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Summary
The flight of a butterfly, Pieris melete, was observed in the take-off phase and was

analyzed theoretically from aerodynamic and kinetic viewpoints. A vortex method,
which was recently developed by the present authors, was used in this analysis.

During the downstroke, the butterfly generates mainly a vertical force. The
acceleration of the butterfly’s body during the first half of the downstroke is especially
large, and this acceleration is mainly caused by a large unsteady pressure drag acting on
the wings. This large unsteady pressure drag is generated by the vortices shed into the
flow from the outer edges of each wing of a pair; it is increased by the interference effect
between a pair of wings when the opening angle is small. This force can be estimated by
the previous quasi-steady analysis when the force coefficient is changed to 4. In addition
to the unsteady pressure drag, an aerodynamic force due to added mass is generated and
this is also increased by the interference effect between a pair of wings.

During the upstroke the butterfly generates mainly a horizontal force. The change of
direction of the forces during the down- and upstrokes is controlled by variation in the
inclination of the stroke plane. The moment, which is created by the aerodynamic force
acting on the wings and by abdominal motion, changes the thoracic angle, that is the
inclination of the stroke plane.

Introduction

A butterfly has low-aspect-ratio wings, which are not suitable for cruising flight. Much
attention has been paid to the flight mechanism of such a low-aspect-ratio wing (Betts and
Wootton, 1988; Dudley, 1990). A much larger force coefficient than the quasi-steady-
state value was obtained by observations of flight in the field (Dudley, 1991). A butterfly
uses a ‘peel’ mechanism. The unsteady vortices and the interference effect play important
roles in this mechanism (Ellington, 1984a; Kingsolver, 1985; Brodsky, 1991).
Brackenbury (1991) carried out careful observation of take-off and climbing flight in
butterflies and showed that the hindwings and abdomen act to increase the interference
effect between a pair of wings. Bocharova-Messner and Aksyuk (1981) suggested that the
jet force due to a ‘tunnel’ between a pair of wings is important in the flight of a butterfly.
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The characteristics of the three-dimensional ‘fling’ mechanism, which is equivalent to
the ‘peel’ mechanism using rigid wings, were investigated. The interference effect
between a pair of wings was made clear quantitatively and a numerical method of
calculation was developed to analyze the variation of the pressure distribution on the
wing (Sunada et al. 1993). In this paper, this numerical calculation technique is applied to
a study of the take-off flight of the butterfly Pieris melete.

Abbreviations

c chord length (m)
d non-dimensional half-distance between the rotation (flapping) axes of right

and left plates (wings), d0/xtip

d0 half-distance between the rotation (flapping) axes of right and left plates
(wings) (m)

dm mass of wing element (kg)
Fair aerodynamic force generated by a right ‘whole’ wing (N)
FB aerodynamic force generated by body (N)
FN normal component of aerodynamic force acting on a right ‘whole’ wing

(N)
FS tangential component of aerodynamic force acting on a right ‘whole’ wing

(N)
FAT force transmitted from thorax to abdomen (N)
FWT force transmitted from thorax to wing (N)
g acceleration due to gravity, 9.81 ms−2

H transformation matrix as defined by equation B2
Hij i, j component of matrix H
H−1 inverse matrix of H
H−1ij i, j component of matrix H−1ij

IT moment of inertia of thorax around Y-axis (kgm2)
IA moment of inertia of abdomen around Y-axis (kgm2)
IY moment of inertia of a right ‘whole’ wing around Y-axis (kg m2)
Iy moment of inertia of a right ‘whole’ wing around y-axis (kgm2)
k1, k2 correction factors in the simple method
kF,a

., kM,a
. quasi-steady force coefficients at a

..
=0

lT length of thorax (m)
lT,G distance between the centre of gravity of the thorax and point G as shown

in Fig. 18A (m)
lA length of abdomen (m)
lA,G distance between the centre of gravity of the abdomen and point G as

shown in Fig. 18A (m)
Mair aerodynamic moment acting on a right ‘whole’ wing around Y-axis (Nm)
MT,I inertial moment acting on thorax around Y-axis (Nm)
Mf aerodynamic moment around rotation axis (Nm)
MAT moment transmitted from thorax to abdomen around Y-axis (Nm)
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MA,I inertial moment acting on abdomen around Y-axis (Nm)
MWT moment transmitted from thorax to a right ‘whole’ wing around Y-axis

(Nm)
MW,I inertial moment acting on a right ‘whole’ wing around Y-axis (Nm)
mA abdominal mass (kg)
mB body mass (kg), mA + mT

mT thorax mass (kg)
mtot total mass of a butterfly (kg) mB + mW

mW wing mass (kg)
P transformation matrix between (XS, YS, ZS) and (X, Y, Z)
Pn necessary power (W)
Q transformation matrix between (XS, YS, ZS) and (x′, y′, z′)
QA aerodynamic torque around y-axis (Nm)
QG gravitational torque around y-axis (Nm)
QI inertial torque around y-axis (Nm)
R transformation matrix between (x′, y′, z′) and (x″, y″, z″)
Re Reynolds number
S transformation matrix between (x, y, z) and (x″, y″, z″)
T period of one beating cycle (s)
t time (s)
VF shape factor that is proportional to added mass (m4)
VM shape factor that is proportional to added moment of inertia (m5)
Vx, Vy, Vz x, y and z components of inflow velocity on the wing due to wing and

body motion (ms−1)
(X, Y, Z) coordinate system which is parallel to the coordinate system (XE,YE, ZE)

and the origin of which is located at the centre of gravity of the butterfly
b o d y

(XE, YE, ZE) earth-fixed coordinate system
(XG, YG, ZG) position of the point G
(x, y, z) wing-fixed coordinate system
yG chordwise position of centre of gravity of wing element (m)
a opening angle (rad)
b flapping angle (rad)
D value for wing element
DMS moment transmitted from neighbouring wing element to a wing element

(Nm)
DS shear force transmitted from neighbouring wing elements to a wing

element (N)
d twist angle (rad)
z lead-lag angle (rad)
QA abdominal angle (rad)
QS flapping axis angle (rad), QT+ L

QT thoracic angle (rad)
u feathering angle (rad)
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u0.7 feathering angle defined by DEj (rad)
û geometrical angle of attack defined by equation 2 (rad)
k wing mass of unit area (kg m−2)
L angle between flapping axis and thorax axis (rad)
n kinematic viscosity (m2 s−1)
j angle defined in equation C2 (rad)
r density (kg m−3)

Subscript or superscript

a air
f fluid or value defined by ABj

h value defined by CDj

I inertial component
(   )M value calculated from data of motion analysis alone
N normal force
S tangential force
(   )S value calculated by the simple method
tip wing tip
(   )V value calculated by the vortex method
w water
X, Y, Z X, Y, Z component
1 dynamic pressure
2 impulsive pressure

Motion analysis of the take-off phase of the flight of a butterfly

The take-off phase of the flight of the butterfly Pieris melete was observed and filmed
with a high-speed video camera during the first period of beating motion. The geometrical
characteristics of the butterfly are shown in Fig. 1 and Table 1.

Because the geometrical relationship between the fore- and hindwings is changed
during flight, the planform shapes observed in the photographs were averaged as shown
in Fig. 1. In flight, the butterfly bends its body at a point G. This point G is in accordance
with the centre of gravity of the body when the body is stretched. The body is divided into
two parts, the thorax (including the head) and the abdomen, at the point G, as shown in
Fig. 1. The recorded movements of the point G in the inertial frame are shown in Fig. 2.
When the body bends, there is a small difference between the point G and the true centre
of gravity of the body. Referring to Fig. 18, the position of the true centre of gravity is
given as follows:
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The thoracic angle QT and the abdominal angle QA are defined as the angles from the
horizontal, as shown in Fig. 3A. The time variations of QT and QA are shown in Fig. 3B.
This figure shows that the thorax is directed horizontally during the downstroke, and that
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Fig. 1 . Schematic configuration of Pieris melete.

Table 1. Geometric characteristics of the butterfly

Variable Symbol Units Value

Total mass mtot kg 6.93×10−5

Thorax mass mT kg 3.6×10−5

Abdomen mass mA kg 2.6×10−5

Wing mass mW kg 7.3×10−6

Wing area SW m2 1.36×10−3

Wing length xtip m 3.0×10−2

Aspect ratio AR=4xtip2/SW 2.6
Wing loading mtotg/SW Nm−2 0.5
Thorax length lT m 9.1×10−3

Abdomen length lA m 1.2×10−2

Position of the joint of forewing lf m 5.6×10−3

Position of the joint of hindwing lh m 3.5×10−3

Moment of inertia of thorax around the centre of gravity IT kg m2 6.3×10−10

Moment of inertia of abdomen around the centre of gravity IA kg m2 8.4×10−10

Moment of inertia of a right (left) wing around flapping axis Iy kg m2 6.7×10−10

Period of one beating cycle T s 8.8×10−2
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Fig. 2. Time variation of the position of point G.
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Fig. 3. Thoracic angle and abdominal angle. (A) Definition of QT and QA; (B) time variation
of QT and QA; (C) time variation of Q̈T and Q̈A.
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it is vertical during the upstroke. A similar variation of the thoracic angle was observed
qualitatively by Brackenbury (1991). The physical explanation of this variation will be
given later in this paper. Near the beginning of downstroke (t<0.2T) and near the end of
the upstroke (t>0.8T); the abdominal angle cannot be observed because the wing conceals
the abdomen. The algebraic functions indicated by solid lines are estimated from discrete
values of QT (circles) and QA (squares). In Fig. 3C the angular accelerations obtained by
differentiating these functions are indicated by the solid line (Q̈T) and the broken line
(Q̈A).

The wing motions are described by two vectors of the fore- and hindwings which are
represented by vectors ABj and CDj, respectively, as shown in Fig. 1. The flapping angle b
and the lead-lag angle z of ABj and/or CDj are defined by equations A4 and A5, when
ABj and/or CDj is coincident with the x -axis. The coordinate systems used in this paper are
defined in Appendix A and Abbreviations. These flapping angles are shown by circles
(ABj, bf) and squares (CDj, bh) in Fig. 4A. It is observed that the phase of bf is always
ahead of that of bh; that is, the flapping motion of ABj is always ahead of that of CDj. This
means that the butterfly uses a ‘peel’ mechanism (Ellington, 1984a; Kingsolver, 1985).
The flapping motion, where the forewings are always ahead of the hindwings, causes a
‘tunnel’ between the right and left wings near the beginning of the downstroke
(Bocharova-Messner and Aksyuk, 1981). The ‘tunnel’, however, is not formed near the
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beginning of the upstroke, because the flapping angles, bf and bh, do not reach −p/2. This
is different from the observation of Bocharova-Messner and Aksyuk (1981). The lead-lag
angles for ABj, zf (circles) and CDj, zh (squares) are shown in Fig. 5. It is observed in
Fig. 5 that the lead-lag angle of the hindwing zh is roughly constant, zh=−0.6, and that the
lead-lag angle of the forewing zf during the downstroke is larger than that of the upstroke.
This means that the geometrical relationship between the fore- and hindwings is changed
slightly during the flight. The butterfly moves the fore- and hindwings almost as one
wing, so that the two are referred to as a ‘whole’ wing in this paper. The difference in the
phase of the flapping angles, bf and bh, causes a twist of the ‘whole’ wing. This twist
angle d is defined as the angle between the vector DEj and the flapping axis, as shown in
Fig. 1. The definition of the vector DEj is given in Appendix B. The feathering angle at
x=0.7xtip is, then, defined as ufh=p/2−d. The time variation of the feathering angle ufh and
its analytical expression u0.7(t) are shown in Fig. 6. It is observed that the feathering angle
is almost p/2 and is larger during the upstroke than during the downstroke. It is assumed
here that the wing is twisted linearly from root to tip. Thus, the feathering angle of a wing
element at x is expressed as:

In order to calculate the aerodynamic and inertial forces acting on the wing, the motion of
the ‘whole’ wing is determined as follows. The analytical expressions of three angles
defined in Appendix A, b, z and u, which determine the x,y,z coordinate system, are
assumed to be equal to the measured values bf, 0 and u, respectively. By differentiating
these functions of time, the flapping angular velocity b

.
and the feathering angular

velocity u
.
are obtained. These values near t=0 are extrapolated so that b

.
(t=0) and u

.
(t=0)

become 0. By differentiating b
.

and u
.

again, the flapping angular acceleration b
..

and the
feathering angular acceleration u

..
are obtained. The values of b

.
and b

..
are shown in

Fig. 4B,C, respectively. The broken lines in these figures indicate the extrapolated part.
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The geometrical angle of attack of the wing element at x, û(x), is defined as the angle
between the chord line and the inflow velocity at (x,y = 0). It is expressed as:

where

In the above equations, Hij is the i, j component of matrix H as defined in Appendix B.
The calculated results of the geometrical angle of attack at three span positions, x=
0.25xtip, x=0.5xtip and x=0.75xtip, are shown in Fig. 7. It is observed that the geometrical
angle of attack is larger than 1rad≈60˚ during most of the stroke. This means that drag
force (the force parallel to the inflow velocity) is more dominant than lift force (the force
perpendicular to the inflow velocity). Therefore, the numerical calculation method
developed by the present authors (Sunada et al . 1993) is applied to the analysis of the
flight of a real butterfly.

Fluid-dynamic force acting on a butterfly wing

Experiments were performed to measure the fluid-dynamic forces and moment acting
on a rotating plate in front of a mirror in a water tank. The shape of the plate was similar
to that of a real butterfly wing as shown in Fig. 8 and Table 2. A small weight was
attached to the plate in order to generate an initial rotating moment. The initial opening
angle was set at 0. The non-dimensional distance d between the rotation axis of the plate
and the mirror was selected to be d=0.02, 0.06, 0.09, 0.19 and ∞. The normal and
tangential forces, FN and FS, and the moment around the rotation axis, Mf, acting on the
plate during ‘near fling’ were measured. Details of the experimental apparatus and the
procedure are given in Sunada et al. (1993).
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Fig. 9A–C shows the time histories of opening angle a, angular velocity a
.
and angular

acceleration a
..
. In Fig. 9B,C, the results of two particular cases are given; the results of

other cases are located within these lines. The angular acceleration at t=0 becomes
smaller as the distance d becomes smaller. The angular velocity at a

..
=0 is common in all

cases. The Reynolds number at a
..
=0 is given by:

Re =0.75xtipa
.
(c)x= 0.75xtip/nw 4 × 103 . (5)

The above Reynolds number is almost equal to that of the flight of a real butterfly, Re =
−0.75xtip(b

.
)b̈= 0(c)x= 0.75xtip/na. The normal and tangential forces are shown by the shaded

area in Fig. 10A for all cases. The relationship between the moment around the rotation
axis Mf and the opening angle a is common for all cases, and this relationship is shown by
the bold line in Fig. 10B. The position of the centre of pressure Mf/FNxtip is shown in

258 S. SUNADA AND OTHERS

p/2

p/4

0
0 0.25T 0.5T 0.75T T
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Table 2. Geometric characteristics of a test plate and a weight attached to the plate

Variable Symbol Units Value

Plate
Mass mp kg 2.10×10−2

Length xtip m 1.10×10−1

Plate thickness tp m 2.1×10−3

Centre of gravity xCG m 4.66×10−2

Area Sp m2 8.00×10−3

Volume Vp m3 1.68×10−5

Density rp kg m−3 1.25×103

Moment of inertia Ip kg m2 6.5×10−5

Weight
Mass mw kg 9.4×10−3

Position l1 m 2.5×10−2

Position l2 m 3.7×10−2

Height l3 m 2.0×10−2

lw = 1/2√(l1 + l2)2 + l32 m 3.3×10−2

p = tan−1{l3/(l1 + l2)} rad 0.31
Thickness tw m 3.4×10−3

Volume Vw m3 8.2×10−7

Density rw kg m−3 1.15×104

Moment of inertia Iw kg m2 1.0×10−5
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Fig. 9. Motion of the plate. (A) Time history of opening angle a; (B) time history of angular
velocity a. ; (C) time history of angular acceleration ä.
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Fig. 10C. The values of FN are distributed in the shaded area of Fig. 10A. Hence, the
average value of FN at each opening angle is used to determine the position of the centre
of pressure. The position of the centre of pressure is located near 0.5xtip at the beginning
of the motion and moves slightly towards the wing tip as the opening angle increases. A
typical position of the centre of pressure may be represented by:

x =0.56xtip . (6)

The solid lines in Fig. 10A,B show the results of the vortex method (Sunada et al. 1993)
for a test case with d = 0.02. The configuration of the mathematical model is shown in
Fig.11, where a plate shape similar to the real butterfly wing is represented by a simple
form in order to simplify the calculation. The bound vortex is settled on the plate and the
wake of the vortex sheet is on the surface swept by line DE. The total values of the normal
force and the moment around the rotation axis, (FN)V and (Mf)V, consist of those created
by dynamic pressure, (FN1)V and (Mf1)V, and those created by impulsive pressure, (FN2)V

and (Mf2)V. It is observed in Fig.10A,B that the total values obtained by the present
vortex method are in good agreement with the measurements of normal force and
moment obtained experimentally. Using the relationship between the tangential force and
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the normal force due to dynamic pressure shown in Fig. 10A, it is assumed that the
tangential force is given as:

(FS)V = −0.2(FN1)V . (7)

The calculated tangential force is compared with the measured results in Fig.10A. Again,
good agreement is obtained. Therefore, it is verified that by using the present calculation
method it is possible to predict the normal and tangential forces and the moment around a
rotation axis acting on a plate with a shape similar to that of a real butterfly wing.

The variation of shape factor VF, which is proportional to added mass (Sunada et al.
1993), with distance d is calculated by the vortex method and is shown in Fig. 12A. This
figure shows the results with a =0. When the distance d becomes smaller, the shape factor
becomes larger. The relationship between VF/VF(d = ∞) and distance d is independent of
plate shape. It should be noted that VF(d = ∞) is a shape factor that has no effect on the
interference between the right and left plates. The position of the centre of pressure is
almost independent of distance d. This means that the variation of VM with distance d i s
similar to that of VF. The ratios between measured and calculated shape factors VF and VM

are shown in Fig. 12B. Because these ratios are almost 1 for all values of d, the
effectiveness of the present calculation method is verified for the real butterfly wing shape.
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Simple method

Since the vortex method presented above requires a large amount of computational
time, a simpler method is examined in this section. This simple method has been used to
calculate fluid-dynamic forces acting on a beating wing (Weis-Fogh, 1973; Ellington,
1984b; Sunada et al. 1993). The method uses a plate element parallel to the rotation axis,
as shown in Fig. 8.

The fluid-dynamic normal force acting on the plate element is composed of two kinds
of forces. One is proportional to the second power of the inflow velocity, (FN1)S, and the
other is proportional to the acceleration of the inflow, (FN2)S. Therefore:
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For the present fluid-dynamic tests, the two values, Vz and V
·
z, are given by:

Vz = xa
.

and V
·
z = xa

..
. (9)

In the above equations, the correction factors, k1 and k2, are introduced to improve
the accuracy of the simple method, as explained later. The quantity VF(d ,a) /VF(d = ∞)
is also introduced in order to include the interference effect between right and left
plates on added mass. By integrating the force and the moment around the rotation
axis acting on the plate element along the x-axis, the normal force and the moment
around the rotation axis acting on a whole plate are obtained with the following
e q u a t i o n s :

The value of k2 is determined with the following equation:

The quasi-steady force coefficients on the plate element (Sunada et al. 1993) are given
by:

The value of k1 is defined as the mean of the above two values, kF,a. and kM,a.. Therefore:

k1 =4.0. (13)

As in equation 7 of the vortex method, the tangential force (FS)S is given as:

(FS)S = −0.2(FN1)S . (14)

Using equations 8–14, the calculation is made for the case d=0.02 of the fluid-dynamic
tests. The results are shown by dashed lines in Fig. 10A,B. The results obtained by this
simple method are in good agreement with the experimental results. Therefore, this
simple method is shown to be a convenient and practical tool to use to estimate the
aerodynamic forces acting on real butterfly wings.
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Flight performance of a butterfly

Acceleration of the centre of gravity of the body in the take-off phase

Assuming that the left and right wings beat symmetrically, the following equation of
motion of a butterfly is derived from Appendix B:

The first term in the right-hand side of this equation shows the gravitational force acting
on the butterfly, and the second term shows the inertial force acting on a pair of ‘whole’
wings. The value of mtot is measured and the value of inertial force can be estimated by
using the data of the motion analysis alone. The third term is aerodynamic force acting on
a pair of ‘whole’ wings. By using equation 15, the aerodynamic forces estimated by the
motion analysis, (Fair,X)M and (Fair,Z)M, are obtained:

These aerodynamic forces are also obtained theoretically by the two methods of
numerical calculation, the simple method and the vortex method, as follows. The distance
between the flapping axes of right and left ‘whole’ wings is 0.1xtip and the value of d is,
then, 0.05 in the following calculation.

Simple method

The acceleration of the inflow is given by:

The forces acting on a wing element, dFN1 and dFN, are obtained by using equations 4, 8,
11, 13, 14 and 17. Referring to the relationships derived in Appendix A, the aerodynamic
forces in the X and Z directions are calculated as follows:

Vortex method

In the vortex method, it is assumed that the ‘whole’ wing is planar and the feathering angle
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u is u0 . 7(t) for all positions of x. Three components of the inflow velocity due to wing and
body motions on a point (x, y, 0) of a ‘whole’ wing are given by the following equations:

Adding the above inflow velocity, the velocity induced by bound vortices on the other
wing and separated vortices from both the wings, the boundary condition, that is the z
component of the velocity is 0, is satisfied. These numerically obtained forces, (FN)V and
(FS)V, are transferred to the (X, Y, Z) axes by using the relationship derived in Appendix
A, and the aerodynamic forces are expressed as follows:

where

Results

Fig. 13A,B shows a comparison of the acceleration of the centre of gravity obtained
experimentally with the calculated accelerations obtained by using the two numerical
methods. The experimental values, (−ẌE/g)M and (−Z̈E/g)M, are obtained by
differentiating equation 1 as follows:
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The abdominal angle QA was not measured during the periods 0<t<0.2T and 0.8T<t<T, as
stated before. During these periods, (−ẌE/g)M and (−Z̈E/g)M are assumed to be −ẌG/g and
−Z̈E/g, respectively. The calculated results, (−ẌE/g)V, (−Z̈E/g)V, (−ẌE/g)S and (−Z̈E/g)S, are
obtained from equation 15 by using (Fair,X)V, (Fair,Z)V, (Fair,X)S and (Fair,Z)S. It is shown
in Fig. 13A,B that the results of the two numerical methods agree with the experimental
results except for the first half of the upstroke. The agreement means that with the purely
theoretical methods it is possible to get an understanding of the flight of a butterfly. It
should be noted that the present theoretical models do not include any ‘tunnel’ effect
proposed by Bocharova-Messner and Aksyuk (1981). It is also indicated that the
difference between the results from the experiment and the vortex method is smaller than
that between the results from the experiment and the simple method. Fig.14A,B shows
−2(FI,X), −2(FI,Z), −2(Fair,X)M, −2(Fair,Z)M, −2(Fair,X)V, −2(Fair,Z)V and their components
given by equations 20 and 21. The value of −2 (Fa i r , Z)V agrees fairly well with that of
−2(Fair,Z)M, and the value of −2(Fair,X)V agrees reasonably well with that of −2(Fair,X)M.
These agreements on aerodynamic forces result in the agreements on the acceleration of
the centre of gravity of the butterfly body. It is demonstrated in Fig. 14A,B that the
aerodynamic forces due to dynamic pressure, −2(FN1,Z)V and −2(FN1,X)V, are dominant.
The aerodynamic forces due to impulsive pressure, −2(FN2,Z)V and −2(FN2,X)V, are also
large during the first half of the downstroke. The inertial forces, −2(FI,Z) and −2(FI,X), are
much smaller than the aerodynamic forces. The upward vertical force is generated during
the first half of the downstroke. It was pointed out by Sunada et al. (1993) that the
aerodynamic forces are increased by the interference between a pair of wings when the
opening angle is small. The butterfly utilizes the large forces for generating the large
acceleration during the first half of the downstroke. The large acceleration may make it
easier for the butterfly to escape from a predator. During the other period of the stroke,
forward force is generated. This change of direction of force is due to the variation of the
inclination of the stroke plane, as discussed later.
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Fig. 13. Acceleration of the centre of gravity of the butterfly’s body. (A) The −ZE direction;
(B) the −XE direction.
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Thoracic angle

The equation of motion of a body rotating around the point G is given by Appendix C
as follows:

(IT +2IY)Q̈T = IAQ̈A + MT,I + MA,I +2MW,I +2Mair . (23)

In the above equation, all the terms except 2Ma i r are estimated from the data of the motion
analysis. The value of 2Ma i r can be calculated from equation 23. Each component of this
equation is shown in Fig. 15. As stated before, the abdominal angle Q̈A is observable during
the period 0.2T < t <0 . 8T. Therefore, the moment due to the aerodynamic force acting on the
wings 2Ma i r is calculated only during this period. It is shown in Fig. 15 that the calculated
moment 2Ma i r always raises the thorax. This is because the forewings are shifted forwards
during the downstroke and backwards during the upstroke, as shown in Fig.5. The rise of

267Butterfly take-off flight

5

0

−2.5

A

0 0.25T 0.5T 0.75T T

−2(Fair,Z)V

−2(FN1,Z)V

−2(FS,Z)V
−2(Fair,Z)M

−2(FN2,Z)V −2(FI,Z)

Time

Downstroke Upstroke

5

0

−5

B

0 0.25T 0.5T 0.75T T

−2(Fair,X)V

−2(FN1,X)V −2(FS,X)V

−2(Fair,X)M

−2(FN2,X)V
−2(FI,X)

Time

Downstroke Upstroke

Fig. 14. Each component of force acting on the butterfly’s wings. (A) The −Z direction;
(B) the −X direction.

Fig. 15. Moment around the Y-axis.
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the thorax is suppressed by the moment transmitted from the abdomen to the thorax, −MA T =
MA , I + IAQ̈A. Hence, the butterfly utilizes the motion of the abdomen to change the thoracic
angle. The angle between the thoracic angle QT and the inclination of the stroke plane, QS, is
constant, as shown in equation A3. Therefore, the above mechanism which controls the
thoracic angle also controls the inclination of the stroke plane, and it causes the change of
direction of force acting on the wing in the inertial frame. If the stroke plane is kept constant
in space, the upward vertical force generated during the downstroke is cancelled by the
downward vertical force during the upstroke. This is because drag force, which is parallel to
the stroke plane, is dominant, as stated before. Therefore, the variation of the inclination of
the stroke plane during both the strokes is the key mechanism of butterfly fli g h t .

Power

The inertial torques around the flapping axis QI and the gravitational torque QG are
given by:

The aerodynamic torque around the flapping axis QA is obtained by three methods:
calculating QA ≡ (QA)V = Mf by the vortex method; calculating QA≡ (QA)S = Mf by the
simple method; or obtaining QA ≡ (QA)M from an analysis of the body motion of a
butterfly. QA ≡ (QA)M is obtained as follows. By adopting the same relationships as
equations 20 and 21, the normal force obtained by using only the data from the motion of
the butterfly is given by:

It is assumed from equation 6 that the centre of pressure is located at x=0.56xtip. The
aerodynamic torque (QA)M is obtained, therefore, as follows:

Fig.16 shows each component of the torque, QI, QG, (QA)M, (QA)V and (QA)S. Three
aerodynamic torques, (QA)M, (QA)V and (QA)S, obtained with the above three methods
show reasonable agreement with each other. The inertial and gravitational torques, QI and
QG, are much smaller than the aerodynamic torque, (QA)M, or (QA)V or (QA)S. The
necessary power required to beat the wings is given by:
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There is little difference among these three values of the necessary power obtained by use
of the three methods. The necessary power per 1kg body mass for the flight is estimated
to be about 30 W kg−1. This value is roughly equal to the average value obtained by
Dudley (1991) for the forward flight of butterflies.

Conclusion

New numerical calculation methods have been applied successfully to an analysis of
take-off flight of a butterfly. The theoretical prediction agrees well with the observed
butterfly motion. The acceleration observed during take-off flight is mainly due to the
pressure drag generated by the wings in ‘near fling’ motion. The butterfly utilizes the
interference effect in ‘near fling’ motion to generate the large acceleration during the first
half of the downstroke. This large acceleration can help the butterfly to take off suddenly.
The necessary power for this flight is estimated to be about 30 W kg−1 bodymass. This
value is roughly equal to the average value obtained by Dudley (1991) for the forward
flight of butterflies.

The flight mechanism of the butterfly is determined to be as follows. The butterfly
changes the direction of the aerodynamic forces by changing the inclination of the stroke
plane. This variation in the inclination of the stroke plane is mainly due to the moment
created by the aerodynamic force acting on the wings and to the moment generated by
abdominal motion. The aerodynamic moment raises the thorax and this moment is
suppressed by abdominal motion during the second half of the downstroke and the first
half of the upstroke in the observed flight. The butterfly shifts the forewings forward
during the downstroke. This shift increases the wing area, that is the aerodynamic force,
and generates the aerodynamic moment which raises the thorax.

Appendix A

The geometrical relationships among the various coordinate systems used in this
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paper, which are explained in Fig. 17, are discussed in this Appendix. An orthogonal
Cartesian coordinate system (XE, YE, ZE) is fixed with respect to the earth. The ZE- a x i s
is vertical and positive downwards. The coordinate system (X, Y, Z), the origin of which
is located at the point G, is transferred in parallel from the coordinate system (XE, YE,
ZE). Then,

The coordinate system (X, Y, Z) is coincident with the coordinate system (XE, YE, ZE) at
the beginning of beating motion.

The coordinate system (XS, YS, ZS) is defined by rotating the coordinate system (X, Y, Z)
about the Y-axis by QS as follows:
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The angle QS is given by:
QS = QT + L , (A3)

where L is the angle between the flapping axis and the thorax axis, as shown in Fig. 1,
and is nearly approximated by L = 0.5. The flapping axis is defined by two points, the
roots of the fore- and hindwings.

The coordinate system (XS, YS, ZS) is rotated about XS-axis by −b and XS, YS and ZS are
then replaced by y′, x′ and −z′, respectively. The following equation is obtained:

The coordinate system (x″, y″, z″) is given by a rotation of z about the z′-axis as
follows:

The coordinate system (x, y, z) is finally obtained by a rotation (u−p/2) about the x″-
axis:

The relationship between the coordinate systems (x, y, z) and (XE, YE, ZE), therefore, is
given by:

Appendix B

Let (x, y, z) be a wing-fixed coordinate system in this Appendix as follows. The x-axis
is perpendicular to the flapping axis and crosses the line BD. The flapping angle b of the
x-axis is defined by equation A.4 and is set to be bf. The vector DEj is determined to be
perpendicular to the x-axis, as shown in Fig. 1. The y-axis is defined as being parallel to
DEj. The orthogonal Cartesian coordinate system (x, y, z) is thus determined.

A wing element on the right ‘whole’ wing shown in Fig. 18B is considered in order to
obtain the equation of motion of the ‘whole’ wing. The centre of gravity of this wing
element has the coordinate (x, yG(x), 0) with respect to the (x, y, z) axes.
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The coordinate (XE, YE, ZE) of the centre of gravity of the wing element with respect to
the earth-fixed axis is given by:

where
H = PQS . (B2)

It should be noted that the above equation is derived from equation A7 in Appendix A by
using the relationship that R is a unit matrix. By differentiating equation B1, the
acceleration of the centre of gravity of the wing element is given by:

The external force acting on the wing element is composed of the aerodynamic force
DFair, the shear force transmitted from the neighbouring wing elements DS and the
gravitational force. This external force generates the acceleration of the centre of gravity
of the wing element as follows:

Integrating equation B4 on the right ‘whole’ wing:

where wing mass of unit area k is assumed to be constant over the ‘whole’ wing. A
similar relationship is obtained for the left ‘whole’ wing. Thus, the equation for both right
and left wings is given by:
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The position of the centre of gravity of the body G is defined as OEOj in equation A1.
The external force acting on the body is composed of the gravitational force, the shear
force transmitted from the right and left wings and the aerodynamic force. This

273Butterfly take-off flight

B

A

lA,G

−FAT,X

MAT+2MWT

lT,G

−FAT,Z

mA5g ——(OEOj)Z6 mT 5g ——(OEOj)Z6

mA——(OEOj)X
mT ——(OEOj)X

−2FWT,Z+FAT,Z

−2FWT,X+FAT,XG G

QT

QA

d2

dt2

d2

dt2

d2

dt2

d2

dt2

yG

dm 5g ——(OEOj)Z6

dm——(OEOj)X

G

j

Wing element

(xb̈)dmcosb

DFair,X+DSX
DFair,Z+DSZ

DMair+DMS

QS

d2

dt2

d2

dt2

Fig. 18. Forces and moments acting on the thorax, abdomen and wing element. (A) On the
thorax and abdomen; (B) on a wing element.

jeb9011.q.rev.  20/11/98 12:13 pm  Page 273



aerodynamic force FB, which is generated by the body alone, is small in comparison with
other terms. Therefore:

Substituting equation B7 into equation B6, the following equation of motion of the
butterfly is obtained:

Appendix C

The matrix H in equation 4 is defined as follows:

Then, each component of the above matrix is given as follows:

H11 =−sinbk2 +2k5 +sinQSk4 ,

H12 =sinuk1 +cosucosbk2 − 2cosuk6 +cosusinQSk3 − 2cosuu
.
sinQSQ

.
S

+2sinuu
.
k9 +cosQSk11 + sinQScosbk12 ,

H13 =cosuk1 − sinucosbk2 +2sinuk6 − sinusinQSk3 +2sinuu
.
sinQSQ

.
S

+2cosuu
.
k9 +cosQSk12 − sinQScosbk11 ,

H21 = k3,

H22 =−cosuk4 − 2sinuu
.
cosbb

.
+sinbk12 ,
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H23=sinuk4 − 2cosuu
.
cosbb

.
− sinbk11 ,

H31= −sinbk1 +2k7 +cosQSk4 ,

H32 =−sinuk2 +cosucosbk1 − 2cosuk8 +cosucosQSk3 − 2cosuu
.
cosQSQ

.
S

+2sinuu
.
k10 − sinQSk11 + cosQScosbk12 ,

H33 =−cosuk2 − sinucosbk1 + 2sinuk8 − sinucosQSk3 + 2sinuu
.
cosQSQ

.
S

+2cosuu
.
k10 − sinQSk12 − cosQScosbk11 ,

k1 =−cosQSQ
.

S
2 − sinQSQ̈S ,

k2 =−sinQSQ
.

S
2 + cosQSQ̈S ,

k3 =−cosbb
.
2 − sinbb̈ ,

k4 =sinbb
.

2 − cosbb̈ ,

k5 =−cosQSQ
.

Scosbb
.

,

k6 =cosQSQ
.

Ssinbb
.

,

k7 =sinQSQ
.

Scosbb
.

,

k8 =−sinQSQ
.

Ssinbb
.

,

k9 =−cosQSQ
.

Scosb + sinQSsinbb
.

,

k10 =sinQSQ
.

Scosb+ cosQSsinbb
.

,

k11 =− sinuu
.

2 + cosuü ,

k12 =− cosuu
.

2 − sinuü . (C2)

Appendix D

Assuming that feathering angle u of the wing element is p/2, the equation of angular
motion about the Y-axis for a wing element is obtained as follows (Refer to Fig. 18):

where

Integrating equation D1 on the right ‘whole’ wing, the equation of rotating motion of
the right ‘whole’ wing is given by:

IYQ̈T = MW,I + Mair + MWT , (D3)
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where

IY ≈ (2.5 − 0.47 _b_ +10.0b2 − 4.3 _b_3) × 10−10 (kgm2). (D5)

The equations of angular motion around the point G are given for the thorax and the
abdomen as follows:

where

Using equations D3 and D6, the following equation of rotating motion around the Y-
axis is obtained for the butterfly:

(IT +2IY)Q̈T − IAQ̈A = MT,I + MA,I +2MW,I +2Mair . (D8)
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