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INTRODUCTION
The recording of acceleration using animal-borne electronic devices
is gaining popularity in animal research (e.g. Martiskainen et al.,
2009; Nathan et al., 2012; Nielsen et al., 2010; Shepard et al., 2008;
Wilson et al., 2006). The measure of acceleration includes both static
(due to gravity) and dynamic (due to movement) components, which
are recorded whilst the animal carries out routine behaviours (Sato
et al., 2003). Researchers use miniaturised logging devices to
measure acceleration across three axes (tri-axial acceleration) and
by calculating overall dynamic body acceleration (ODBA) they can
estimate the energy expenditure of the animal (Green et al., 2009;
Halsey et al., 2011a; Gleiss et al., 2011). Although it has been
recognised that integration of activity-specific metabolic rates with
behavioural modes would better reveal the interaction between an
animal and its environment (Halsey et al., 2011b), it has rarely been
carried out because of the challenges associated with distinguishing
different behavioural modes in the acceleration data.

To quantify behavioural modes from acceleration recordings,
early studies used visual observation of the animal with the
acceleration recording device attached (Halsey et al., 2009; Gómez
Laich et al., 2008; Yoda et al., 2001). More recently, pattern
recognition and machine learning algorithms have been used to
classify the behavioural modes from acceleration collected from free-
ranging animals (Gao et al., 2013; Martiskainen et al., 2009; Nathan

et al., 2012; Sakamoto et al., 2009). The application of machine
learning algorithms to acceleration data has the potential to automate
the behavioural mode identification and quantification process
from free-ranging animals. The draw-back, however, is that for the
algorithms to accurately identify each behavioural mode in the free-
ranging animal, a period of observation is required to train the
machine learning algorithms using the acceleration feature vectors
associated with each behavioural mode. Consequently, for
individuals or species where it is not possible to observe the study
animal whilst simultaneously recording the acceleration, it has not
been possible to calibrate the acceleration data with the associated
behaviour.

To date, little work has been undertaken to assess whether
surrogate test individuals could be used to qualify and quantify
the association between individual behavioural modes and tri-axial
acceleration data-streams. We envisage that this technique has
merit because researchers in this field may be required to utilise
surrogate species for machine learning algorithm training, and
that a framework by which these species are selected is required.
The use of a surrogate to develop a behavioural classification
module would be particularly useful for the assessment of
behavioural modes from acceleration data collected on species
that are rare, are highly cryptic, or live in environments that
prohibit direct visual observation.

SUMMARY
Distinguishing specific behavioural modes from data collected by animal-borne tri-axial accelerometers can be a time-consuming
and subjective process. Data synthesis can be further inhibited when the tri-axial acceleration data cannot be paired with the
corresponding behavioural mode through direct observation. Here, we explored the use of a tame surrogate (domestic dog) to
build a behavioural classification module, and then used that module to accurately identify and quantify behavioural modes within
acceleration collected from other individuals/species. Tri-axial acceleration data were recorded from a domestic dog whilst it was
commanded to walk, run, sit, stand and lie-down. Through video synchronisation, each tri-axial acceleration sample was
annotated with its associated behavioural mode; the feature vectors were extracted and used to build the classification module
through the application of support vector machines (SVMs). This behavioural classification module was then used to identify and
quantify the same behavioural modes in acceleration collected from a range of other species (alligator, badger, cheetah, dingo,
echidna, kangaroo and wombat). Evaluation of the module performance, using a binary classification system, showed there was
a high capacity (>90%) for behaviour recognition between individuals of the same species. Furthermore, a positive correlation
existed between SVM capacity and the similarity of the individual’s spinal length-to-height above the ground ratio (SL:SH) to that
of the surrogate. The study describes how to build a behavioural classification module and highlights the value of using a
surrogate for studying cryptic, rare or endangered species.
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In light of this, our objective was to create a behavioural
classification module and evaluate its accuracy, precision and
sensitivity when identifying behavioural modes from acceleration
feature vectors collected from different individuals and species. To
build the classification module we used algorithms and software
that can be downloaded free from the internet (e.g. Libsvm). In
addition, we assessed the relationship between module performance
and differences in morphology between the training and test
individuals. In this way, we aimed to provide criteria by which
researchers may select surrogate individuals/species for auto-
recognition of behavioural modes in tri-axial acceleration studies.

MATERIALS AND METHODS
Equipment

To record animal movement patterns, tri-axial accelerometer data
loggers were used (G6A, 40×28×16.3 mm, 16 MB memory, 7.3 g
mass, 18 mg accelerometer resolution; CEFAS Technology Ltd,
Lowestoft, UK). The accelerometer was positioned on the dorsal
surface of the neck in the orientation: x, anterior–posterior; y, lateral
axis; z, dorsal–ventral (hereafter described as surge, sway and heave)
(Shepard et al., 2008), and configured to sample acceleration once
per second (1 Hz).

Developing the behavioural mode classification module
This study was carried out under a University of Queensland Animal
Ethics permit (SBS/300/12) and Natural England Badger Licence
No. 20112793 held by the RSPCA, UK.

The animal used in this study for the development of the
behavioural mode classification module training was a well-trained

domestic dog (spaniel–poodle cross; Canis lupus familiaris Linnaeus
1758). The accelerometer was placed on the back of the dog’s neck
and secured on top of the fur using two strips (5×15 cm) of cloth
tape (Tesa, Eastern Creek, NSW, Australia) applied in a cross
formation. The tag was secured to prevent micro-movement. Animal
behaviours were simultaneously monitored using a digital hand-held
camcorder (JVC 3610). The dog performed the following
behavioural modes on command: running, walking, standing, sitting
and sternal recumbency (lying down on the front). Each behaviour
was performed continuously for 60 s. Acceleration was recorded
whilst the animal was simultaneously videoed at 25 frames s−1.

The acceleration data were downloaded using the G5 Host
software (Version 6.4 CEFAS Technology Ltd), and exported as a
comma separated value (CSV) file. Each acceleration sample was
matched to the appropriate video frame through the time-stamp, and
then by viewing the video, each of the acceleration samples was
labelled with the appropriate behaviour (Fig. 1). Once the data
streams had been annotated, the following equations were applied
to extract the feature vectors relevant for each behavioural mode.

Eqn 1: standard deviation (s.d.) – a measure of the signal spread
along each axis:

Eqn 2: signal magnitude area (SMA) – a measure of movement
intensity within all three axes (see Khan et al., 2010):

Eqn 3: waveform length (WL) – the total amount of variance within
the signal through the cumulative measure of amplitude, frequency
and duration :

The fast Fourier transform was also used, which is a routine procedure
used to convey respective frequency domain information of a time–
domain waveform (Kay and Marple, 1981; Campbell et al. 2006).

These four algorithms were the n-dimensional vectors that
created the acceleration waveform for surge, sway and heave. Each
equation was applied within a 4 s moving window with a 2 s overlap.
Once the acceleration feature vectors for each of the behavioural
modes were established, the classification training data set:

was prepared, where xi is the i-th set of feature vectors for the i-th
window, and yi is the corresponding label or behavioural mode for
the i-th window. Next, the support vector machine (SVM) was
applied for classification training of a behavioural classifier, which
was built by optimising the following minimisation problem –
minimise (Eqn 5):
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Fig. 1. Behavioural mode annotation of the raw tri-axial acceleration data
stream before designation of the feature vectors. The acceleration data
were collected from a domestic dog, and annotated manually whilst
simultaneously viewing the dog’s behaviour by video. All acceleration
samples within each section (red dashed lines) have been designated as
representing that particular behavioural mode.
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where C is a positive regularisation constant controlling the trade-
off between margin and training error, w is the vector of coefficients,
b is a constant and ξi is the slack variable which measures the degree
of misclassification of xi. The minimisation problem can be solved
using the method of the Lagrange multipliers – minimise (Eqn 6):

subject to:

In order to solve this problem, Eqn 6 is transformed into its dual
problem – minimise (Eqn 7):

subject to:

where K(xi,xj) is the kernel function which denotes an inner product
in feature space due to the fact that implicitly mapping input data
into a high dimensional feature space makes it possible to define a
similarity measure from the dot product in feature space. The kernel
function is denoted as:

Detailed descriptions of the supported vector machine (SVM)
algorithms used in this study can be found elsewhere (Boser et al.,
1992; Campbell and Ying, 2011; Abe, 2005). To evaluate the
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behavioural classification module, a web-based graphical user
interface was developed (SAAR) (Gao et al., 2013). A number of
these software packages are available on the internet; some require
computer programming skills (Libsvm; see supplementary material
Fig. S1) whilst others provide a user interface for viewing and
assessing results (SAAR, Weka; see supplementary material
Fig. S1).

Using the classification module to identify and quantify
behavioural modes in test species

To test the extent by which the classification module could identify
behavioural modes in the acceleration data collected from other
individuals, a range of species were chosen to represent a variety
of body forms and gaits. Each differed to a different extent from
the surrogate individual upon which the behavioural classification
module was built. These included: an Australian dingo, Canis lupus
dingo (Meyer 1793); a Eurasian badger, Meles meles (Linnaeus
1758); a Bengal tiger, Panthera tigris tigris Pocock 1929; an African
cheetah, Acinonyx jubatus (Schreber 1775); an American alligator
Alligator mississippiensis Daudin 1802; a hairy-nosed wombat
Lasiorhinus krefftii (Owen 1873); an Eastern grey kangaroo
Macropus giganteus (Shaw 1790); and a short-beaked echidna
Tachyglossus aculeatus (Shaw 1792) (Table 1). The accelerometer
was attached to each individual in roughly the same locality as it
was positioned on the surrogate animal (dorsal surface behind the
head). It was ensured that the device x-, y- and z-plane orientations
were identical to those used in the surrogate.

To enable tag attachment, each animal was first distracted with
the appropriate food source. Then, whilst the animal was feeding,
the accelerometer was taped onto its back at the appropriate
location. By using long lengths of cloth tape, it was possible to attach
and secure the tag with minimal disturbance to the animal. Once
the tag was attached, each animal was released into a large open-

Table 1. The measurements for each animal used in the study

Body mass (kg) SL (cm) SH (cm) SL:SH

American alligator 18.2 92 9 10.22
Bengal tiger 91.2 179 57 3.14
African cheetah 43.0 108 43 2.51
Australian dingo 18.0 58 25 2.32
Domestic dog 14.0 54 24 2.25
Short-beaked echidna 4.2 43 6 7.16
Eastern grey kangaroo 29.5 113 15 7.53
Eurasian badger 25.0 48 12 4.0
Hairy-nosed wombat 23.0 63 12 5.25

SL, spine length; SH, spine height above the ground.

Table 2. The process by which specific behavioural modes may be identified and quantified in tri-axial acceleration data

Step Task Procedure

1 Collect training data. Simultaneously collect acceleration data and video whilst animal 
performs required behavioural modes.

2 Annotate behavioural modes onto the data streams. Manually match video frames with acceleration samples.
3 Extract the feature vectors that relate to each behavioural mode. Apply Eqns 1, 2, 3 and 5 to the annotated acceleration data streams.
4 Build the classification module. Apply an SVM algorithm to the feature vectors with annotations.
5 Collect test data. Attach acceleration device to animal.
6 Extract the feature vectors from the test acceleration data stream. Apply Eqns 1, 2, 3 and 5.
7 Apply the classification module to the test data. The SVM algorithm will annotate behavioural modes from the test data 

based upon the feature vectors and an acceptable recognition
threshold.

SVM, supported vector machine.
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air enclosure similar to its natural environment. The tri-axial
accelerometry data were recorded at 1 Hz, and the animal was
simultaneously videoed using a hand-held camcorder (25 frames s−1)
for a 60 min period.

The surrogate trained behavioural classification module was then
applied to the acceleration data collected from each species. The
behavioural classification module examined the feature vectors
associated with each tri-axial sample of acceleration within a 4 s
sliding window with a 2 s overlap. Based on these feature vectors,
the SVMA within the module assigned the sample to one of the
five behavioural modes (running, walking, standing, sitting or sternal
recumbency), depending upon which it most closely resembled. A
step-wise procedure summary of the building and application of the
behavioural module classification is shown in Table 2.

Assessing auto-recognition capacity
The performance of the behavioural classification module in
identifying behavioural modes from other individuals was evaluated
using commonly used evaluation measures for machine learning
experiments (Powers, 2011). In brief, the classified samples were
either true positive (behavioural mode identified correctly), true
negative (correctly identified as another behavioural mode), false
positive (behavioural mode incorrectly identified) or false negative
(incorrectly identified as another behavioural mode). Evaluation was
undertaken by visualising the data streams, now annotated with the
classified behavioural mode, whilst simultaneously viewing the
video recording of the animal in real-time – and recording the
number and type of each classification. The scores for each
behavioural mode then underwent binary classification to assess the
accuracy, precision and sensitivity of the classification module for
each behavioural mode (Table 3).

The length of the spine and its minimum height above the ground
will influence the gait of a quadruped (Whittle, 2003). Here, we
measured the length of the spine and the lowest point of the spine
above the ground, hereafter termed the spinal length:height ratio

(SL:SH) (Table 1). The influence of SL:SH upon the surrogate
instructed SVMA behavioural recognition capacity (accuracy,
precision and sensitivity/recall) was assessed using linear regression.
A run test was used to ensure there was no departure from linearity.

RESULTS
All five of the behavioural modes (running, walking, standing, sitting
and sternal recumbency) were identified in eight of the nine test
subjects using the behavioural classification module built using
acceleration data collected from the domestic dog. These were the
dog, dingo, badger, tiger, cheetah, wombat, kangaroo and echidna
(see supplementary material Fig. S1). Sitting, sternal recumbency
and standing were all predicted by the classification module but
because these were visually indiscernible in the alligator it was not
rational to undertake the binary classification for this species. The
classification module had the highest capacity for behavioural mode
recognition (>95%) when operating upon acceleration data collected
from the same species as the surrogate (Fig. 2). Behavioural
classification capacity remained high (>90%) for a different species
(cheetah) if the SL:SH was similar to that of the surrogate, but was
reduced (80–90%) in species (tiger, badger, wombat) whose SL:SH
was 1.5- to 2-fold greater than that of the surrogate. Behavioural
classification capacity was poor for individuals whose SL:SH was
greater than 3-fold (kangaroo, echidna) that of the surrogate.
Overall, there was a significant negative linear relationship (run-
test, P=0.1556; F1,22=39.45, P<0.01) for the difference in SL:SH
between that of the surrogate and the study species and the
performance of the behavioural classification module (Fig. 3).

DISCUSSION
This study describes a procedure whereby a behavioural
classification module trained upon acceleration data collected from
one individual can be used to identify and quantify behavioural
modes in different individuals and even different species. A
practical use for this technique would be to identify and quantify

The Journal of Experimental Biology 216 (24)

Table 3. The binary classification matrix used to determine the capacity of the domestic dog behavioural classification module for defining
running, walking, standing, sitting and sternal recumbency in acceleration recorded from other species

Measure Formula Intuitive meaning

Accuracy (TP+TN)/(TP+TN+FP+FN) The overall percentage of behavioural modes predicted correctly.
Precision TP/(TP+FP) The proportion of positive predictions that were actual behavioural modes.
Sensitivity TP/(TP+FN) The proportion of actual behavioural modes that were predicted as positive.

TP, true positive; TN, true negative; FP, false positive; FN, false negative (see Materials and methods for explanation).
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Fig. 2. The capacity of the domestic dog behavioural
classification module to identify behavioural modes in
acceleration collected from other individuals/species (black,
accuracy; light grey, precision; dark grey, sensitivity/recall). Bars
represent means ± s.e.m. for each of the behavioural modes
(running, walking, standing, sitting and sternal recumbency).
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behavioural modes in free-ranging individuals that are difficult to
visually observe or when no captive subjects of that species are
available (e.g. Ethiopian wolf, Canis simensis) (Gottelli and
Sillero-Zubiri, 1992).

The performance of the behavioural classification module was
highly accurate for individuals of the same species and remained at
over 80% for quadruped species that were considerably different in
body size and were phylogenetically distant from the surrogate species.
For each study species we measured SL:SH as the ratio between spine
length and minimum spine height above the ground. These SL:SH
metrics were proficient, but we recognise that more sophisticated
measures of gait (Whittle, 2003; Halsey et al., 2008) may well produce
performance improvement in the classification module. By chance,
the dog had the lowest SL:SH of all species studied, and therefore as
the SL:SH of the test subjects increased over that of the dog, the
capacity of the SVM algorithm to distinguish each behavioural mode
was reduced in a linear manner. This was expected because the
speed–dynamic acceleration relationships change due to morphological
differences between species (Bidder et al., 2012), which result in
variable patterns in dynamic acceleration (Shepard et al., 2008). In
practical terms, this leads us to conclude that optimum performance
in inter-specific classification species will occur for species with a
SL:SH ratio no greater than 2-fold the surrogate’s SL:SH ratio.

To create the feature vectors from the acceleration data and apply
the SVM algorithms we used a web-based program (Gao et al.,
2013). Deterioration in software performance at high sampling rates
limited the resolution of the acceleration data that could be processed
in real time to 1 Hz. This rate of acceleration sampling is considered
low (Ropert-Coudert and Wilson, 2004), and sampling rates greater
than 8 Hz are generally used for recording acceleration (Martiskainen
et al., 2009; Halsey et al., 2011b). Nevertheless, even at 1 Hz the
behavioural classification module was proficient in identifying five
different behavioural modes in species with a SL:SH similar to that
of the surrogate species. To our knowledge this method is the only
one to be effective at such low sampling frequencies; however, we
acknowledge that at higher sampling frequencies the described
methodologies in this paper should enable the automatic recognition
of less predictable behaviours such as prey striking, digging or
copulation.

Tri-axial acceleration data collected by animal-borne devices
contain a wealth of biological information about the study species.
However, the volume and complexities of the tri-axial data streams
are perhaps limiting their re-use and exploitation by the non-
specialist. We hope that the procedures documented in this study
aid researchers to access and apply the appropriate mathematical
algorithms, and as such, facilitate the development of this exciting
area of animal biology.
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