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Summary

The flight of a butterfly, Pieris melete, was observed in the take-off phase and was
analyzed theoretically from aerodynamic and kinetic viewpoints. A vortex method,
which was recently developed by the present authors, was used in this analysis.

During the downstroke, the butterfly generates mainly a vertica force. The
acceleration of the butterfly’s body during the first half of the downstroke is especialy
large, and this acceleration is mainly caused by alarge unsteady pressure drag acting on
the wings. This large unsteady pressure drag is generated by the vortices shed into the
flow from the outer edges of each wing of a pair; it isincreased by the interference effect
between a pair of wings when the opening angle is small. This force can be estimated by
the previous quasi-steady analysis when the force coefficient is changed to 4. In addition
to the unsteady pressure drag, an aerodynamic force due to added mass is generated and
thisisalso increased by the interference effect between apair of wings.

During the upstroke the butterfly generates mainly a horizontal force. The change of
direction of the forces during the down- and upstrokes is controlled by variation in the
inclination of the stroke plane. The moment, which is created by the aerodynamic force
acting on the wings and by abdominal motion, changes the thoracic angle, that is the
inclination of the stroke plane.

Introduction

A butterfly has low-aspect-ratio wings, which are not suitable for cruising flight. Much
attention has been paid to the flight mechanism of such alow-aspect-ratio wing (Betts and
Wootton, 1988; Dudley, 1990). A much larger force coefficient than the quasi-steady-
state value was obtained by observations of flight in the field (Dudley, 1991). A butterfly
usesa‘peel’ mechanism. The unsteady vortices and the interference effect play important
roles in this mechanism (Ellington, 1984a; Kingsolver, 1985; Brodsky, 1991).
Brackenbury (1991) carried out careful observation of take-off and climbing flight in
butterflies and showed that the hindwings and abdomen act to increase the interference
effect between apair of wings. Bocharova-Messner and Aksyuk (1981) suggested that the
jet forcedueto a‘tunnel’ between apair of wingsisimportant in the flight of a butterfly.

Key words: butterfly, Pieris melete, take-off flight, vortex method, ‘near fling’ .
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The characteristics of the three-dimensiona ‘fling' mechanism, which is equivalent to
the ‘peel’” mechanism using rigid wings, were investigated. The interference effect
between a pair of wings was made clear quantitatively and a numerical method of
calculation was developed to analyze the variation of the pressure distribution on the
wing (Sunadaet al. 1993). In this paper, thisnumerical calculation techniqueisapplied to
astudy of the take-off flight of the butterfly Pieris melete.
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Abbreviations

chord length (m)

non-dimensional half-distance between the rotation (flapping) axes of right
and left plates (wings), do/Xip

half-distance between the rotation (flapping) axes of right and left plates
(wings) (m)

mass of wing element (kg)

aerodynamic force generated by aright ‘whole wing (N)

aerodynamic force generated by body (N)

normal component of aerodynamic force acting on a right ‘whole’ wing
(N)

tangential component of aerodynamic force acting on aright ‘whole’ wing
(N)

force transmitted from thorax to abdomen (N)

force transmitted from thorax to wing (N)

acceleration due to gravity, 9.81ms-2

transformation matrix as defined by equation B2

i, j component of matrix H

inverse matrix of H

i, j component of matrix Hjj!

moment of inertia of thorax around Y-axis (kgm?)

moment of inertia of abdomen around Y-axis (kgm?)

moment of inertiaof aright ‘whole’ wing around Y-axis (kgm?)

moment of inertiaof aright ‘whole’ wing around y-axis (kgm?)

correction factorsin the simple method

quasi-steady force coefficientsat a=0

length of thorax (m)

distance between the centre of gravity of the thorax and point G as shown
in Fig. 18A (m)

length of abbdomen (m)

distance between the centre of gravity of the abdomen and point G as
showninFig. 18A (m)

aerodynamic moment acting on aright ‘whole’ wing around Y-axis (Nm)

inertial moment acting on thorax around Y-axis (Nm)

aerodynamic moment around rotation axis (Nm)

moment transmitted from thorax to abdomen around Y-axis (Nm)
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inertial moment acting on abdomen around Y-axis (Nm)

moment transmitted from thorax to aright ‘whole’ wing around Y-axis
(Nm)

inertial moment acting on aright ‘whole’ wing around Y-axis (Nm)

abdominal mass (kg)

body mass (kg), ma+mr

thorax mass (kg)

total mass of a butterfly (kg) mg+mw

wing mass (kg)

transformation matrix between (Xs, Ys, Zg) and (X, Y, 2)

necessary power (W)

transformation matrix between (Xs, Ys Zs) and (x¢ y¢ z9

aerodynamic torque aroundy-axis (Nm)

gravitational torque aroundy-axis (Nm)

inertial torque aroundy-axis (Nm)

transformation matrix between (x¢ y¢ z8 and (%2, y2, 22)

Reynolds number

transformation matrix between (X, y, z) and (X2, y?, 22)

period of one beating cycle ()

time (s)

shape factor that is proportional to added mass (m?#)

shape factor that is proportional to added moment of inertia (m®)

X, y and z components of inflow velocity on the wing due to wing and
body motion (ms 1)

coordinate system which is parallel to the coordinate system (Xg, Yg, Zg)
and the origin of which islocated at the centre of gravity of the butterfly
body

earth-fixed coordinate system

position of the point G

wing-fixed coordinate system

chordwise position of centre of gravity of wing element (m)

opening angle (rad)

flapping angle (rad)

value for wing element

moment transmitted from neighbouring wing element to awing element
(Nm)

shear force transmitted from neighbouring wing elements to a wing
element (N)

twist angle (rad)

lead-lag angle (rad)

abdominal angle (rad)

flapping axisangle (rad), @1+ A

thoracic angle (rad)

feathering angle (rad)
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3

feathering angle defined by DE (rad)

geometrical angle of attack defined by equation 2 (rad)
wing mass of unit area (kg 2

angle between flapping axis and thorax axis (rad)
kinematic viscosity (n?s 1)

angle defined in equation C2 (rad)

density (kgm'3)

DT M >3 DD

Subscript or superscript
air
fluid or value defined by AB
value defined by CD
inertial component
value calculated from data of motion analysisaone
normal force
tangential force
value calculated by the simple method
wing tip
value calculated by the vortex method
water
X, Y, Z component
dynamic pressure
impulsive pressure

Sz T T e
T W -4

NP Xs ™
=<
N

Motion analysis of the take-off phase of the flight of a butterfly

The take-off phase of the flight of the butterfly Pieris melete was observed and filmed
with a high-speed video cameraduring thefirst period of beating motion. The geometrical
characteristics of the butterfly are shown in Fig. 1 and Table 1.

Because the geometrical relationship between the fore- and hindwings is changed
during flight, the planform shapes observed in the photographs were averaged as shown
in Fig. 1. Inflight, the butterfly bendsits body at apoint G. Thispoint G isin accordance
with the centre of gravity of the body when the body is stretched. The body isdivided into
two parts, the thorax (including the head) and the abdomen, at the point G, as shown in
Fig. 1. The recorded movements of the point G in the inertial frame are shown in Fig. 2.
When the body bends, there is a small difference between the point G and the true centre
of gravity of the body. Referring to Fig. 18, the position of the true centre of gravity is
given asfollows:

1
Xe= o+ m{ It nonoEEr— Al orosEL, "

1 . .
Fg= E’G—mfmzizjcsm@ﬁ AL CETIELY
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Fig.1. Schematic configuration of Pieris melete.

Table 1. Geometric characteristics of the butterfly

Variable Symbol Units Value
Total mass Mot kg 6.93 10°5
Thorax mass mr kg 3.6 10°
Abdomen mass ma kg 26105
Wing mass mw kg 7.3 106
Wing area Sw m2 1.36"10°3
Wing length Xiip m 3.0 102
Aspect ratio AR=4x:ip?/Sw 2.6

Wing loading Mot/ Sw Nm-2 0.5
Thorax length It m 9.1 103
Abdomen length A m 12102
Position of thejoint of forewing l¢ m 5.6 103
Position of the joint of hindwing Ih m 35103
Moment of inertia of thorax around the centre of gravity It kg m? 6.3 10710
Moment of inertiaof abdomen around the centre of gravity — Ia kg m? 8.4 1010
Moment of inertiaof aright (Ieft) wing around flapping axis Iy kg m? 6.7 10710
Period of one beating cycle T s 8.8 102

The thoracic angle ®1 and the abdominal angle Oa are defined as the angles from the
horizontal, as shown in Fig. 3A. The time variations of ®1 and ®a are shown in Fig. 3B.
This figure shows that the thorax is directed horizontally during the downstroke, and that
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Fig. 2. Time variation of the position of point G.
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Fig. 3. Thoracic angle and abdominal angle. (A) Definition of @1 and ©x; (B) time variation

of O7 and Oa; (C) time variation of @t and Oa.
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Fig. 4. Flapping angle. (A) Flapping angle 1, Bn and B(t); (B) angular velocity, B; (C) angular
acceleration, B.

it isvertical during the upstroke. A similar variation of the thoracic angle was observed
qualitatively by Brackenbury (1991). The physical explanation of this variation will be
given later in this paper. Near the beginning of downstroke (t<0.2T) and near the end of
the upstroke (t>0.8T); the abdominal angle cannot be observed because the wing conceals
the abdomen. The algebraic functionsindicated by solid lines are estimated from discrete
values of O (circles) and O (squares). In Fig. 3C the angular accel erations obtained by
differentiating these functions are indicated by the solid line (©1) and the broken line
(On).

The wing motions are described by two vectors of the fore- and hindwings which are
represented by vectorsAB and CD, respectively, as shown in Fig. 1. The flapping angle
and the lead-lag angle { of AB and/or CD are defined by equations A4 and A5, when
AB and/or CDis coincident with the x”-axis. The coordinate systems used in this paper are
defined in Appendix A and Abbreviations. These flapping angles are shown by circles
(AB, Bf) and squares (CD, Bn) in Fig. 4A. It is observed that the phase of Bf is always
ahead of that of Bn; that i, the flapping motion of AB is always ahead of that of CD. This
means that the butterfly uses a ‘ peel’ mechanism (Ellington, 1984a; Kingsolver, 1985).
The flapping motion, where the forewings are always ahead of the hindwings, causes a
‘tunnel’ between the right and left wings near the beginning of the downstroke
(Bocharova-Messner and Aksyuk, 1981). The ‘tunnel’, however, is not formed near the
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Fig. 5. Lead-lag angle.

beginning of the upstroke, because the flapping angles, Bs and B, do not reach - w/2. This
isdifferent from the observation of Bocharova-Messner and Aksyuk (1981). The lead-lag
angles for AB, s (circles) and CD, ¢ (squares) are shown in Fig. 5. It is observed in
Fig. 5that the lead-lag angle of the hindwing ¢n is roughly constant, {n=- 0.6, and that the
lead-lag angle of theforewing (s during the downstrokeislarger than that of the upstroke.
This means that the geometrical relationship between the fore- and hindwingsis changed
slightly during the flight. The butterfly moves the fore- and hindwings almost as one
wing, so that the two arereferred to asa‘whole’ wing in this paper. The difference in the
phase of the flapping angles, Bs and Bn, causes a twist of the ‘whole’ wing. This twist
angle  is defined as the angle between the vector DE and the flapping axis, as shown in
Fig. 1. The definition of the vector DE is given in Appendix B. The feathering angle at
x=0.7x:p is, then, defined as 6t=m/2- 3. The time variation of the feathering angle 6, and
itsanalytical expression 6o 7(t) areshownin Fig. 6. It isobserved that the feathering angle
isamost w/2 and is larger during the upstroke than during the downstroke. It is assumed
here that the wing istwisted linearly from root to tip. Thus, the feathering angle of awing
element at xis expressed as.

&x}j=%+ (ﬂ:. 7— %)fﬁ'ﬂ.?ﬁ@j. i3

In order to calcul ate the aerodynamic and inertial forces acting on the wing, the motion of
the ‘whole" wing is determined as follows. The analytical expressions of three angles
defined in Appendix A, B, { and 8, which determine the x,y,z coordinate system, are
assumed to be equal to the measured values B¢, 0 and 6, respectively. By differentiating
these functions of time, the flapping angular velocity B and the feathering angular
velocity 6 are obtained. These values near t=0 are extrapolated so that B(t=0) and 6 (t=0)
become 0. By differentiating 8 and 6 again, the flapping angular acceleration 8 and the
feathering angular acceleration 6 are obtained. The values of B and § are shown in
Fig.4B,C, respectively. The broken linesin these figures indicate the extrapolated part.
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Fig. 6. Feathering angle. 6h, observed values; 60.7(t), analytical expression.

The geometrical angle of attack of the wing element at x, 6(x), is defined as the angle
between the chord line and the inflow velocity at (x,y = 0). It isexpressed as:

-:“im=-:nf1|i—'”L), =)

T VR

where
Vo= —wHUH o1+ HnH e+ Hof Lo — 35H Lo - Zaf 1o, } “
Ve=—f HLH Y1 + HoH Yo+ Ha H Laa) — Xl 91— Zgf bas

In the above equations, Hij isthe i,j component of matrix H as defined in Appendix B.
The calculated results of the geometrical angle of attack at three span positions, x=
0.25xtip, X=0.5x¢ip and x=0.75xip, are shown in Fig. 7. It is observed that the geometrical
angle of attack is larger than 1rad»60° during most of the stroke. This means that drag
force (the force parallel to the inflow velocity) is more dominant than lift force (the force
perpendicular to the inflow velocity). Therefore, the numerical calculation method
developed by the present authors (Sunada et al . 1993) is applied to the analysis of the
flight of areal butterfly.

Fluid-dynamic for ce acting on a butter fly wing

Experiments were performed to measure the fluid-dynamic forces and moment acting
on arotating platein front of amirror in awater tank. The shape of the plate was similar
to that of a real butterfly wing as shown in Fig. 8 and Table 2. A small weight was
attached to the plate in order to generate an initial rotating moment. The initial opening
angle was set at 0. The non-dimensional distance d between the rotation axis of the plate
and the mirror was selected to be d=0.02, 0.06, 0.09, 0.19 and ¥. The norma and
tangential forces, Fn and Fs, and the moment around the rotation axis, Mg, acting on the
plate during ‘near fling’ were measured. Details of the experimental apparatus and the
procedure are given in Sunada et al. (1993).
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Fig. 8. Plate shape for fluid-dynamic tests.

Fig. 9A—C shows the time histories of opening angle «, angular velocity « and angular
acceleration &. In Fig. 9B,C, the results of two particular cases are given; the results of
other cases are located within these lines. The angular acceleration at t=0 becomes
smaller as the distance d becomes smaller. The angular velocity at &=0iscommon in al
cases. The Reynolds number at ¢=0is given by:

Re=0. 75X1ipoi(C)x= 0.75x;,/vw= 4~ 103 (5)

The above Reynolds number is almost equal to that of the flight of areal butterfly, Re=
- 0.75xiip(B)3= 0(C)x= 0.75x,/va. The normal and tangential forces are shown by the shaded
areain Fig. 10A for al cases. The relationship between the moment around the rotation
axis Mt and the opening angle o iscommon for al cases, and thisrelationship is shown by
the bold line in Fig. 10B. The position of the centre of pressure Mi/Fnxiip is shown in
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Table 2. Geometric characteristics of a test plate and a weight attached to the plate

Variable Symbol Units Vaue

Plate
Mass Mp kg 210102
Length Xtip m 110°10°1
Plate thickness tp m 217103
Centre of gravity XCG m 4.66" 102
Area S m? 8.00"10° 3
Volume Vp m3 1.68"10°°
Density Pp kgm-3 1.25 103
Moment of inertia lp kgm? 6.5 105

Weight
Mass My kg 9.4 103
Position l1 m 25102
Position 2 m 37102
Height I3 m 2.0°102
lw=1/2Q(1 +12)2 +132 m 33102
p= tar {13/(11+12)} rad 031
Thickness tw m 34103
Volume Vi m3 8.2 107
Density pw kgm 3 1.15 104
Moment of inertia lw kgm? 1.0 10°°

Time, # (s)

Angular velocity, & (rad s71)
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Fig. 9. Motion of the plate. (A) Time history of opening angle «; (B) time history of angular
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velocity a; (C) time history of angular acceleration a.
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the simple method (d=0.02). (C) Position of centre of pressure obtained experimentally.

Fig. 10C. The values of Fy are distributed in the shaded area of Fig. 10A. Hence, the
average value of Fy at each opening angle is used to determine the position of the centre
of pressure. The position of the centre of pressureis|ocated near 0.5x;ip at the beginning
of the motion and moves slightly towards the wing tip as the opening angle increases. A
typical position of the centre of pressure may be represented by:

x=0.56xtip . (6)

The solid linesin Fig. 10A,B show the results of the vortex method (Sunada et al. 1993)
for atest case with d=0.02. The configuration of the mathematical model is shown in
Fig.11, where a plate shape similar to the real butterfly wing is represented by a simple
form in order to simplify the calculation. The bound vortex is settled on the plate and the
wake of the vortex sheet ison the surface swept by line DE. Thetotal values of the normal
force and the moment around the rotation axis, (Fn)v and (My)y, consist of those created
by dynamic pressure, (Fn1)v and (Ms1)v, and those created by impulsive pressure, (Fn2)v
and (Ms2)y. It is observed in Fig.10A,B that the total values obtained by the present
vortex method are in good agreement with the measurements of norma force and
moment obtained experimentally. Using the relationship between the tangential force and
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the normal force due to dynamic pressure shown in Fig. 10A, it is assumed that the
tangential forceisgiven as.

(F9v=-0.2(Fn1)v - (7)

The calculated tangential forceis compared with the measured resultsin Fig.10A. Again,
good agreement is obtained. Therefore, it is verified that by using the present calculation
method it is possible to predict the normal and tangential forces and the moment around a
rotation axis acting on a plate with a shape similar to that of areal butterfly wing.

The variation of shape factor Vi, which is proportional to added mass (Sunada et al.
1993), with distanced is calculated by the vortex method and is shown in Fig. 12A. This
figure shows the results with « =0. When the distance d becomes smaller, the shape factor
becomes larger. The relationship between Ve/Ve(d=¥) and distance d isindependent of
plate shape. It should be noted that Ve(d=¥) is a shape factor that has no effect on the
interference between the right and left plates. The position of the centre of pressureis
almost independent of distance d. This means that the variation of Vi with distance d is
similar to that of V. The ratios between measured and cal culated shape factors Vi and Vv
are shown in Fig. 12B. Because these ratios are amost 1 for al values of d, the
effectiveness of the present calculation method is verified for the real butterfly wing shape.
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Fig. 12. Shape factor of plate C, (a=0). (A) Shape factor Vg, which is proportional to added
mass, and position of centre of pressure versus non-dimensional distanced; (B) ratios between
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measured and cal culated shape factors.

Since the vortex method presented above requires a large amount of computational
time, asimpler method is examined in this section. This simple method has been used to
calculate fluid-dynamic forces acting on a beating wing (Weis-Fogh, 1973; Ellington,
1984b; Sunada et al. 1993). The method uses a plate element parallel to the rotation axis,

Smple method

asshownin Fig. 8.

The fluid-dynamic normal force acting on the plate element is composed of two kinds
of forces. Oneis proportional to the second power of the inflow velocity, (Fni)s, and the

other is proportional to the acceleration of the inflow, (Fn2)s. Therefore:

(AEws=(dFriis+ (dFars,

(Ferls=eaf o Ve | Vel oot
(AFurz)s = (o Vo (e ViRt o oty V(= 03}

V! Vinip for plate C
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For the present fluid-dynamic tests, the two values, V,and V, are given by:
Vo=xd and Vo=xd. 9)

In the above equations, the correction factors, ki and ko, are introduced to improve
the accuracy of the simple method, as explained later. The quantity Vr(d,o)/Ve(d=¥)
is also introduced in order to include the interference effect between right and left
plates on added mass. By integrating the force and the moment around the rotation
axis acting on the plate element along the x-axis, the normal force and the moment
around the rotation axis acting on a whole plate are obtained with the following
equations:

( Ffvs= (Faeths +{ Far’s,

(Fwls= Je(dFals, (Famls= [f9dFms,
(Mps= (Mhs+ (Mels, (10

(Hs= R {tafdey Vel o A<},

(Mehs= R {Fp  FeVond (dele{ VR oy Vo= i} . |

The value of k2 is determined with the following equation:
LA
fg= V[ d'= o) / % [ eyl =006 {11y
0

The quasi-steady force coefficients on the plate element (Sunada et al. 1993) are given
by:

Ry = Fa = OV [ o e eyt = 4.2, } -

R = Wl = O [t gty S k= 3.7
The value of kj is defined as the mean of the above two values, ki  and kv . Therefore:
ki1=4.0. (13)
Asin equation 7 of the vortex method, the tangential force (Fs)sisgiven as:

(F9)s=-0.2(Fn)s. (14)

Using equations 8-14, the calculation is made for the case d=0.02 of the fluid-dynamic
tests. The results are shown by dashed linesin Fig. 10A,B. The results obtained by this
simple method are in good agreement with the experimental results. Therefore, this
simple method is shown to be a convenient and practical tool to use to estimate the
aerodynamic forces acting on real butterfly wings.
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Flight performance of a butterfly
Acceleration of the centre of gravity of the body in the take-off phase

Assuming that the left and right wings beat symmetrically, the following equation of
motion of abutterfly is derived from Appendix B:

0 Frx Fan¥
d} b
P —o fOE=h [0 | +2 ]| 0 -:1:r;+z[ o |d=. il
u]
g EFrr Fanr

The first term in the right-hand side of this equation shows the gravitational force acting
on the butterfly, and the second term shows the inertial force acting on a pair of ‘whole

wings. The value of myt is measured and the value of inertial force can be estimated by
using the data of the motion analysis alone. Thethird term is aerodynamic force acting on
apair of ‘whole’ wings. By using equation 15, the aerodynamic forces estimated by the
motion analysis, (Fair,x)m and (Fair,z)m, are obtained:

{ Fain X134 == [ Faiy irlz= émms;i—zf D58 - FLY,
(18
(Foan 1o m [ 0 Far = %s{%{ﬁﬁjz—ﬂ}— R,

These aerodynamic forces are also obtained theoretically by the two methods of
numerical calculation, the simple method and the vortex method, asfollows. The distance
between the flapping axes of right and left ‘whole’ wingsis 0.1xip and the value of d is,
then, 0.05 in the following calculation.

Smple method
The acceleration of theinflow isgiven by:

Vo=—af H i S+ Tul S Bl Yo+ o be + Dol bas Tl L)
— e by —Ferr by Eelhe - ZgH L. (17
Theforces acting on awing element, dFn1 and dFy, are obtained by using equations 4, 8,

11, 13, 14 and 17. Referring to the relationships derived in Appendix A, the aerodynamic
forcesin the X and Z directions are calcul ated as follows:

(Foa ) = [ Foa ol

= oo s e oo Aol Frs — sin®lsece 8 [ Swesin Al Frs— 0. 25inssing [HedFrs ,
( FogZ)s = e Foa 2l

= sinitls [Fpcos dF s + vosBlseos B [HrsinAdFrs— 0. oosElsing [P .

(15

Vortex method
In the vortex method, it is assumed that the ‘whol€’ wing is planar and the feathering angle
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0 is60.7(t) for al positions of x. Three components of the inflow velocity due to wing and
body motions on apoint (X, y, 0) of a‘whol€ wing are given by the following equations:
Vo= —HUE I+ Ha e+ Hnd g —wHel - + HelE e |
+ Hagf -l — Xei -l - Zaha,
Vo= —EnE o+ Ha e+ InHln) -y Had b + HaH e
+ M3zl ey —Xel1n — i 1n,
Vi=—aHuH 1o + HaHlag+ InH L —wWHid 1n + HaH 1
+HazH ey —XeH1n — ZafLag.

(19

Adding the above inflow velocity, the velocity induced by bound vortices on the other
wing and separated vortices from both the wings, the boundary condition, that is the z
component of the velocity is0, is satisfied. These numerically obtained forces, (Fn)v and
(F9)v, aretransferred to the (X, Y, Z) axes by using the relationship derived in Appendix
A, and the aerodynamic forces are expressed as follows:

( Fam X1y w [TeFarale= | FROV+ (Frv= (FiXv+ (Fre X + (Frev, } -
(Far IV mm (8 Faprzln={ Flp 2w+ (FRIWV= (FI X0 +( Fre xw +(Fr.xw,
where
(Frn,xiv = (FrWeos Breos§ —sind peos feing,
(Fre X = (Fraveos Srecs § —ain® peos fsing),
(Fr X = (FrvsinE =ing -

(ER, I = —( FrTviEin® oo §+ cos@peos Seind),
[ Elvz I = —( Fravisin® poos §+ cos@pcos Seing),
(Er i = (Frvcos@esin .

Results

Fig. 13A,B shows a comparison of the acceleration of the centre of gravity obtained
experimentally with the calculated accelerations obtained by using the two numerical
methods. The experimental values, (-Xe/g)w and (- Zg/g)m, are obtained by
differentiating equation 1 asfollows:

(—Higas —oig+ ——(mriroeos e+ minosn @
&+ BLd)

—MAG:CE@A@%—MACE&IL@A@AL
(24

{—E pigas= —i’ﬁg—ﬁ{mﬁﬂcﬁn@rﬁg—mﬁmm@r@r
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Fig. 13. Acceleration of the centre of gravity of the butterfly’s body. (A) The - Z direction;
(B) the- Xg direction.

The abdominal angle ®a was not measured during the periods 0<t<0.2T and 0.8T<t<T, as
stated before. During these periods, (- Xg/g)m and (- Zg/g)m are assumed to be - Xc/g and
- Zelg, respectively. The calculated results, (- Xe/Q)v, (- ZE/Q)v, (- Xe/g)sand (- Zg/g)s, are
obtained from equation 15 by using (Fair x)v, (Fair.z)v, (Fair x)s and (Fair,z)s It is shown
in Fig. 13A,B that the results of the two numerical methods agree with the experimental
results except for the first half of the upstroke. The agreement means that with the purely
theoretical methods it is possible to get an understanding of the flight of a butterfly. It
should be noted that the present theoretical models do not include any ‘tunnel’ effect
proposed by Bocharova-Messner and Aksyuk (1981). It is also indicated that the
difference between the results from the experiment and the vortex method is smaller than
that between the results from the experiment and the simple method. Fig.14A,B shows
- 2(Fix), - 2(F1,2), - 2(Fair, x)M, - 2(Fair z)M, - 2(Fair x)v, - 2(Fair,z)v and their components
given by equations 20 and 21. The value of - 2(Fair,z)v agrees fairly well with that of
- 2(Fair,z)m, and the value of - 2(Fair x)v agrees reasonably well with that of - 2(Fair x)m.
These agreements on aerodynamic forces result in the agreements on the accel eration of
the centre of gravity of the butterfly body. It is demonstrated in Fig. 14A,B that the
aerodynamic forces due to dynamic pressure, - 2(Fn1,z)v and - 2(Fni,x)v, are dominant.
The aerodynamic forces due to impulsive pressure, - 2(Fnz,z)v and - 2(Fnz x)v, are aso
large during thefirst half of the downstroke. Theinertial forces, - 2(F z) and - 2(F) x), are
much smaller than the aerodynamic forces. The upward vertical force is generated during
the first half of the downstroke. It was pointed out by Sunada et al. (1993) that the
aerodynamic forces are increased by the interference between a pair of wings when the
opening angle is small. The butterfly utilizes the large forces for generating the large
acceleration during the first half of the downstroke. The large acceleration may make it
easier for the butterfly to escape from a predator. During the other period of the stroke,
forward forceis generated. This change of direction of forceis due to the variation of the
inclination of the stroke plane, as discussed | ater.
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Fig. 14. Each component of force acting on the butterfly’s wings. (A) The - Z direction;
(B) the- X direction.

Thoracic angle

The equation of motion of a body rotating around the point G is given by Appendix C
asfollows:

(IT+21v)O7=1a0a+ M7 +Ma) +2Mw; +2Mair .

(23)

In the above equation, all the terms except 2Mair are estimated from the data of the motion
analysis. The value of 2Mair can be calculated from equation 23. Each component of this
equation isshown in Fig. 15. As stated before, the abdomina angle Oais observable duri ng
the period 0.2T<t<0.8T. Therefore, the moment due to the aerodynamic force acting on the
wings 2Mair is calculated only during this period. It is shown in Fig. 15 that the calculated
moment 2Majr dways raises the thorax. Thisis because the forewings are shifted forwards
during the downstroke and backwards during the upstroke, as shown in Fig.5. Therise of
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Fig. 15. Moment around the Y-axis.
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the thorax is suppressed by the moment transmitted from the abdomen to the thorax, - Mat=
Ma, +1 A®a. Hence, the butterfly utilizes the motion of the abdomen to change the thoracic
angle. The angle between the thoracic angle ®1 and the inclination of the stroke plane, Os, is
constant, as shown in equation A3. Therefore, the above mechanism which controls the
thoracic angle also controls the inclination of the stroke plane, and it causes the change of
direction of force acting on thewing in theinertial frame. If the stroke plane is kept constant
in space, the upward vertical force generated during the downstroke is cancelled by the
downward vertical force during the upstroke. Thisis because drag force, which isparalel to
the stroke plane, is dominant, as stated before. Therefore, the variation of the inclination of
the stroke plane during both the strokes is the key mechanism of butterfly flight.

Power

The inertial torques around the flapping axis Q; and the gravitational torque Qg are
given by:

fr=—T
o } (24)
05 = ~g wnsfioos Oy A,

The aerodynamic torque around the flapping axis Qa is obtained by three methods:
calculating Qa° (Qa)v=Ms by the vortex method; calculating Qa° (Qa)s=Ms by the
simple method; or obtaining Qa° (Qa)m from an anaysis of the body motion of a
butterfly. Qa° (Qa)m is obtained as follows. By adopting the same relationships as
equations 20 and 21, the normal force obtained by using only the data from the motion of
the butterfly is given by:

cosiEp siniEp
{ Eds= { Faim X { Faim )3 (25
cosd cosd

It is assumed from equation 6 that the centre of pressure is located at x=0.56x:ip. The
aerodynamic torque (Qa)m is obtained, therefore, asfollows:

=) 1=
fﬂaﬁmn.sﬁmp{ f d (Fantiae—— i urme% (25)

Fig.16 shows each component of the torque, Qi, Qg, (Qa)m, (Qa)v and (Qa)s Three
aerodynamic torques, (Qa)m, (Qa)v and (Qa)s, obtained with the above three methods
show reasonabl e agreement with each other. Theinertial and gravitational torques, Q, and
Qg, are much smaller than the aerodynamic torque, (Qa)m, or (Qa)v or (Qa)s. The
necessary power required to beat the wingsis given by:

r
Pe=r ||~ 0+ gre gorit

181070, Qa=(0aas
= 4 1.Tx107M8, Qa=(0dn. (27
21w 1079, Qa=(0as
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Fig. 16. Torque around the flapping axis.

Thereislittle difference among these three values of the necessary power obtained by use
of the three methods. The necessary power per 1kg body mass for the flight is estimated
to be about 30Wkg 1. This value is roughly equal to the average value obtained by
Dudley (1991) for the forward flight of butterflies.

Conclusion

New numerical calculation methods have been applied successfully to an analysis of
take-off flight of a butterfly. The theoretical prediction agrees well with the observed
butterfly motion. The acceleration observed during take-off flight is mainly due to the
pressure drag generated by the wings in ‘near fling’ motion. The butterfly utilizes the
interference effect in ‘ near fling’ motion to generate the large acceleration during the first
half of the downstroke. Thislarge acceleration can help the butterfly to take off suddenly.
The necessary power for this flight is estimated to be about 30W kg 1 bodymass. This
value is roughly equal to the average value obtained by Dudley (1991) for the forward
flight of butterflies.

The flight mechanism of the butterfly is determined to be as follows. The butterfly
changes the direction of the aerodynamic forces by changing the inclination of the stroke
plane. This variation in the inclination of the stroke plane is mainly due to the moment
created by the aerodynamic force acting on the wings and to the moment generated by
abdominal motion. The aerodynamic moment raises the thorax and this moment is
suppressed by abdominal motion during the second half of the downstroke and the first
half of the upstroke in the observed flight. The butterfly shifts the forewings forward
during the downstroke. This shift increases the wing area, that is the aerodynamic force,
and generates the aerodynamic moment which rai ses the thorax.

Appendix A
The geometrical relationships among the various coordinate systems used in this
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Fig. 17. Relationship between the coordinate systems.

paper, which are explained in Fig. 17, are discussed in this Appendix. An orthogonal
Cartesian coordinate system (Xg, Ye, Zg) is fixed with respect to the earth. The Zg-axis
isvertical and positive downwards. The coordinate system (X, Y, 2), the origin of which
islocated at the point G, is transferred in parallel from the coordinate system (Xg, YE,
Zg). Then,

AR A
Yo | = | ¥ | +050. a1y
ZE z

The coordinate system (X, Y, 2) is coincident with the coordinate system (Xg, YE, Zg) at
the beginning of beating motion.

The coordinate system (Xs, Ys, Zs) is defined by rotating the coordinate system (X, Y, 2)
about the Y-axis by Osas follows:

X cosiEly 0 sinrp Af X
¥ = o 1 0 i | mP | ¥ FiL
= —iniEy 0 oozt it Z5
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The angle ®sisgiven by:
Os=07+A, (A3)

where A is the angle between the flapping axis and the thorax axis, as shown in Fig. 1,
and is nearly approximated by A =0.5. The flapping axis is defined by two points, the
roots of the fore- and hindwings.

The coordinate system (Xs, Ys, Zg) isrotated about Xs-axis by - B and Xs, Ysand Zsare
then replaced by y¢ x¢and - z¢ respectively. The following equation is obtained:

An o 1 o = =
r| = cosf 0 —sin@ V| ma ¥, Y
ol —=ing 0 —cosf i i

The coordinate system (X2, y?, 22) is given by a rotation of { about the z¢axis as
follows:

x poed —sind 0 = x
¥ = | s ot 0| || =R (] (45
T 0 0 1 7 7

The coordinate system (X, v, 2) isfinally obtained by a rotation (6- m/2) about the x2-
axis:

= 1 ] ] x x
W= |0 =ng cosf v ms | ¥ | { A
Fd 0 —cosf =ind i i

The relationship between the coordinate systems (x, y, ) and (Xg, Yg, Zg), therefore, is
given by:

X5 =
¥E | =FoRS |¥ | + 0. [T
Ig i

Appendix B

Let (%, Y, 2) be awing-fixed coordinate system in this Appendix as follows. The x-axis
is perpendicular to the flapping axis and crosses the line BD. The flapping angle B of the
x-axis is defined by equation A.4 and is set to be Bt. The vector DE is determined to be
perpendicular to the x-axis, as shown in Fig. 1. The y-axisis defined as being paralel to
DE. The orthogonal Cartesian coordinate system (x, , 2) is thus determined.

A wing element on the right ‘whole’ wing shown in Fig. 18B is considered in order to
obtain the eguation of motion of the ‘whole’ wing. The centre of gravity of this wing
element has the coordinate (X, ya(x), 0) with respect to the (x, y, 2) axes.
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The coordinate (Xg, Yg, Zg) of the centre of gravity of the wing element with respect to
the earth-fixed axisis given by:

A x x
Ys | =P@s |wax)| + Cel =H |04 | + 082, (E1)
g 0 0
where
H=PQS. (B2

It should be noted that the above equation is derived from equation A7 in Appendix A by
using the relationship that R is a unit matrix. By differentiating equation B1, the
acceleration of the centre of gravity of thewing element is given by:

X =
7s =fﬂ—H o) | 42 @Y. (E3)
ZEg ]

The external force acting on the wing element is composed of the aerodynamic force
AF4r, the shear force transmitted from the neighbouring wing elements AS and the
gravitational force. This external force generates the acceleration of the centre of gravity
of the wing element asfollows:

i P
dee | ¥ | =dmE | peis) +m%{ﬂﬁj
ZE 0
= hFg+b5+dm |0 | . (B
2
Integrating equation B4 on theright ‘whole' wing:
a Hige+ Hpws() Fegt Frgx
5] e (@E— |0 H:[ ei | Hoves B | dee | Fagr| = | Fwgr | =0, @5
n} . .
g Hape+ Hewa(s) Fox? Rrgz

where wing mass of unit area k is assumed to be constant over the ‘whole’ wing. A
similar relationship is obtained for the left ‘whole’ wing. Thus, the equation for both right
and left wingsis given by:
0 - Hiper Howalr) Foli Fiax
m%{@— 0 +2.~:[D da| 0 de—2| 0 |[-2| 0o |=0.(E&
g Hypz+ Hapd # Fuz Fingz
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Fig. 18. Forces and moments acting on the thorax, abdomen and wing element. (A) On the
thorax and abdomen; (B) on awing element.

The position of the centre of gravity of the body G is defined asOg0 in equation A1l.
The external force acting on the body is composed of the gravitational force, the shear
force transmitted from the right and left wings and the aerodynamic force. This
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aerodynamic force Fg, which is generated by the body aone, is small in comparison with
other terms. Therefore:

0 - ey FRX
m%{@}:;ﬁﬁ of+2 a + | 0
2 -1 FRI
a Faox
=mpg |0 |-2 1] ) (BT
g Fatz

Substituting equation B7 into equation B6, the following equation of motion of the
butterfly is obtained:

] - ﬁ1m+ ﬁﬂ}mf};’] - Loa it
M%W&'ﬁﬁ =y (O —Eﬁ[ o) 0 e+ 2[ a | dx
0 - - 0

2 Hupn+ Hgwex) Faxz

1] Iy Fax
o

=mp (O +2] O] e+ 2[ 0 ox. i=1]

u}

2 FLz FukT

Appendix C

The matrix H in equation 4 is defined asfollows:
H= (BPidr s+ Profoidrys + P
+ ARy AridrS + (PR RS + P rdry dsidn |
H1 Hga Hpg
= | Hn Hzm Hp|. (1)

Hal Hag Ha

Then, each component of the above matrix is given asfollows:
Hi11=- sinBkz+2ks+sin®ka,

Hi2=sinfky +costcospkz- 2costke +coshsin@gks- 2cosH8Sin@<sOs
+2sinf0kg +cosOsk11 +Sin@scosBkiz,

H13=cosbky - SinBcosBkz +2sinBks - sinBsin@gks +2sinfosi nOgOs
+2c0sH0kg+CoSOK12- SINOL0SBK11,

Ho1=Ka,
Haz=- cosbks- 2sinfecosB B +sinpkiz,
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H23=sinbks- 2c0s86cosBp - sinBkiz,
Haz1=- sinBki +2k7+cos® K,

Haz=- sinfky+cosfcosBk: - 2coshks +c0sfcosOgks - 2c0sHBcosOsOs
+2sin66kio- SiN@kq1+ cos®scosBkio,

Haz=- cosbkz- sindcosBky +2sinfkg- sinBcos@gkz +2sinfcos® sOs
+200806k10- SiNOsk12- cosOscosBkit,

ki =- cos®g®3- sin@sBs,

ko =- SiN@<®3 + cosOWBs,

ks=- cosBf2- sinBp,
ka=sinpp2- cospp ,

ks =- cosOsOscosB |

ks =COSOOSINBP ,
k7=sin@sOxcosB ,

ke=- SiNOBOssNBE ,

ko =- cos®sOscosB +sin@<sinBR |
k10=sin® $OscosP +cosOssinBp |,
k11=- SiNO62+cosh

ki2=- cOSH62- Sin6h . (C2)

Appendix D

Assuming that feathering angle 6 of the wing element is w/2, the equation of angular
motion about the Y-axisfor awing element is obtained as follows (Refer to Fig. 18):

AfyEios Afplis= —dimaf wef oo B+ *Bing lsini{+ O d“[ :i {mjz—a:l

cosd
#ing |ocst £+ ©3) e (e +{ Ao + Az bingd | cos @,
cosd ot
—( hFaz+ ASTxfng |sinSs+ Aida+ Aids, {1y
where
)

I=tarl (—D .

g (]

Integrating equation D1 on the right ‘whole’ wing, the equation of rotating motion of
theright ‘whole’ wing isgiven by:

IvOT=Mw, + Majr + Mwr, (D3)
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where
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The equations of angular motion around the point G are given for the thorax and the
abdomen asfollows:

TriShp= Mpr— M ar— 24w }
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Using equations D3 and D6, the following equation of rotating motion around the Y-
axisis obtained for the butterfly:

(I7+21y)O7- 1A0a= M +Ma; +2Mwy; +2Mgir . (D8)
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