
283J. exp. Biol.191, 283–290 (1994)
Printed in Great Britain © The Company of Biologists Limited 1994

SHORT COMMUNICATION

A QUANTITATIVE, THREE-DIMENSIONAL METHOD FOR
ANALYZING ROTATIONAL MOVEMENT FROM SINGLE-VIEW

MOVIES

COEN VAN DEN BERG

Department of Experimental Animal Morphology and Cell Biology, Agricultural
University, Marijkeweg 40, 6709 PG, Wageningen, the Netherlands

Accepted 9 March 1994

The study of animal movement is an important aspect of functional morphological
research. The three-dimensional movements of (parts of) animals are usually recorded on
two-dimensional film frames. For a quantitative analysis, the real movements should be
reconstructed from their projections. If movements occur in one plane, their projection is
distorted only if this plane is not parallel to the film plane. Provided that the parallel
orientation of the movement with respect to the film plane is checked accurately, a two-
dimensional method of analysis (ignoring projection errors) can be justified for
quantitative analysis of planar movements.

Films of movements of skeletal elements of the fish head have generally been analyzed
with the two-dimensional method (e.g. Sibbing, 1982; Hoogenboezem et al. 1990;
Westneat, 1990; Claes and de Vree, 1991), which is justifiable for planar movements.
Unfortunately, the movements of the head bones of fish are often strongly non-planar, e.g.
the movement of the pharyngeal jaws and the gill arches. The two-dimensional method is
inappropriate for studying such complex movements (Sibbing, 1982; Hoogenboezem
et al. 1990). For a qualitative description of movement patterns, the conditions for the use
of the two-dimensional method may be somewhat relaxed.

When two (or more) views of a movement are recorded simultaneously, the three-
dimensional movements can readily be reconstructed using two two-dimensional images
(e.g. Zarnack, 1972; Nachtigall, 1983; van Leeuwen, 1984; Drost and van den Boogaart,
1986). However, because of technical (and budget) limitations, simultaneous views of a
movement cannot always be shot. In this paper, a method is presented for reconstructing
the three-dimensional orientation and rotational movement of structures using single-
view films and for calculating rotation in an object-bound frame. Ellington (1984)
presented a similar method for determining three-dimensional wing movements from
single-view films of flying insects. Ellington’s method is based upon the bilateral
symmetry of the wing movements. The present method does not depend on symmetry and
can be applied to a variety of kinematic investigations. It eliminates a systematic error:
the projection error. The measuring error is not discussed; it is the same in the two-
dimensional and three-dimensional method of analysis.
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The three-dimensional method of analysis can only be applied when the following
general requirements are fulfilled. (1) The magnification of the projection of the object
should be known (e.g. with the aid of a scale bar parallel to the film plane). (2) At least
two markers should always be visible in each structure to be analyzed. These markers
should be as far apart as possible in the direction of the movement under study. Markers
may be conspicuous and well-defined anatomical points or artificial points (e.g. surgically
implanted pieces of platinum, which are commonly used in X-ray cinematography).
(3) The distance between the markers in each structure should be known accurately in
each frame (a constant distance is most convenient). This can be determined in the
anaesthetized animal. (4) One should know whether the structures are pointing ‘up’ or
‘down’ with respect to the film plane. This cannot always be determined from the film
frames. The easiest way to solve this problem is to make sure that the angle between each
structure and the film plane stays well within the range 0–180 ˚; in other words, to make
sure that the structure is either pointing ‘up’ or ‘down’ during the entire film sequence.
For rotations with very large amplitude, this may be impossible. In general, direct or
video-recorded observation of the animal during filming is enough to judge whether a
particular film sequence is suitable for analysis (e.g. when the animal turns on its back the
sequence may not be suitable).

If a structure has only two marker points, axial rotation (rotation around the line that
connects the markers) cannot be measured. If this movement component is the object of
study, a third marker point (obviously not in line with the other two markers) is necessary.
I will only discuss the calculations for structures with two markers. The calculations with
three markers are essentially the same. (With a third marker, two vectors can be defined
for each structure, G1 and G2. Axial rotation is measured by calculating, in each frame,
the component of G2 perpendicular to G1. The angle between these perpendicular
components in subsequent frames is the axial rotation.)

To avoid an entirely abstract treatment of the method, it is illustrated by the movement
of a gill arch of a white bream (Blicca bjoerkna). Two platinum markers were inserted in
each gill arch, the copula communis (the fused basibranchials that connect the gill arches
mid-ventrally) and the skull. The skull was the reference structure. All the above general
requirements were fulfilled (for details and error analysis, see van den Berg et al. 1994).

The film-plane is the x,y-plane. The z-axis is perpendicular to this plane. All
calculations in this paper are performed in this x,y,z-frame. The two markers in each
structure define a vector, G. For example, G may represent a gill arch. One marker is
translated to the origin (0,0,0). The coordinates of the other marker are (x,y,z). G can now
be expressed in terms of x, y and z. Coordinates x and y are determined directly from each
film frame (Fig. 1A,B). The value of z is calculated using Pythagoras’ rule (Fig. 1C):

z = ± √G2 2 x2 2 y2 , (1)

where G2 (=the length of G squared) and the sign of z are known (general requirements 3
and 4) (see Ellington, 1984).

When two structures are connected with a single joint (e.g. a gill arch and the copula
communis), the three-dimensional angle a between these structures can be calculated as
the angle between the vectors G1 and G2 representing these structures. If there is no
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marker exactly in the joint, the coordinates of the joint should be calculated using the
coordinates of other marker points. The cosine of the angle a between G1 and G2 is given
by:

G1 . G2 x1x2 + y1y2 + z1z2
cosa =——— = ——————— , (2)

G1G2 G1G2

where x1,y1,z1 and x2,y2,z2 are the coordinates of vectors G1 and G2, respectively, and
G1and G2 are the lengths of vectors G1and G2 (scalar).

The movement of a gill arch in a series of film frames (a film sequence) is the sum of its
movement with respect to the skull and the movement of the skull with respect to the film
frame. The separate components are interesting; their sum is not. Therefore, we want to
separate these two components.

The movement of the skull can be split into a translation and a rotation component. The
distance between the skull and the gill arches is not constant and is unknown. Therefore,
the position (translation component) of the gill arches cannot be calculated relative to the
skull in single-view films. However, rotation (e.g. depression) of the gill arches can be
corrected for rotation of the skull.

The vector representing the skull in frame number n is Sn. The vector representing a gill
arch is G. The angle between G and Sn can easily be calculated from equation 2.
However, we want to know the depression angle of G, which is the angle between G and
a horizontal plane (plane H) in the fish (Fig. 2A,B). The calculation of such a depression
angle is more complicated. First, a frame in which the fish is horizontal is chosen as the
reference frame (Fig. 2A). In this frame, plane H is parallel to the x,y-plane (or film plane)
(by definition). All vectors in the other film frames (Fig. 2B) must be transformed to the
orientation of the reference frame (the method is described below). The depression angle
of G equals the angle between the corrected vector G and the x,y-plane, since the x,y-
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Fig. 1. (A) The markers in the fish head are indicated as small circles in this schematic film
frame. The two black markers (at opposite ends of a gill arch) define a vector G (not in the film
plane). (B) The x and y coordinates of G are calculated from its projection onto the film plane
(=x,y-plane). (C) In this view, the film plane from B is shown from the side. The z coordinate
of G is calculated with Pythagoras’ rule, given the length of G and the orientation of G (‘up’
or ‘down’) with respect to the film plane. The orientation of G (i.e. the sign of z) must be
known. The wrong direction of G is indicated as G*.



plane is always parallel to plane H after correction. The correction method is based on the
movement of the skull vector Sn with respect to its reference orientation Sr. The direction
of Sr should preferably be perpendicular to the film frame (see Appendix).

By positioning Sr and Sn tail-to-tail, a plane P can be defined (Fig. 2C). Plane P is the
plane of movement of the skull; it is unrelated to the film plane. The amount of movement
is expressed as the angle s between Sr and Sn. Angle s is a combination of the pitch, roll
and yaw of the skull. Since Sr=Sn (requirement 3), coss is given by:

Sr . Sn
coss = —— . (3)

Sr2

In each film frame, G is transformed from the Sn orientation to the Sr orientation in three
steps (Fig. 2C): step 1, G is projected on plane P (GP); step 2, GP is rotated over angle s
(GPC); step 3, using GPC, the corrected direction of G (GC) is calculated; note that GC=G.

When this is done, the depression angle of the gill arch is the angle between GC and the
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Fig. 2. The depression angle of the gill arch vector G is calculated in a fish-bound frame by
correcting G for rotation of the skull vector S. (A) Vector S in the reference frame is Sr. In the
reference frame, plane H (the horizontal plane in the fish-bound frame) is parallel to the x,y-
plane (by definition). (B) In film frame number n, the skull (vector Sn) has rotated with respect
to Sr over an angle s. Plane H has also rotated over angle s. The orientation of plane H with
respect to vector S is unaltered. Vector G has to be transformed to the reference orientation
given in A. (C) Vectors Sr and Sn define a plane P. This plane can have any orientation,
depending on the way the skull has rotated (a combination of pitch, roll and yaw). G is
projected on plane P (GP; step 1), rotated over angle s (GPC; step 2) and restored to its original
length (GC; step 3), by adding G2GP. GPC* is the wrong solution of GPC (rotated over angle
2s instead of s).



x,y-plane. Note that, in the calculations below, the coordinates are not transformed to a
frame defined by plane P, but always remain defined in the original x,y,z-frame of the film
plane.

Step 1: projection of vector G on plane P. Just like any vector in plane P, vector GP

must be a linear combination of Sr and Sn:

GP = a1Sr + a2Sn , (4a)

where a1 and a2 are scalar factors.
GP is a perpendicular projection of G, therefore:

(G 2 GP) . Sr = 0 ,

(G 2 GP) . Sn = 0 . (4b)

Substituting equation 4a into equation 4b gives two equations with two unknowns (a1,
a2):

a1(Sr . Sr) + a2(Sr . Sn) = G . Sr ,

a1(Sr . Sn) + a2(Sn . Sn) = G . Sn . (4c)

Using these equations, a1 and a2 and hence GP can be determined.
Step 2: rotation of vector GP over angle s. The coordinates of GPC (three unknowns:

xPC, yPC, zPC) are calculated using three equations, which are based on three conditions
for the rotation (see Fig. 2C): condition 1, GPC has the same length as GP; condition 2,
GPC is rotated over angle s; condition 3, GPC lies in plane P.

Condition 1: GPC=GP or:

xPC2 + yPC2 + zPC2 = xP2 + yP2 + zP2 . (5)

Condition 2: GPC is rotated over angle s; combined with GPC=GP (condition 1):

GP . GPC
coss = ——— ,

GP2

combined with equation 3:
GP2

GP . GPC = —— Sr . Sn ,
Sr2

or:
GP2

xPxPC + yPyPC + zPzPC = —— (xSrxSn + ySrySn + zSrzSn) . (6)
Sr2

Condition 3: GPC lies in plane P; all vectors in plane P are perpendicular to Sr3Sn,
therefore:

GPC . (Sr 3 Sn) = 0 ,
or:

xPCxSr3Sn + yPCySr3Sn + zPCzSr3Sn = 0 . (7)

Combination of equations 5, 6 and 7 yields a quadratic equation with two solutions for
GPC. These solutions represent rotation over angle s in both directions in plane P
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(Fig. 2C). The right solution is found by considering that the angle between Sr and GPC

should equal the angle between Sn and GP (see Fig. 2C). Combined with Sr=Sn and
GPC=GP we find:

Sr . GPC = Sn . GP . (8)

Step 3: restoring GPC to its original length. To put GPC ‘back in space’, we simply add
the part of G that is perpendicular to plane P. This part, G2GP, is not affected by the
rotation in plane P (Fig. 2C):

GC = GPC + (G 2 GP) . (9)

Note that the effect on G of the above correction for skull rotation is dependent on the
angle between G and plane P. When this angle is large, the effect of the correction is
small. When the angle is 90 ˚, its effect is even nil, since GC equals G.

MPW FORTRAN subroutines (for Macintosh computers) with the present calculations
are available on request.

The example of the gill arch movements of white bream (van den Berg et al. 1994)
illustrates the importance of the three-dimensional method of analysis. The abduction
angle a between the left first gill arch and the copula communis was calculated using both
the two-dimensional and the three-dimensional method. The projected angle ap (two-
dimensional method) was 5–20 ˚ larger and had an amplitude two times larger (!) than the
real angle a (three-dimensional method). The amplitude of depression angle buncor (the
angle between the gill arch and the film plane) was about 1.5 times smaller than that of
angle b (the angle between the gill arch and a horizontal plane in the fish) because of the
pitch of the fish during food intake. Furthermore, the data for buncor suggested that the gill
arch was placed in a special depressed position prior to gulping, while b showed that this
was an artefact.

The gill arch movement in our example consisted of a combination of abduction (angle
a) and depression (angle b). The large differences between the two-dimensional and
three-dimensional methods in the example clearly show that the latter method is essential
for a quantitative analysis of such non-planar movements from single-view films. The
three-dimensional method is also essential when substantial changes in the orientation of
the animal occur. In the example, pitch was an integral part of the feeding behaviour of
the white bream, which led to both quantitative and qualitative (e.g. so-called ‘special
position of the gill arch’) errors when the two-dimensional method was used. The three-
dimensional method allows us to calculate rotations in an object-bound frame. The three-
dimensional method of analysis must be strongly advised for both quantitative and
qualitative studies of animal movement.

List of symbols

G vector representing a gill arch
GP the projection of G on plane P
GPC GP corrected for rotation of vector S
GC G corrected for rotation of vector S
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Plane H horizontal plane in the fish, which is parallel to the film plane
when the fish is in the reference orientation

Plane P plane of movement of the skull, defined by vectors Sr and Sn

Film plane x,y-plane
S vector representing the skull
Sr reference orientation of S
Sn vector S in frame number n
x, y, z x, y and z coordinates of vector G
xP, yP, zP x, y and z coordinates of vector GP

xPC, yPC, zPC x, y and z coordinates of vector GPC

xC, yC, zC x, y and z coordinates of vector GC

xSr, ySr, zSr x, y and z coordinates of vector Sr

xSn, ySn, zSn x, y and z coordinates of vector Sn

xSr3Sn, ySr3Sn, zSr3Sn x, y and z coordinates of vector Sr3Sn

a1, a2 scalar factors to express GP in terms of Sr and Sn

a angle between gill arch and copula communis
ap the projection of angle a on the film plane
b angle between gill arch and plane H
buncor angle between gill arch and the film plane
s angle between vectors Sr and Sn

G · G notation for the dot product
G 3G notation for the cross product
G notation for the length of a vector (=|G|)

Appendix

Vector Sr should be perpendicular to the film plane. There are two reasons for this.
(1) The length of the projection of vector S on the film plane is the length S multiplied by
the cosine of the angle between vector S and the film plane. The cosine is most sensitive
to rotation when the angle is approximately 90 ˚. This holds true for vector G as well: one
should preferably film in the direction parallel to G, rather than perpendicular to it. In the
latter case, the projection on the film plane is very insensitive to rotation of G (see
Ellington, 1984, pp. 46–47). In other words, movements perpendicular to the film plane
may easily go unnoticed in that case. (2) Axial rotation around vector Sr is not measured.
When Sr is perpendicular to the film plane, this unmeasured rotation component is
rotation in the film plane (yaw, in the example). During analysis of the film frames, both
the marker projections and the outline of the fish head are copied on paper. The yaw
component of head rotation can easily be compensated for by always positioning the
outline of the fish head in the same way on the data tablet. Furthermore, if there is still
some rotation in the film plane, this has no influence on depression angles.
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