curvature (C). Dotted lines indicate linear regressions.



categorized according to this criterion. Correlations of curvature (inverse of the radius of
curvature) with the tarsal constellation were studied after speed effects had been
eliminated by calculating partial correlation coefficients (Table 2).

The size and shape of the tripods are not altered with respect to curvature. Conversely,
intertripod distances as well as tripod positioning vary with curvature; stride length of the
legs acting on the inner side of the curve is shortened, whereas stride length on the outer
side does not depend on curvature. This finding confirms the decoupling of the left and
right body sides, as stated earlier. With increasing curvature, the forelegs on the concave
side of the curve are placed closer to the body axis and the hindlegs are placed farther
from it. The opposite situation is found on the convex side (Table 2, lateral distances of
the tarsi l1, l2, l3; Figs 2C, 3C).

These findings demonstrate that, depending on the curvature, footfall positions change
relative to the longitudinal axis of the body, yet the spatial arrangement of the legs
belonging to one tripod is always held constant.

Discussion

Gait patterns

The alternating tripod gait has been thoroughly studied in a variety of insect species
(Coleoptera, Dermaptera, Hemiptera, Blattariae, Orthoptera: Hughes, 1952; Delcomyn,
1971; Graham, 1972; Manton, 1972; Burns, 1973; Evans, 1977; Kozacik, 1981). The
alternating tripod gait is a widespread interleg coordination pattern for walking at
moderate to high speed. Tripod coordination is generally lacking during slow walking
(Periplaneta americana, Spirito and Mushrush, 1979; Carausius morosus, Graham,
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Table 2. Influence of speed (v) and curvature (c) on the footfall geometry

Variables describing footfall geometry

Tripod shape Tripod position Stride lengths

d12 d13 l1 l2 l3 s s1 s2 s3 N

v −0.05 0.05 −0.03 0.09 −0.01 0.70 0.63 0.55 0.59 142
c (T2 out) 0.01 0.00 −0.52 −0.13 0.49 −0.04 −0.31 0.07 −0.51 70
c (T2 in) 0.05 0.03 0.44 −0.31 −0.49 −0.25 0.08 −0.42 0.00 72

Figures represent mean values of individually calculated correlation coefficients (r>0.20 is different
from 0 at P<0.01; N, average number of observations per individual).

To demonstrate the influence of curvature, data were grouped according to the position of the tarsus of
the midleg (T2), outside or inside the curve. Tripod shape was determined by the distances from the
position of the foreleg tarsus to the midleg tarsus (d12) and to the hindleg tarsus (d13), respectively.
Tripod position was determined by the lateral distances of the front- (l1), mid- (l2) and hindleg tarsi (l3)
from the longitudinal axis of the body. Tripod shape is independent of speed (v) and curvature (c), but
tripod position is dependent on c. Stride length (s) is strongly correlated with speed. Although stride
lengths of the fore- (s1), mid- (s2) and hindleg (s3) on the inner side of the curve are shortened (r<0),
they remain constant on the outer side (r≈0).

Further explanations of the variables are given in Table 1.



1972; Neoconocephalus robustus, Graham, 1978) or, obviously, in species using less than
six legs in locomotion (Mantis religiosa, Roeder, 1937; Romalea microptera, Graham,
1972). As has been demonstrated in this paper, tripod coordination in ants predominated
over a wide range of speed and curvature. Moreover, tripods proved to be highly constant
spatial entities. Given the above evidence, it is assumed that the spatiotemporal constancy
of this gait pattern may be a general feature of fast-running insects (Periplaneta
americana, Delcomyn, 1971; Carabidae: Evans, 1977).

In vertebrates, Taylor et al. (1980) observed that the specific cost of locomotion
increases with decreasing body mass. This is mainly due to the higher number of stepping
cycles a small animal has to perform in order to cover a given distance. Following this
argument, increasing levels of energy consumption result because muscular efficiency is
inversely proportional to contraction speed. Hence, in order to minimize the cost of
locomotion, an animal should minimize the number of stepping cycles and maximize
stride length.

For insects, from a geometric point of view, there are two strategies for maximizing
stride length. First, to extend the ranges of action of the legs simultaneously (from
anterior to posterior extreme position); second, to extend the spans between temporally
successive legs. Maximum spans between successive legs are attained if the temporal
onset of retraction of a given leg is maximally shifted relative to the onset of retraction of
a neighbouring leg. This is the case when adjacent legs are moving in antiphase. From a
static point of view, stability must be maintained by supporting the body with at least
three legs.

The alternating tripod gait represents an optimal pattern with respect to both geometric
and static demands. The antiphase relationship between contralateral as well as adjacent
legs yields longer strides than any other coordination pattern. At the same time, three-
point supports are established. More generally, every antiphase relationship between
adjacent legs will yield maximum stride length, e.g. alternating tetrapods in Arachnidae
(Wilson, 1967; Ward and Humphreys, 1981; Land, 1972) and Scorpionidae (Bowerman,
1975) and even in sideways-walking crabs (Uca pugnax, Barnes, 1975; Ocypode
ceratophthalma, Burrows and Hoyle, 1973). The above argument suggests that the
prevalence of symmetrical gait patterns may reflect kinetic rather than neuronal
constraints.

Apart from the constant phase relationships, the results presented here show that the
legs belonging to one tripod build up a spatially constant entity. This implies that,
depending on speed and curvature, the tarsal positions of a tripod may vary considerably
relative to the body axis and to the position of the succeeding tripod while remaining
constant within tripods. Except for some qualitative descriptions given by Manton
(1972), spatial constancy of tarsal positions has not yet been described in insects,
although it may be a common feature of the terrestrial locomotion of arthropods.

What is the neural basis of spatiotemporal constancy? The emergence of gait patterns
in walking insects is attributed to the action of central pattern generators (CPGs) and/or to
the influence of sensory input (Cruse, 1985a; Delcomyn, 1985). In Carausius morosus
(Cruse, 1985a,b; Cruse and Schwarze, 1988; Cruse and Knauth, 1989), interleg
coordination patterns can be explained by a series of well-defined coupling mechanisms
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that control the timing of protraction of adjacent and of opposite legs, and there is no
evidence for the action of CPGs in this slow-walking species (Cruse, 1985a). In fast-
running insects, however, CPGs may play an important role. In Periplaneta americana
(Delcomyn, 1985, 1991a,b), the amputation of a leg altered the phase relationship and the
consistency of the bursting activity of motor neurones. These effects were drastic at low
speed but disappeared at high walking speeds. Thus, while sensory feedback seems to be
essential for interleg coordination during slow walking, CPGs become increasingly
important with increasing speed (Delcomyn, 1991b). Following this argument, the
rigidity of tripod gait patterns observed in ants indicates that CPGs are dominant over
sensory input at medium to high walking speeds. Tripods have been shown to be
spatiotemporal entities that are invariant over a wide range of speeds and curvatures.
Thus, CPGs appear to generate both the patterns of temporal coordination and of spatial
arrangement of the legs belonging to a tripod.

Walking around curves requires path differences between the legs of the left and the
right body sides. To achieve this, insects use different strategies. In Apis mellifera
(Zolotov et al. 1975), in Geotrupes stercorosus and in G. stercorarius (Frantsevich and
Mokrushov, 1980), the legs on the inner side walk backwards, whereas in Blatella
germanica a slightly modified tripod pattern is used (Franklin et al. 1981). In both Apis
mellifera (Zolotov et al. 1975) and Carausius morosus (Jander, 1985), the stride
frequency is lowered on the inner side, resulting in the uncoupling of the stepping
rhythms on each side of the body. Stride length reduction on the inner side is reported for
every species cited above.

During curve-walking, ants use comparatively conservative strategies. Distances
between successive footfalls on the inner side are shortened, whereas on the outer side
they remain unchanged. Uncoupling of the two body sides has been demonstrated by the
loose correlative fit between intertripod distances on the two body sides. The spatial
tripod pattern, however, is maintained even when ants walk around narrow curves. Thus,
the footfall positions of legs belonging to one tripod are held constant relative to each
other, although they may vary relative to body position.

The results presented here were part of a PhD thesis. I would like to thank Professor
Rüdiger Wehner for his constant support and innumerable discussions and Dr Rima
Huston for proof-reading the final version. I am much indebted to Dr Reinhard Blickhan
and to two anonymous referees for many suggestions on earlier versions of the
manuscript.
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