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Summary
Four-point bending was used to apply pure extension and flexion moments to the

ligamentous lumbosacral spine and pelvic girdle of monkey (Macaca fascicularis), rabbit
(domestic and wild, Oryctolagus cuniculus ), badger (Meles meles), wallaby (Wallabia
rufogrisea frutica), sheep (Ovis aries), seal (Phoca vitulina) and tiger (Panthera tigris).
The absolute ranges of angular change in lumbar–lumbar joints (from X-radiographs)
were considerable and similar in monkey and wallaby (greater in flexion) and in rabbit
and badger (symmetrical in extension and flexion). Mass-specific bending comparisons
showed that monkey and seal joints were the most and least resistant, respectively, to
these moments. The patterns of mobility showed no clear scaling effects. Subsequently,
additional ligamentous joint complexes (three vertebrae and two intervertebral discs) of
monkey, wallaby, tiger, jaguar (Panthera onca) and seal (Halichoerus grypus) were
subjected to cyclic extension and flexion moments. Changes in intervertebral angle (y,
from X-radiographs) were modelled as functions of applied specific bending moments
(x): y=A(12e2Bx). A and B values represented bending capacities and joint compliances
respectively. Homologous monkey and wallaby joints had considerable flexion
capacities, with low compliances. Homologous jaguar and tiger joints had limited flexion
capacities, but greater compliances. The data suggest that flexion resistance may be
controlled by different mechanisms in different species.

Introduction

‘Standing four-square upon its fore-legs and hind-legs, with the weight of the
body suspended between, the quadruped at once suggests to us the analogy of a
bridge, carried by its two piers.’

This statement, extracted from D’Arcy Thompson’s (1917) treatise, On Growth and
Form, typifies early considerations of the functional morphology of the quadrupedal
(particularly mammalian) vertebral column. With the emphasis upon the supporting role



of the column, the merits of several bridge and bow-and-string analogies have been
discussed (Thompson, 1917; Rockwell et al. 1938; Slijper, 1946; Badoux, 1968, for
example). These early authors were primarily concerned with the overall performance of
the tetrapod vertebral column as a static supporting member. Anatomical features were
mentioned and discussed, but the qualitative observations were rarely supported with
experimentation or even measurements. More recently, attempts were made to correlate
bending resistance with intervertebral joint morphology. The near-circular cross sections
of the vertebral centra were thought to maximize bending resistance. The articular joints
strengthened the column and interlocking processes further restricted movement (Jeffcott
and Dalin, 1980; Townsend et al. 1983; Townsend and Leach, 1984; Halpert et al. 1987,
for example). In all of these studies, joint movement was viewed rather negatively, as
something to be controlled and restricted. While man-made support structures (e.g.
bridges) are very often specifically designed to exclude any movement, controlled
mobility, at least to some degree, is essential in the vertebral column of the living animal.

Others have focused on the importance of spinal mobility. Hildebrand (1959)
suggested that the sprinting performance of the cheetah was related to the pronounced
extension and flexion of the lumbosacral column. Ground contact time and stride length
would be increased by enhanced sagittal spinal mobility. Similarly, Hurov (1987)
concluded that bending the back significantly enhanced galloping performance in the
vervet monkey. Alexander et al. (1985) argued that the recruitment of dorsal musculature
also involved the recruitment of a dorsal spring system. They suggested that the kinetic
energy associated with limb swing could be stored briefly as elastic strain energy
primarily in the stretched aponeurosis of the longissimus dorsi muscle of the flexed back.
Subsequent spinal extension and recoil of the aponeurosis would restore some of the
kinetic energy required to reaccelerate the limbs in the opposite direction. In this way,
spinal mobility could have a direct effect on the energetics of locomotion. Indeed,
Alexander (1988) suggested that mammals switch from a trot to a gallop because
recruitment of this spring system made galloping the most economical gait for higher
speeds.

The link between vertebral morphology, column support and energetics was
investigated extensively by Smeathers (1981). He observed that many smaller animals
tended to have long arched flexible lumbar columns, while larger animals tended to
possess short straight stiffer lumbar columns. He suggested that the differences in
morphology were related to the metabolic cost of maintaining column stability. The small
mammal lumbar morphology permitted a wide range of spinal curvatures with a
minimum resistance. In adopting a vertebral column that facilitated rapid movements,
muscular effort, and therefore metabolic energy, would be required to maintain posture.
In contrast, he argued that large mammals with stiff straight backs had intrinsically stable
columns. Maintainance of posture in these animals was largely passive. The loss of
mobility was compensated by saving metabolic energy associated with active muscular
stability. Large less-active mammals were thought to benefit from this type of column. He
sited large grazing bovids as examples to illustrate this idea.

Variations in the orientation and morphology of the mammalian vertebral column are
striking. Despite this, Smeathers’ (1981) study remains one of very few involving non-
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human mammalian vertebral mechanics, particularly from an experimental perspective.
He used Euler buckling theory to measure the sagittal and lateral bending stiffness of goat
and rabbit lumbar spines (stiff-back and flexible-back lumbar morphologies
respectively). He also performed mechanical tests with isolated intervertebral
components and determined which structures were most important in exerting bending
resistances. Alexander et al. (1985) tested the vertebral centra and intervertebral discs of
dog and deer under axial compression, and calculated their capacity for the storage and
release of elastic strain energy.

In contrast, the static and dynamic load-deformation behaviour of the human vertebral
column and intervertebral joints thereof continues to be the subject of intense
investigation. Mechanical responses to axial compression, lateral and sagittal bending,
lateral and sagittal shear, axial torsion and combinations thereof have been investigated
(Jayson, 1980; Hansson et al. 1986; Miller et al. 1986; Edwards et al. 1987; Shirazi-Adl
and Drouin, 1987; Smeathers and Joanes, 1988; Yamamoto et al. 1989; Yoganandan et
al. 1989; Kim and Goel, 1990; Osvalder et al. 1990; and White and Panjabi, 1990, for
example). By making detailed measurements of the load-deformation responses of axial
components in isolation and in intact spinal motion segments (for example), researchers
endeavour to understand the methods by which external loads are supported by the
column in normal healthy individuals and in those afflicted by the myriad of vertebral
pathologies. The ability to predict the mechanical behaviour of the spine under normal
and diseased conditions has obvious implications for public health and awareness and,
more specifically, for the treatment and prevention of spinal dysfunction.

Smeathers argued that the loss of mobility incurred by large stiff-backed mammals was
compensated by the passive maintainance of posture. However, these animals, like the
horse and large bovids for example, are not totally lacking in vertebral mobility. Rather, it
tends to be almost exclusively isolated in the lumbosacral joint (Jeffcott and Dalin, 1980;
Townsend et al. 1983; Townsend and Leach, 1984; Halpert et al. 1987, for example).
Perhaps it was not so much about the presence or absence of vertebral column mobility,
but more a question of distribution of mobility among the intervertebral joints within the
column. A joint-by-joint assessment of intervertebral mobility for a wide variety of
mammalian species seemed to be a useful starting point for a series of studies aimed at a
better understanding of mammalian vertebral functional morphology.

This series of studies began with an exploratory investigation of passive intervertebral
mobility of the lumbosacral column and pelvic girdle of a wide variety of mammalian
species: monkey (Macaca fascicularis), rabbit (Oryctolagus cuniculus), wallaby
(Wallabia rufogrisea frutica), badger (Meles meles), sheep (Ovis aries), seal (Phoca
vitulina) and tiger (Panthera tigris). Four-point bending was used to apply uniform
extension and flexion moments to all lumbar–lumbar, lumbosacral and iliosacral joints,
and intervertebral angles were measured. Geometric, elastic and static stress similarity
theories (McMahon, 1973, 1975) were used to determine whether sagittal bending
responses show any scaling effects.

The fact that intervertebral joints are also subject to dynamic loading had to be
acknowledged. Therefore, on the basis of bending asymmetries observed in the static
bending tests, a subset of the original group of species was chosen for the subsequent
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cyclic bending experiments. Additional lumbar–lumbar and lumbosacral specimens from
monkey, wallaby, tiger, jaguar (Panthera onca) and seal (Halichoerus grypus) were
sectioned into intervertebral joint complexes and subjected to dynamic three-point
bending tests. Measurements of specific dynamic bending moments, changes in
intervertebral angle and the specific strain energies absorbed in deformation were made.
Mathematical models were used to quantify bending ranges and resistances for each
lumbar joint of each species. Differences between the parameters of the specific bending
and strain energy absorption models suggest that although extension behaviour was
similar for the terrestrial species, flexion behaviour appeared to be governed by different
mechanisms in each species.

Materials and methods

The static bending experiments

Animals and specimen preparation

The species used for the static bending experiments were monkey (Macaca
fascicularis), rabbit (domestic and wild, Oryctolagus cuniculus), badger (Meles meles),
wallaby (Wallabia rufogrisea frutica), sheep (Ovis aries), seal (Phoca vitulina) and tiger
(Panthera tigris) (Burton, 1972; Burton and Burton, 1979; Burn, 1980). They were
derived from a variety of sources. The wallabies (three individuals) and tiger (one only)
came from Whipsnade Zoo, as part of their population control program. They were either
sent directly to the biology department, or were dissected on site at the zoo and then
transported. In either case, they were used directly or frozen immediately for future use,
within 24h of death. The monkeys (three individuals) were sent fresh from a primate
research laboratory to the department and were frozen upon arrival. The domestic rabbits
(three individuals) came from the Department of Biochemistry at the University of Leeds,
and were frozen directly. The wild rabbits (three individuals) were obtained from A.
Foster’s stall at the Leeds City (Kirkgate) Market. They were Yorkshire rabbits, shot in
the wild only hours before arrival at the market stall. They were obtained prior to dressing
by the shopkeeper and were fresh and intact. Again, they were either used directly or
frozen for future use. The badgers (two individuals) were road-kills, which were held in
cold storage shortly after their demise. Subsequently, they were transported to the
department and frozen. As they did not appear gamey following thaw, they were deemed
suitable for experimentation. The sheep (three individuals) were obtained from the
Department of Animal Physiology and Nutrition at the University of Leeds, and were
frozen immediately. The seal (one only) was found on the North Sea Coast shortly after
death. It was collected by Dr Caroline Pond. Following dissections for her own work, she
dispatched the remaining lower lumbar, sacral and hind-flipper portion to Leeds, where it
was subsequently frozen, not more than 1–2 days following death. All animals were
apparently healthy prior to death except the seal, which was almost certainly a victim of
the North Sea canine distemper epidemic of 1988. Although the animals derived from
other departments within the university were subject to previous experimentation, they
were thought to have suffered no adverse musculoskeletal effects, except perhaps through
lack of exercise. Animals were stored at approximately 220˚C in walk-in freezer rooms.

250 J. M. GÁL



The ligamentous spine and pelvic girdle was isolated from each animal by the
following protocol. Each animal was skinned and the head was removed at the atlas–axis
articulation. The hind limbs were removed at the hip joints. Abdominal muscles (external
and internal obliques, and rectus abdominus) were removed to allow dissection of the
forelimbs at the scapulae. Ribs were removed by sawing. Major axial extensors
(longissimus and multifidus) and flexors (psoas major and minor) were carefully
dissected off and weighed. The lumbar spine and pelvic girdle were isolated by the
removal of the remaining thoracic elements, 1–4 thoracic vertebrae cranial to the first
lumbar vertebra. Intervertebral muscles, ligaments and connective tissues were left intact.
Specimens were kept moist at all times with distilled water, moistened paper towelling
and plastic film.

Apparatus and theory

The apparatus used to apply pure extension and flexion (sagittal) bending moments to
the specimens is illustrated in Fig. 1. The bending frame consisted of two wooden planks,
nailed to the lateral margins of a wooden platform. The planks supported the bars on
which the pulleys glided. A wooden arm was fixed to one of the lateral supports. The
pelvic end of the specimen was fixed as rigidly as possible to this arm, either by string
(smaller specimens) or by G-clamp (larger specimens). The thoracic end of the specimen
was attached as rigidly as possible to a wooden block. Each attachment effectively
furnished two points of contact, hence the ‘four-point’ bending. The wooden block was
bolted to a circular wooden disc. The disc had six radially-oriented screw pins. Chains
could be attached to opposing pins, to which weights could be secured. The chains ran
over pulleys and down the sides of the bending frame. The frame was supported on a
wooden box, approximately 30cm from the floor. The X-ray head was mounted about
1.3–1.5m above the frame and specimen. When the specimen was secured, weights were
attached to diagonally opposite pins. The forces exerted by the weights about the pins
applied a torque to the wooden disc and bent the specimen. The pulleys were
subsequently adjusted to keep the chains parallel. X-rays were taken of the bent
specimens. Chain height was kept as closely as possible to the height of the central long
axis of the specimen to minimize axial torque.

It can be shown that, if the forces applied to the wooden disc and the attached specimen
are parallel and of equal magnitude, the bending moment will be uniform along the length
of the specimen (refer to Fig. 1A). Let A be a point on the central axis of the specimen.
Let F1 and F2 be the forces exerted by the weights, attached to chains on opposing screws.
Let L be the perpendicular distance between point A and F1. If X is the perpendicular
distance between F1 and F2, then the bending moment at A is:

MA = F1L 2F2(L 2X).
If F1=F2=F9, then:

MA = F9X.

So, if equal weights are hung from each chain, then the moment at any point along the
specimen’s length will be the product of the force exerted by the weight (F9) and the
perpendicular distance between the lines of action (X).
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X-rays were taken for a series of extension (dorsal concave, positive bending) and
flexion (dorsal convex, negative bending) moments. Specimens were bent in extension
and flexion by alternating the direction of the chains on opposing pins. X-rays were also
taken of unloaded (resting) specimens, which were lightly tapped in both the flexion and
extension directions and allowed to settle to equilibrium positions before exposure. The
mean differences between the extremes of the unloaded joint angles were compared using
paired Student’s t-tests (Sokal and Rohlf, 1981). The null hypothesis for each test was
that the mean unloaded difference was not significantly different from zero. The null
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hypothesis was rejected if the calculated t-statistic was greater than the 95% confidence
t-statistic, taken from standard statistical tables (Rohlf and Sokal, 1981). A significant
unloaded angular range was referred to as the neutral zone of the joint.

Data analyses

Tracings were made from each X-ray plate corresponding to a specific specimen and
applied bending moment (see Fig. 2A). The angles of lumbar–lumbar, lumbosacral and
iliosacral joints were measured by estimating the angles between the central long axes of
the bones with a protractor. A convention was chosen such that angles became more
positive with increased extension, and more negative with increased flexion (see
Fig. 2B). A further convention was used to name the intervertebral joints. Lumbar
vertebrae were numbered from the cranial (thoracic) to the caudal (sacral) end of the
column (Getty, 1975). Thus, the intervertebral joint between the second and third lumbar
vertebrae was called L2L3. The error associated with using this technique for measuring
intervertebral angle was determined by taking ten tracings of a single random X-
radiograph. Intervertebral angles were measured for each joint, and mean angles and
standard errors were calculated. The average standard error was used as an indication of
the measurement error.

In order to study the effects of increasing specimen size on the bending moments
applied and the subsequent changes in intervertebral angle, geometric similarity theory
(McMahon, 1973, 1975) was used. ‘Equivalent moments’ were derived as shown below
(refer to Fig. 3A). Consider two vertebrae, with an intervertebral disc of thickness t.
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Bending moments M are applied to this complex, bending it through an angle u. u is
related to the thickness t and the radius of curvature of the bent complex r, by:

uùt/r (1)

(when u is expressed in radians). The standard equation for bending (beams, Timoshenko
and MacCullough, 1948) is:

M = EI/r , (2)

where E is Young’s modulus and I is the second moment of area of a cross section about
the neutral axis. Rearranging equation 2, substituting it into equation 1 and solving for u
gives:

u= Mt/EI. (3)

For geometrically similar animals, all linear dimensions are proportional. Therefore:

I ~ length4

t~ length.
So:

I/t ~ length3 ~ volume ~ mass

for animals of equal density and equation 3 can be written as:

u ~ M/Emass. (4)

If the animals being compared are geometrically similar, and made of the same materials,
then plotting intervertebral angles as functions of bending moment/body mass should
yield the same results for all animals.

McMahon (1973, 1975) developed and used two additional theoretical models in an
effort to reconcile the published data on skeletal dimensions in animals, with their
mechanical and physiological performance during running. These were elastic similarity
and static stress similarity. Elastically similar animals were deemed those whose
structures were similarly threatened by elastic failure (buckling) under their own weight.
McMahon showed that, for them:

length ~ diameter2/3 ,

where length and diameter referred to linear dimensions parallel and perpendicular to the
long axis of the structure respectively. Applying this idea to the bending of intervertebral
joints gives:

I ~ diameter4 .
and

t~ length.
So:

I/t ~ diameter10/3 ~ mass5/4

(because diameter~ weight3/8). Equation 3 would now be written as:

u~ M/Emass5/4 . (5)
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Therefore, for elastic similarity, plotting intervertebral angles as functions of bending
moment/body mass5/4 should yield the same results for all animals.

McMahon referred to static stress similarity as the alteration of linear dimensions to
maintain maximum stresses in self-loading. Animals with this design criterion would
have:

length ~ diameter1/2 .
Considering the bending joints:

I ~ diameter4

and
t~ length.

So:

I/t ~ diameter7/2 ~ mass7/5

(because diameter~ weight2/5). So, equation 3 would be written as:

u ~ M/Emass7/5 . (6)

For static stress similarity, plotting intervertebral angles as functions of bending
moment/body mass7/5 should yield the same results for all animals. As with geometric
similarity, the elastic and static stress similarity models assume animals of equal density,
and ligaments and intervertebral discs etc. of equal Young’s modulus.

Fig. 3B illustrates how the static bending results were analyzed and presented. Positive
moments extended the joints and negative moments flexed the joints. The mean unloaded
angle of each joint was calculated by considering all specimens in each species. Best-
fitting curves were drawn by eye through the data set of each joint (of each species) from
the mean unloaded angle. Differences from this mean to approximate plateaus in
extension and flexion were defined as the forced ranges. To compare behaviour under the
influence of low and high bending moments, equal positive and negative ratios of bending
moment/body mass were located, and corresponding angles were taken from the hand-
drawn curves.

The dynamic bending experiments

Animals and specimen preparation

Cyclic (dynamic) bending moments were applied to lumbar–lumbar and lumbosacral
joint complexes (containing three vertebral centra and two intervertebral discs each) of
monkey (Macaca fascicularis), wallaby (Wallabia rufogrisea frutica), tiger (Panthera
tigris), jaguar (Panthera onca) and seal (Halichoerus grypus). Following the static
bending experiments, many more monkeys, wallabies and tigers (four, eight and three
individuals respectively) were obtained. They were acquired from a primate research
laboratory and Whipsnade Zoo, in the same manner as those obtained for the static
bending experiments. The monkey and wallaby carcasses were dispatched directly to the
department following culling, but the axial skeletons of the tiger carcasses were extracted
by the author at the zoo and then transported back to Leeds. All individuals were used
either immediately upon arrival at the laboratory or frozen for later use, well within 24 h
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of death. The single jaguar specimen was obtained from Whipsnade Zoo in a similar
manner to the tiger specimens. A different species of ‘true’ seal from that used for the
static bending tests was obtained and used for the dynamic bending tests. It was caught in
fishing nets and drowned. It was obtained by Dr Caroline Pond directly from the
fishermen and forwarded to Leeds for immediate frozen storage. Again, all specimens
were kept frozen at approximately 220 ˚C.

Vertebral columns were isolated as described in the previous section regarding the
static bending experiments. Once dissected, they were cut into sections containing three
vertebrae and two intervertebral discs. Holes were drilled through the central vertebrae at
right angles to the sagittal (extension–flexion) plane, at the approximate vertical
midpoints of the centra. Threaded steel bars (1/8 inch diameter for monkey and wallaby
specimens, and 1/4 inch diameters for tiger, jaguar and seal specimens) were put through
the holes. This unit was attached to the clamp. The clamp consisted of two right-angled
steel brackets bolted together to make an arch. The threaded bar was inserted into slots
and secured to the clamp with washers and nuts. The clamp and steel bar constituted a
single rigid structure, while the specimen was allowed to rotate about the bar (see
Fig. 4A).
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illustrates how each data set from each joint of each species was analyzed. The angular
differences between unloaded data pairs (extension and flexion angles at zero moment) were
tested for significant neutral zones using paired Student’s t-tests. Best-fitting curves (broken
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at low and high bending moments, equal positive and negative specific bending moment ratios
were located as shown, and intervertebral angles were taken from the estimates of joint
behaviour (broken lines). Changes in intervertebral angle were measured from the mean
unloaded angles to the broken lines at the appropriate ratios. See text for further explanation.



The experimental set-up

The specimen was then fixed to the load cell of the Instron dynamic testing machine
(model 8031). The outer centra were placed upon metal blocks approximately equidistant
from the central clamp (see Fig. 4A). When the actuator was set to oscillate, the specimen
was subjected to three-point bending by virtue of the two contact points with the outer
blocks and the central attachment to the clamp (the threaded bar). The amplitude of
oscillation was chosen to maximize changes in intervertebral angle without damaging the
specimen. A frequency of 0.5Hz was chosen as adequate and convenient for all
specimens. Higher (>5Hz) and lower (0.1Hz) test frequencies did not appear to alter the
characteristics of the resulting force traces (e.g. maximum forces, hysteresis loops).
Specimens were cycled at least ten times (range 10–30 cycles) to remove any short-term
creep effects. Force loops were generated for specimens in extension (dorsal concave or
sagging) or flexion (dorsal convex or hogging) by flipping specimens over so that either
the ventral surfaces of the vertebral centra, or the spinous processes, were in contact with
the metal blocks. Specimens were lightly wrapped in cling-film and continually
moistened with distilled water to prevent desiccation. This practice also served to reduce
specimen–block friction to a minimum because the moistened specimen slid readily over
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the cling-film covering the metal surface. In order to measure changes in intervertebral
angle within the loop ranges, the machine was stopped at different points along the loop
and X-radiographs were taken. Fig. 4B illustrates the relative position of the X-ray head
to the specimen. Minimum head-to-specimen distances were 1.25m. X-ray plates were
positioned approximately 10cm behind each specimen. A metal marker was placed in the
plane of the specimen so that the X-ray dimensions could be corrected for magnification.
X-ray exposure was calculated separately for each specimen, based on the mass of the
animal from which it was obtained.

Theory and measurements

The objective of these experiments was to measure the response of the intervertebral
joints of different mammals to cyclic (dynamic) bending moments. The response was a
change in the angle subtended by successive vertebrae. The energy input, or work
associated with angular deformation, was also measured. All data required to make these
calculations were derived from the force loops and the X-ray plates as follows.
Bending moment and intervertebral angle. For the purpose of these analyses, each test
specimen was modelled as a freely supported beam with a single concentrated point load
(Timoshenko and MacCullough, 1948). A diagram of the model is shown in Fig. 5A. A
beam of total length L is supported on two triangular bases. The reaction forces associated
with the points of contact between the triangular bases and the beam are R1 and R2. A
point load P is applied to the beam at a distance c from R1 and a distance d from R2. The
sum of c and d is equal to L, the total distance between the contact points. Consider the
situation at equilibrium. Vertical forces must balance:

R1 + R2 = P

and the moments must be balanced. Solving for the moments about the reaction R1 gives:

R2L = Pc ,

R2= Pc/L .

Similarly, balancing the moments about R2 gives:

R1 = Pd/L .

Having solutions for the reactions at each support allows the calculation of the moments
about any point along the beam. Consider the cross section OQ at a distance a from R1.
The bending moment about OQ can be calculated by summing all of the moments to
either side of this cross section. Taking the moments to the left, one gets:

MOQ =R1a,

MOQ =Pad/L .

Fig. 5B shows a schematic diagram of an X-ray trace. Dimensions a and b are from the
outer contact points with the metal block to the approximate geometric centres of the
cranial and caudal intervertebral discs respectively. c and d are the distances between the
contact points of the metal blocks to the central threaded bar. The central bar transmitted
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the specimen force to the load cell via the clamp. By analogy with the beam drawing of
Fig. 5A, the moments about the cranial and caudal disc centres would be:

Mcran = Pad/L
and

Mcaud = Pbc/L

respectively. The forces (P values derived from the Instron force–displacement loops at
each numbered exposure, see Fig. 5C), coupled with the dimensions described in Fig. 5 B ,
were used to calculate the bending moments about each disc centre. Tracings were made of
each X-ray plate, and a protractor was used to measure the angle between the central long
axes of adjacent vertebrae. The error associated with using this technique to measure
intervertebral angle was estimated by making ten tracings of two X-radiographs chosen at
random. Joint angles were measured, and their mean values and standard errors were
computed. The mean of the standard errors was chosen as a reasonable estimate of the
potential measurement error. X-rays were taken at zero force first so that changes in angle
could be related to increases in force and bending moment. Bending moment applied was
divided by body mass to facilitate comparisons between animals of different sizes (see T h e
static bending experiments section for the scaling arguments).
Strain energy associated with bending the intervertebral joints. A finite amount of energy
is required to deform a solid. If the solid is a perfect spring, this deformation energy, or
strain energy is completely recovered when the solid is allowed to return to its original
state. Deforming a fluid also requires an input of energy. In contrast to a solid, a fluid does
not return to its original condition following shear deformation, and no energy is
recovered. Rather, the energy is lost as heat to the surroundings. Typically, the total
energy applied to deform any material is not fully recovered when the deforming force is
removed. The balance is lost as heat due to viscous shearing within the material itself.
While the resilience (energy recovered/energy applied) of a steel spring is very nearly
100%, biological materials show much greater viscoelasticity, and as such are less
resilient. Fig. 5C is a diagram of the Instron force–displacement output for a typical
intervertebral joint complex bending test. Energy (or work) is the product of force and
displacement. Therefore, the area below the upper curve of Fig. 5C (arrow showing
increasing force) represents the work done by the Instron machine to bend the specimen.
The area below the lower curve (arrow showing decreasing force) represents the release
of strain energy by the specimen as it is allowed to return to its original shape. The
discrepancy between these two curves, the enclosed loop, represents the energy lost to
viscous processes.

At points 1, 2 and 3 (in Fig. 5C), X-rays were taken. At point 1, the force is zero, and
the specimen is at rest. At points 2 and 3, the specimen has been bent, or deformed. The
areas below the upper curve up to points 2 and 3 are measures of the energies associated
with the angular deformation of both intervertebal joints and any energy absorbed by the
steel bar or clamp. The compliances of the steel bars were measured by fitting them to the
clamp as described in the experimental set-up. Three-point bending was applied to the
threaded bars by forcing them against a half-inch brass bar mounted on the two metal
blocks. The brass bar was positioned about the midpoint of the threaded bar in the same
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way that each joint complex made contact with the threaded bar and the metal blocks.
This brass bar was much stiffer than either of the threaded bars, so only compliances of
the threaded bars were measured. The energies absorbed by the bars were subtracted from
the total absorbed strain energies at each X-ray point, according to the forces measured by
the load cell at each point. The balances were the energies absorbed by both intervertebral
joints of each specimen. In order to quantify the work done to bend each joint, the
following argument was used. If two identical Hookean springs suffer deformations in the
ratio 1:2, then the loads (or in this case bending moments) are also in the ratio 1:2 and the
strain energies are in the ratio 1:4. A square law was used. The strain energies were
divided by body mass to facilitate comparisons among species on the basis of geometric
similarity. If forces (F) are applied to a Hookean solid, a deformation (Dlength) will
occur. The work (energy) associated with such a deformation would be equal to
1/2F(Dlength). For geometrically similar objects at equal stress, force ~ cross-sectional
area ~ length2 ~ mass2/3, and Dlength ~ length ~ mass1/3. Therefore, work ~ (mass2/3)
(mass1/3), or energy ~ mass. For geometrically similar joints, dividing the strain energy
absorbed by body mass should yield a constant.

In this way, specific bending moments, changes in intervertebral angle and specific
absorbed energies were calculated. Complete lumbar profiles were produced for the
monkeys, wallabies and tigers (including the joint complexes cut from the single jaguar
spine) by testing all combinations of lumbar–lumbar and lumbosacral joint complexes.
As only one seal was available, a complete profile of the lumbosacral sagittal bending
behaviour was not possible. Only uppermost and lowermost joints were tested.

Data analyses and statistics

Changes in intervertebral angle were plotted as functions of applied bending
moment/body mass separately for the extension and flexion of each joint of each animal
group. The static bending data obtained for these species were included in these analyses
because cycling frequency appeared to have had little effect on the force–displacement
output. Since many of the static data were concerned with the forced angular ranges, their
inclusion enhanced the identification of the asymptotic plateaus (A values described in the
model below).

Typically, intervertebral angles increased (positively if extending or negatively if
flexing) with increasing applied specific moment, until some plateau was reached. Further
deformation would have ultimately caused joint failure, and was avoided. The bending
data were therefore modelled as negative exponential functions of the form:

y = A(1 2e2Bx),
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Fig. 5. In A, three-point bending is applied to the beam by the force P and the reactions R1 and
R2 at the triangular outer supports. The dimensions a, b, c, d and L are required to calculate the
bending moment about the cross-section OQ. By analogy with the beam in A, the bending
moments about the cranial and caudal disc centres are calculated as shown in B. A schematic
diagram of a force–displacement loop from a dynamic bending test is shown in C. The
numbers 1–3 represent the points within the bending cycle where X-radiographs were taken.
See text for further explanation.



where x values were bending moment/body mass and y values were the observed changes
in intervertebral angle. The Statistical Analysis System (SAS) non-linear procedure
and/or Biomedical Computer Programs (BMDP) non-linear procedure were used to
calculate A and B and their standard errors for each joint in extension and flexion. A was
the asymptotic plateau of the joint and was similar to the forced bending range described
in The static bending experiments section. B was the rate constant of each function,
describing how quickly the joint reached the plateau. It was essentially a measure of joint
compliance. The lower the B value, the more stiff the joint would be in the particular
bending direction.

Two questions were considered: (1) whether lumbar–lumbar and lumbosacral joint
parameters within species were sufficiently similar to warrant representation by single
pooled functions, and (2) whether homologous joint parameters of all species were
sufficiently similar to warrant representation by single pooled functions. Chow’s test
(Dillon and Goldstein, 1984) was used to compare the residual sum of squares resulting
from combining data into single pooled functions, and the separate functions for each
joint:

Q = [(SSEpool 2 SSSEind)/k]

[SSSE ind/(ntot2mk)]

where SSEpool was the residual sum of squares when groups of data were pooled into
single functions, SSEind was the residual sum of squares when groups of data were
considered as individual functions, k was the number of parameters, ntot was the number
of data points combined from all groups and m was the number of individual groups.
Since Q and F distributions are approximately equal (Dillon and Goldstein, 1984), the
following decision rule was used. If Q>Fa.05 (d.f. are k, ntot2mk), the null hypothesis, that
all the data were best represented by a single function, was rejected. The alternative
hypothesis, that all the data were sufficiently different to warrant separate functions, was
accepted.

The specific strain energies absorbed for the observed changes in intervertebral joint
angle were pooled within species groups for joints with similar bending plateaus and
compliances (A and B values respectively). As intervertebral angles increased, the strain
energies absorbed increased non-linearly. The energy data were therefore modelled as
power functions of the form:

y= CxD ,

where x values were the observed changes in intervertebral angle, and y values were the
corresponding specific strain energies absorbed by the joints. The SAS general linear
model procedure and/or Biomedical Computer Programs (BMDP) linear regression
procedure were applied to each set of log-transformed data to calculate logC and D values
and their standard errors. D would be 2 for Hookean springs. Non-linear biological
springs might be expected to have exponents greater than 2. logC values indicated the
capacities of the intervertebral joints for absorption of strain energy. Strain energy
functions were compared using Chow’s test, as described above, to decide whether the
absorption of strain energies by joints from different species could be represented by
single pooled functions or would require consideration separately.
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Intervertebral joint resilience was defined as the percentage recovery of elastic strain
energy:

(strain energy released)
—————————— 3100.
(strain energy absorbed)

Only those strain energies released and absorbed at the maximally recorded forces of the
force–displacement loops (see Fig. 5C, point 3, for example) were used to calculate
resiliences. These calculations were corrected for the compliances of the threaded bars,
and the mean values (of different joints within the joint pools) were recorded where
possible.

Results

The static bending experiments

Table 1 shows the percentage of total body mass devoted to the major lumbar extensors
and flexors. The greatest disparity between the two was in the wallaby, with 8.2 and 0.7 %
respectively. Extension and flexion muscles were more equally proportioned in the
monkey, at 3.2 and 1.3% respectively. The largest back extensor in all species was
longissimus (often called longissimus et iliocostalis or longissimus dorsi). It originated
on the iliac crest and continued over the lumbars to the base of the skull. In sheep (and
tiger) slips diverged from the main muscle mass to terminate on the dorsal aspect of the
ribs and cervical vertebrae (Getty, 1975). Multifidus was difficult to distinguish in these
species. In monkey, rabbit and wallaby, the longissimus muscle appeared to be more
segmented over the lumbars, and the multifidus was more prominent than in the other
species. The main lumbar flexors were the psoas (major and minor) muscles. These were
always less substantial than the lumbar extensors in all species. Since the seal (Phoca
vitulina) was an incomplete specimen, no total muscle masses could be determined.

Significant neutral zones were measured in the lumbosacral joints of rabbit, wallaby,
badger and seal [about 11, 5, 7 and 18˚ (absolute values) respectively]. Lumbar–lumbar
neutral zones were only significant in the seal and in some of the rabbit joints [about 16
and 2˚ (absolute values) respectively].
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Table 1. Body masses and percentage extensor and flexor muscle masses in the
experimental species

Body mass Extensors Flexors
Animal (kg) (% body mass) (% body mass)

Monkey 2–3 3.2 1.3
Rabbit 2.5–5.5 5.6 1.1
Badger 8 4.0 0.6
Wallaby 4–12 8.2 0.7
Sheep 50–60 2.7 0.6
Tiger 100 5.4 0.9

The total body mass and percentage body mass occupied by major lumbar extensors and flexors of
each experimental species is shown, where complete muscle dissections were possible. See text for
further explanation.



Fig. 6 shows samples of the raw data from badger upper lumbar (L1L2) and wallaby
lumbosacral (L6S) joints. Best-fitting hand-drawn curves are shown radiating from the
mean of all of the unloaded intervertebral angles for each species group. The error
associated with measuring intervertebral angle by the X-radiograph and protractor
technique used here was about ±1.5˚.

A summary of the forced angular ranges is shown in Fig. 7. Lumbar–lumbar joints had
similar ranges within any species and generally lower capacities for bending than the
lumbosacral joints. The contrast between the bending capacity of lumbar–lumbar and
lumbosacral joints was particularly prominent in the sheep. Because the length of the
tiger’s column exceeded that of the large X-ray plates, the X-rays were focused upon the
middle to lower lumbar region. Although measurements for upper lumbar joints were not
possible, visual inspections of the bent columns suggested that the upper lumbar joints
behaved similarily to the lower lumbar joints. Extension plateaus for the seal and tiger
joints could not be determined because the plateaus were not obvious from the extension
data available.

Fig. 8 illustrates the relative bending behaviour of all of the experimental species.
Here, geometric similarity is considered (see Materials and methods, The static bending
experiments section for the scaling arguments) and the applied bending moments have
been divided by body mass. Monkey joints were remarkably resistant to sagittal bending,
relative to their size. The seal lumbar–lumbar joint was particularly conspicuous for its
very low sagittal bending resistance.

The dynamic bending experiments

Fig. 9 shows the bending results and corresponding negative exponential function for
wallaby midlumbar (L3L4) joints in flexion. The error associated with measuring
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Fig. 6. The raw bending data from the upper lumbar–lumbar joint (L1L2) of two badgers
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n, and 4.4kg, n) are shown with the best-fitting hand-drawn curves (broken lines) radiating
from the mean of the unloaded joint angles of each species. See text for further explanation.
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intervertebral angles during the dynamic bending tests, about ±1˚, was lower than that
associated with the static bending tests (±1.5˚, as previously stated).

Tables 2–5 show the A and B values and their standard errors for each joint of each
species group. F values indicate the goodness of fit of the models. Table 6 summarizes
the results of Chow’s tests for comparisons between intervertebral joints within species
groups. The null hypothesis was rejected in every comparison. A visual inspection of the
bending joints within species suggests that differences, particularly between
lumbar–lumbar and lumbosacral joints, were primarily due to their bending capacities (A
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respectively) are shown for each experimental species. Numbers 1, 2, 3, 4, 5 and 6 represent
joints L1L2, L2L3, L3L4, L4L5, L5L6 and L6L7, respectively, and LS, lumbosacral joint.
The tiger column length exceeded the length of the large X-ray plate, so only the middle and
lower lumbar joints are shown. Extension plateaus were not obvious for the seal or tiger, given
the applied bending moments. See text for further explanation.



values). The B values (compliances) of the joints of land mammals typically had large
standard errors in extension, but were clearly conserved between joints in flexion.

Fig. 10 illustrates homologous joint comparisons of the four species groups; the
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lumbosacral joints in extension and the upper lumbar joints (L1L2 and L2L3) in flexion.
The extension capacities of the joints of land mammals (A values) were typically much
lower than those for the semi-aquatic seals (Phoca vitulina and Halichoerus grypus).
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Fig. 9. The observed changes in intervertebral angle with the application of dynamic (d) and
static (s) bending moments are shown for wallaby L3L4 joints in flexion. The least-squares
best-fitting negative exponential function is shown by the solid line:
∆uiv=213.5[12e29.1(M/mass)]. See text for further explanation.

Table 2. The negative exponential model parameters for monkey joints in extension and
flexion

A B Range of Duiv

Joints (degrees) S.E. (kgNm−1) S.E. F N (degrees)

Extension
L1L2 +5 0.42 24.6 15.4 89.6 14 +2 to +7
L2L3 +6.5 0.45 18.6 6.8 130.7 14 +4 to +8
L3L4 +5 0.42 4.7×1010 − 158.4 12 +2.5 to +7.5
L4L5 +4.1 0.61 21.2 52.5 30.7 11 +2 to +6.5
L5L6 +6.4 0.51 31.1 9.4 109.0 14 +2.5 to +8
L6S +9.6 0.88 16.0 4.8 78.4 13 +3.5 to +14

Flexion
L1L2 −16.1 1.00 6.0 1.9 151.8 16 −2.5 to −21.5
L2L3 −12.3 0.99 2.6 0.8 287.9 17 −1 to −14.5
L3L4 −14.5 1.83 2.4 1.1 201.4 13 −1.5 to −15.5
L4L5 −11.4 0.61 3.7 1.4 469.2 13 −1.5 to −12.5
L5L6 −10.3 0.63 19.2 6.7 144.6 14 −2.5 to −14
L6S −23.1 1.56 4.2 1.6 184.9 15 −5 to −26.5

Changes in intervertebral angle from the unloaded excised state (Duiv) were modelled as functions of
specific bending moment (M/mass), Duiv=A(1−e−BM/mass) for monkey lumbar–lumbar and lumbosacral
joints in extension and flexion.

A and B, the asymptotic plateau and the rate at which the plateau is reached, respectively, are
presented for each joint in each direction of bending, with their standard error.

The high F values indicate the significance of the models.
The sample sizes are indicated by N values.
See text for further explanation.



Extension compliances (B values) for seal joints were much greater than those for the
other groups. Flexion capacities and compliances differed for each species group.
Monkey and wallaby joints were typically stiffer (lower B values) than tiger/jaguar joints
and had greater capacities (higher A values) for flexion. Seal joints were very compliant
(high B values) relative to all terrestrial species (see Tables 2–5 for details). Table 7
summarizes the results of the Chow’s tests for comparisons of homologous joints in
extension and flexion. Joint bending parameters were sufficiently different to warrant
description by separate functions in all comparisons except for homologous midlumbar
(L3L4 and L4L5) joints in extension (indicated by the asterisks), where the null
hypothesis was accepted in each case. These comparisons involved only the terrestrial
species.

Fig. 11 shows an example of the pooled energy data and corresponding power curve
for the tiger and jaguar joints in extension. Joints with similar bending plateaus and
compliances (A and B values, respectively, effectively all lumbar–lumbar joints within
the species groups) were pooled and used to calculate the coefficients and the exponents
(C and D values respectively) of the power curves shown in Table 8. Seal joints showed
particularly low capacities for absorbing strain energy (low C values) in both extension
and flexion, compared to the joints of land mammals. Chow’s test results (also included in
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Table 3. The negative exponential model parameters for wallaby joints in extension and
flexion

A B Range of Duiv

Joints (degrees) S.E. (kgNm−1) S.E. F N (degrees)

Extension
L1L2 +5.9 0.94 604.9 − 39.2 8 +3.5 to +11
L2L3 +3.8 0.46 28.8 15.7 54.6 15 +1 to +6
L3L4 +5.9 1.36 6.9 3.8 41.8 17 +1 to +7
L4L5 +4.6 0.51 21.1 14.1 60.5 11 +2 to +5.5
L5L6 +5.2 0.82 1249.7 − 40.6 16 +1 to +11
L6S +8.4 2.39 12.3 9.5 24.8 10 +3 to +13

Flexion
L1L2 −15.9 2.61 12.9 7.2 49.0 7 −6.5 to −18.5
L2L3 −15.2 1.79 10.5 2.6 151.9 15 −1.5 to −18.5
L3L4 −13.5 1.24 9.1 2.2 157.7 16 −2 to −16
L4L5 −14.5 1.20 24.6 15.3 82.3 9 −7 to −19
L5L6 −18.4 0.92 15.7 2.5 314.8 17 −2 to −22.5
L6S −29.7 1.52 14.5 2.4 322.2 17 −9 to −38

Changes in intervertebral angle from the unloaded excised state (Duiv) were modelled as functions of
specific bending moment (M/mass), Duiv=A(1−e−BM/mass) for wallaby lumbar–lumbar and lumbosacral
joints in extension and flexion.

A and B, the asymptotic plateau and the rate at which the plateau is reached, respectively, are
presented for each joint in each direction of bending, with their standard error.

The high F values indicate the significance of the models.
The sample sizes are indicated by N values.
See text for further explanation.



Table 8) show that specific strain energy parameters for each species were sufficiently
different to merit the rejection of the null hypothesis, that strain energy absorption
behaviour could be described by single pooled functions.

Resiliences are also summarized in Table 8. Extension resiliences of the joints of land
mammals were similar to each other (about 67–75%) and greater than those of the seal
joints (about 48%). Flexion resiliences of monkey and wallaby joints were similar to
each other (about 65–67%) and much greater than tiger/jaguar and seal values (36 and
41% respectively).

Discussion

The neutral zone of a joint is the range of unloaded or unforced mobility. Low-friction
joints typically have substantial neutral zones (the wrist, for example). Yamamoto et al.
(1989) quantified neutral zones in cadaveric human lumbar–lumbar and lumbosacral
joints. Pure bending moments were applied to post mortem lumbosacral spines with a
specially designed loading jig. Intervertebral angles were measured by
stereophotogrammetry of special markers on each vertebra. They found statistically
significant neutral zones in both the lumbar–lumbar and lumbosacral joints (mean values

269Mammalian spinal biomechanics

Table 4. The negative exponential model parameters for tiger and jaguar joints in
extension and flexion

A B Range of Duiv

Joints (degrees) S.E. (kgNm−1) S.E. F N (degrees)

Extension
L1L2 +4.7 0.20 91.8 29.5 361.4 10 +3.5 to +5.5
L2L3 +7.9 0.26 19.5 1.5 2.7×104 4 +5.5 to +6.5
L3L4 +3.5 0.35 58.4 44.0 82.3 7 +2.5 to +4
L4L5 +3.1 0.36 63.2 69.6 72.8 9 +0 to +4.5
L5L6 +2.9 0.46 2167.1 − 39.9 7 +1.5 to +4.5
L6L7 +6.0 0.99 55.5 26.1 70.5 12 +1.5 to +7
L7S +8.4 0.90 25.0 5.1 354.8 10 +2 to +7.5

Flexion
L1L2 −9.6 0.58 98.7 49.2 255.6 8 −7.5 to −11
L2L3 −7.9 0.37 1182.6 − 453.5 5 −7 to −9
L3L4 −6.2 0.24 94.0 22.4 990.9 6 −5.5 to −6.5
L4L5 −4.9 0.33 50.8 12.9 590.9 9 −3.5 to −5
L5L6 −6.7 1.66 64.8 99.4 67.9 6 −4.5 to −8
L6L7 −8.5 0.54 89.5 22.4 221.6 12 −1 to −9.5
L7S −11.2 1.06 46.6 13.5 177.4 9 −2 to −12

Changes in intervertebral angle from the unloaded excised state (Duiv) were modelled as functions of
specific bending moment (M/mass), Duiv=A(1−e−BM/mass) for tiger and jaguar lumbar–lumbar and
lumbosacral joints in extension and flexion.

A and B, the asymptotic plateau and the rate at which the plateau is reached, respectively, are
presented for each joint in each direction of bending, with their standard error.

The high F values indicate the significance of the models.
The sample sizes are indicated by N values.
See text for further explanation.



Table 5. The negative exponential model parameters for seal joints in extension and
flexion

A B Range of Duiv

Joints (degrees) S.E. (kgNm−1) S.E. F N (degrees)

Extension
L1L2 +17.3 2.22 266.1 79.7 65.9 7 +4.5 to +18
L2L3 +14.8 1.32 512.1 160.6 109.4 7 +7 to +18
L5L6 +19.3 0.91 154.2 21.8 291.1 9 +3 to +20.5
L6S +17.0 1.19 253.7 64.1 172.9 9 +9 to +19.5

Flexion
L1L2/L2L3 −12.6 1.09 398.8 67.1 244.1 10 −4.5 to −12
L5L6 −13.6 1.10 282.7 82.0 111.1 9 −5 to −16.5
L6S −10.2 0.72 334.3 91.5 139.7 9 −3.5 to −12.5

Changes in intervertebral angle from the unloaded excised state (Duiv) were modelled as functions of
specific bending moment (M/mass), Duiv=A(1−e−BM/mass) for seal lumbar–lumbar and lumbosacral
joints in extension and flexion.

A and B, the asymptotic plateau and the rate at which the plateau is reached, respectively, are
presented for each joint in each direction of bending, with their standard error.

The high F values indicate the significance of the models.
The sample sizes are indicated by N values.
See text for further explanation.

Table 6. Q values for comparisons of joints within species

Q d.f. P value

Monkey, extension (L1L2L3L4L5L6S) 18.0 2, 65 0.0000
Monkey, flexion (L1L2L3L4L5L6S) 74.1 2, 72 0.0000
Wallaby, extension (L1L2L3L4L5L6S) 20.5 2, 66 0.0000
Wallaby, flexion (L1L2L3L4L5L6S) 175.4 2, 74 0.0000
Tiger/jaguar, extension (L1L2L3L4L5L6L7S) 18.6 2, 47 0.0000
Seal, extension (L1L2L3L5L6S) 9.6 2, 23 0.0009
Seal, flexion (L1L2L3L5L6S) 8.2 2, 26 0.0017

The results of Chow’s test, comparing intervertebral joints within species groups, are summarized.
Since all P values are less than 0.05, the null hypotheses are rejected and the alternative hypotheses

are accepted.
See text for further explanation.

and standard errors typically less than 2 and ±0.5˚ and less than 3 and ±0.7˚ respect-
ively). These neutral zones, particularly for the lumbosacral joints, were much smaller
than those measured for the mammals of this study. However, the error associated with
measuring intervertebral angles by their method was ±0.2˚, compared to an error of about
±1.5˚ here. Although they also used four-point bending to apply pure static moments,
their loading and angle measurement systems were much more sophisticated than those
used in the first part of this study. Their motives were specifically related to determining
the magnitudes of joint movement in human intervertebral joints in health and disease.
Clinical diagnoses of spinal pathologies depend upon detailed knowledge of the normal
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Fig. 10. (A) The negative exponential functions for extending lumbosacral joints of each
species group: monkey, Duiv=9.6[12e216.0(M/mass)]; wallaby, Duiv=8.4[12e212.3(M/mass)];
tiger/jaguar, Duiv=8.4[12e225.0(M/mass)]; seal, Duiv=17.0[12e2253.7(M/mass)]. (B) The negative
exponential functions for the flexing upper lumbar–lumbar joints of each species
group: monkey (L2L3), Duiv=212.3[12e22.6(M/mass)]; wallaby (L2L3), Duiv=
215.2[12e210.5(M/mass)]; tiger/jaguar (L1L2), Duiv=29.6[12e298.7(M/mass)]; seal (L1L2/
L2L3), Duiv=212.6[12e2398.8(M/mass)].

Table 7. Q values for comparisons of homologous joints between species

Q d.f. P value

L1L2 extension (MWT/JS) 61.5 2, 31 0.000
L2L3 extension (MWT/JS) 109.4 2, 32 0.000
L3L4 extension (MWT/J) 0.28 2, 30 0.758*
L4L5 extension (MWT/J) 3.0 2, 25 0.068*
L5L6 extension (MWT/JS) 69.6 2, 38 0.000
L6S extension (MWT/JS) 156.2 2, 40 0.000

L1L2 flexion (MWT/JS) 16.22 2, 32 0.000
L2L3 flexion (MWT/JS) 67.8 2, 34 0.000
L3L4 flexion (MWT/J) 8.3 2, 31 0.001
L4L5 flexion (MWT/J) 24.0 2, 25 0.000
L5L6 flexion (MWT/JS) 47.9 2, 39 0.000
L6S flexion (MWT/JS) 87.4 2, 42 0.000

The results of Chow’s test, comparing homologous intervertebral joints between species groups, are
summarized.

The null hypotheses are accepted where P values are greater than 0.05 (marked with an asterisk).
Mid-lumbar joints of the terrestrial species groups (L3L4 and L4L5) did not show significantly

different extension behaviour to warrant description by separate functions.
See text for further explanation.
M, monkey; W, wallaby; T, tiger; J, jaguar; S, seal.



healthy state of intervertebral joints, so accuracy is extremely important. Exploring the
trends and patterns of mammalian intervertebral mobility was the motive for this study,
so extreme accuracy was less important. Nonetheless, the neutral zone of human
lumbosacral joints appears to be less than those of the other mammalian species studied
here.

The forced extension and flexion ranges were determined from the mean of all of the
unloaded intervertebral angles to give approximate plateau angles (see Fig. 3B). Given
that the measurement accuracy per angle was about ±1.5˚, forced ranges determined
from the difference between two angles should be expected to have a greater associated
error. Therefore, the forced ranges of motion of monkey, rabbit, badger and wallaby
lumbar–lumbar joints were not clearly different (see Fig. 7). Sheep and tiger
lumbar–lumbar ranges (tiger in flexion only) were similar, yet noticeably smaller than
those of other terrestrial mammals. Lumbosacral joints had greater forced ranges than
lumbar–lumbar joints in all species, with the greatest contrast between the two in the
sheep. Yamamoto et al. (1989) also measured the range of movement of the human
lumbar column. They subjected lumbosacral spines to a maximum of 10Nm, stating that
this achieved the greatest movement, without causing structural damage. Values ranged
from 4.3 to 5.8˚ and 5.8 to 8.9˚ for lumbar–lumbar extension and flexion, respectively,
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Fig. 11. The specific strain energies absorbed by extending tiger (d) and jaguar (n)
lumbar–lumbar joints are modelled as a power function of the applied changes in
intervertebral angle: EIN/mass=2.1031024(Duiv)1.66 (broken line). See text for further
explanation.



and 7.8 and 10˚ for lumbosacral joints in extension and flexion respectively. These values
are noticeably lower than those for the animals in the static bending portion of this report,
especially with respect to the lumbosacral joint (see Fig. 7). The sheep and tiger appear to
have similarly reduced mobility in the lumbar–lumbar joints, but relatively enhanced
mobility in the lumbosacral joint.

Range of movement has been measured in the intervertebral joints of horses by several
investigators. Jeffcott and Dalin (1980) performed three-point bending tests with horse
thoracolumbar spines. Specimens were freely supported at each end and a 10kg weight
was hung from a point along the length near the midpoint (T12–T13). To reverse the
moment, the specimens were suspended from these midpoints such that the end supports
were free of load. They found very low lumbar–lumbar mobility compared to highly
mobile lumbosacral joints. Unfortunately, their technique did not apply a constant
moment over the region of the column in question. In three-point bending of beams with
freely supported ends, the bending moment diminishes from a maximum at the point of
force application to zero at the free ends (Timoshenko and MacCullough, 1948). It is
likely that some of their experimental joints experienced very low bending moments and
therefore would tend to bend very little. Townsend et al. (1983) also studied the
kinematics of the equine thoracolumbar spine. The sacral ends of specimens were
clamped in a vice and the thoracic ends were manually bent until no further movement
between the joints occurred. Each specimen was treated as a cantilever beam. In such a
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Table 8. The power curve coefficients and exponents for each species in extension and flexion

C Resilience
Animal joints logC S.E. (Jkgdegree−1) D S.E. r2 N (%)

Extension
Monkey (L1L2L3L4L5) −3.060 0.245 8.71×10−4 1.55 0.40 0.72 9 75
Wallaby (L1L2L3L4L5L6) −3.302 0.142 4.99×10−4 1.63 0.34 0.75 11 69
Tiger/jaguar (L1L2L3L4L5L6L7) −3.677 0.102 2.10×10−4 1.66 0.17 0.82 25 67
Seal (L1L2L3L5L6S) −5.574 0.208 2.67×10−6 1.96 0.21 0.82 21 48

Flexion
Monkey (L1L2L3L4L5) −3.262 0.170 5.47×10−4 1.58 0.54 0.47 13 65
Wallaby (L1L2L3L4L5) −3.444 0.141 3.60×10−4 1.55 0.18 0.90 11 67
Tiger/jaguar (L1L2L3L4L5L6L7) −4.335 0.206 4.62×10−5 2.18 0.24 0.85 17 36
Seal (L1L2L3L5L6S) −4.855 0.144 1.40×10−5 1.78 0.17 0.87 19 41

The specific strain energies absorbed by intervertebral joints (EIN/mass) were modelled as power functions
of changes in intervertebral angle (Duiv, from the unloaded excised states), EIN/mass=C(Duiv)D, for each animal
group.

Data from all joints with similar bending plateaus (A values) were pooled within each animal group for each
direction of bending (see Table 7).

C and D values, with their standard errors, are shown.
The r2 values indicate the goodness of fit of the models, and the N values indicate the sample size.
The approximate percentage resiliences of the joints are shown in the last column.
Q values for Chow’s tests of extension and flexion energy comparisons (Q=929.2, d.f.=2, 104 and Q=135.2,

d.f.=2,76, respectively) give P values less than 0.05 that result in the rejection of the null hypotheses.
See text for further explanation.
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system, the applied bending moment increases from zero at the free (thoracic) end to a
maximum at the clamped (sacral) end. It is not surprising, therefore, that they found the
greatest scope for extension and flexion in the lumbosacral joint. Since the force was
applied manually, the maximum bending moment cannot be estimated. Slijper (1946)
estimated the dorsoventral mobility of several mammals including kangaroo and monkey.
He bent the carcasses in flexion and extension and traced the subsequent body profiles.
Again, detailed information about the forces and/or moments applied was not given. The
clear benefit of using a four-point bending technique is that a uniform or pure moment is
applied to every joint along the column. This facilitates joint-by-joint comparisons within
each column and between individuals within and among species groups.

Smeathers (1981) observed that small animals tended to have long arched flexible
lumbar vertebral columns, whereas larger animals’ columns tended to be rather shorter
and more rigid. He suggested that, although flexible spines would require considerable
muscular effort to maintain posture, they would be relatively easy to move. Mass scales
as length3, but muscle force (proportional to cross-sectional area) scales as length2.
Therefore, relatively more muscle is required by a large animal to exert a force that is of
the same multiple of body mass as in a small animal. Smeathers suggested that larger
animals would benefit from having relatively rigid backs. Posture could be maintained
passively, at the expense of an enhanced cost associated with bending the spine.
Certainly, the smaller animals of this study had greater capacities for joint (particularly
lumbar–lumbar) movement. However, this argument does not offer any energetic reasons
for the apparent lack of small stiff-backed animals. Surface area to volume ratios increase
with decreasing animal size. Perhaps a flexible spine, one with a more even distribution
intervertebral joint mobility, is important for small animals because it allows them to curl
up. By approximating a spherical shape, they could minimize their surface area to volume
ratio and reduce heat loss. Thermoregulation is an important aspect of small mammal
physiology, and it seems likely that any adaptive feature allowing them to enhance their
capacity for heat retention would be beneficial.

The marked differences between the forced bending ranges of the lumbar–lumbar and
lumbosacral joints in some larger quadrupeds (sheep in this study and horses in Jeffcot
and Dalin, 1980, and Townsend et al. 1983) perhaps reflect a change in the function of the
lumbosacral joint from a supporting joint to a locomotor joint. The superspinous ligament
does not cross the lumbosacral joint in many of these animals (Slijper, 1946; Getty,
1975). The superspinous ligament is a continuation of ligamentum nuchae, an elastin-
based ligament that runs from the base of the skull to the midthoracic spinous processes.
As it extends caudally, it becomes a very stiff collagenous band that connects the spinous
processes of the lower thoracic and lumbar vertebrae. The absence of this stiff connection
across the lumbosacral joint could allow greater joint mobility. The lumbosacral joint is
intimately associated with the propulsive apparatus, notably the hind limbs and pelvic
girdle. Large terrestrial quadrupeds possess substantial gluteal muscles. Part of the main
gluteal mass, the gluteal tongue, often crosses the lumbosacral joint to insert onto the
vertebral processes of the lumbar vertebrae (Slijper, 1946). The gluteal tongue of horses
can be quite substantial, inserting as far forward as L1L2 (Jeffcott and Dalin, 1980;
Townsend et al. 1983). Contraction of the gluteal musculature, including the gluteal



tongue, would cause hip and lumbosacral extension. Both of these anatomical features
could potentially enhance the forced angular range of the lumbosacral joint. Exploring the
energetic consequences of operating and controlling a spine with highly localized
mobility, as opposed to one with more evenly distributed mobility, was beyond the scope
of this study. It remains an interesting problem for future consideration.

F i g . 8 summarizes the relative sagittal bending behaviour of these mammals. Despite
having similar forced bending ranges, monkey joints were much more resistant to
bending than those of rabbits, badgers and wallabies. In fact, relative to their size, the
monkey spines were the most resistant of this diverse sample. The seal joints were
unique for their relatively large bending ranges and apparently low resistances in both
extension and flexion. Neutral zones in seal lumbar–lumbar and lumbosacral joints were
s i g n i ficant and substantial. Indeed, relative to those of sheep of similar mass,
lumbar–lumbar bending resistance appeared very low (compare the open bars in the
histograms of Fig. 8). There appears to be no clear geometric scaling effect in this small
and taxonomically diverse sample of mammalian species. The rabbits and monkeys
were of similar body mass and had comparable forced mobility ranges. However, the
monkey joints appeared to have greater relative bending resistance. Elastic and static
stress similarity theory, as applied to the bending vertebrae of this study, would require
that the bending moments be divided by body mass raised to powers greater than one
(5/4 and 7/5 respectively). The reduction in specific bending moment would be
relatively greater for the larger animals than for the smaller ones, but the disparity
between the monkey and other species, for example, is not altered by the adoption of
either elastic or static stress similarity (calculated but not shown here). Neither does
there appear to be any obvious relationship between the relative epaxial and hypaxial
muscle masses (Table 1) and the static bending characteristics of the lumbosacral spines
tested here. Slijper (1946) suggested that spinal muscle architecture was dictated to a
large extent by the locomotor demands of the animal. It would appear that locomotor and
behavioural characteristics have an effect on the functional morphology of the vertebral
axial skeleton.

The static bending tests proved to be useful for exploring relative bending behaviour
and end-point bending properties. However, intervertebral joints are subject to dynamic
as well as static loading regimes. Because of the relatively low sensitivity of the static
bending frame, it was very difficult to measure accurately angular deformations at low
specific bending moments. Performing dynamic bending tests with more sensitive
apparatus allowed one to draw conclusions about joint behaviour under more
physiological loading regimes. Although absolute moments may be considerable, fine
dynamic adjustments in the balance of moments about joints probably have important
consequences for controlling posture and locomotor curvatures.

Dynamic bending tests were performed with joint complexes derived from additional
monkey, wallaby and tiger spines. These species were selected because all of them
displayed flexion asymmetry in their respective forced bending ranges. They also
exhibited limited extension ranges. Conducting dynamic tests with seal joint complexes
allowed a unique opportunity to compare and contrast detailed information about the
sagittal bending behaviour of terrestrial with semi-aquatic mammals. It was hoped that
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the dynamic bending experiments would shed more light on relative bending stiffnesses,
properties that would require measurements of low moment deformation. It would appear
that the aforementioned goals have been met with some success. However, any
conclusions drawn from the results of the dynamic bending experiments depend upon the
extent to which the model parameters A, B, C and D really reflect differences in the
physical properties of the bending intervertebral joints.

The model used for bending was y=A(12e2Bx), a simple, asymptotic function with a
non-zero slope when x equals zero. It reflected the physical observation that intervertebral
joint angle would increase with increasing bending moment up to a certain level, beyond
which further deformation would ultimately lead to joint failure. A is the asymptote of the
function. It therefore represents a joint’s capacity for angular change. B is the constant
that indicates the rate at which the asymptote is achieved. It is indicative of a joint’s
compliance in bending. The greater the B value, the lower the bending resistance or
stiffness of the joint.

A protractor was used to measure intervertebral angles from tracings of the X-
radiographs. The measurement error associated with this technique was ±1.0˚. Therefore,
the relative measurement errors of small intervertebral angles were greater than those for
large angles. Estimates of B required information about angles and bending moments on
the approach to the asymptotic plateaus. Because the extension asymptotes were often
quite small (+3 to +8˚, see Tables 2–4), the scatter of the data, and hence the standard
errors of the extension B values, was often considerable. Indeed, if low-moment data
were lacking and the plateaus appeared to materialize almost immediately, the non-linear
iterative procedures used to determine the model parameters gave virtually infinite slopes
(i.e. very large B values) with undefined standard errors (equal to zero) (e.g. wallaby
L5L6 in extension, B=1249.7, and monkey L3L4 in extension, B=4.731010, for example,
see Tables 3 and 2 respectively). This partly contributed to the acceptance of the null
hypothesis for comparisons of homologous extension functions in the midlumbar joints
of the land animals.

Clear outlines were required to estimate the orientation of the central long axes of the
vertebrae. This was difficult for the central vertebrae of the smaller specimens because
they were often partly obscured by the width of the steel clamp. In these situations, the
angles of the intervertebral joints were measured with respect to the parallel sides of the
steel clamp. This was legitimate since the goal was to measure changes in intervertebral
angles. However, this method assumed that there was no rotation of the central vertebrae
with respect to the clamp. In specimens where the central vertebrae were clearly visible,
the angles between the parallel sides of the clamp and the long axes of the central
vertebrae were measured. These angles remained constant for all X-rays within any
bending test. Rotation of central vertebrae with respect to the clamp did not occur during
these tests to any measurable degree. This was partly because efforts were made to apply
symmetrical bending moments to the intervertebral joints by positioning the metal blocks
equidistant from the disc centres. Additionally, the results of the static bending
experiments suggested that adjacent lumbar–lumbar joints had similar bending
properties, so symmetrical bending about the central vertebrae was a valid assumption for
lumbar–lumbar specimens. Specimens involving the lumbosacral joints were less of a
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problem because low lumbar and lumbosacral vertebrae were sufficiently large for the
angles of the vertebral centra to be measured directly.

Despite the minimum ten-cycle conditioning of each specimen, a slight decrease in
force was sometimes observed while the machine was stopped in mid-cycle to expose an
X-ray plate. Since these decreases in force were less than 5% of the initial maxima, they
were considered to be negligible.

These experiments involved applying forces about moment arms limited by the
dimensions of the vertebrae. For some specimens, particularly those from the monkeys
and smaller wallabies, the required forces were relatively large compared to the stiffness
of the threaded steel bar transmitting the specimen force to the load cell. Since the
specimen, threaded bar and clamp were in series, the forces measured by the load cell
were those applied to the intervertebral joints. However, the work done by the Instron
included the work done to bend the joints and the threaded steel bar. The strain energies
absorbed by the steel bars were subtracted from the total strain energies recorded. The
remainder was shared between the two joints, depending upon the changes in
intervertebral angle observed. Joint resilience was estimated by quantifying the energy
released by the specimens as they were allowed to return to their original states. In these
calculations, it was assumed that the resilience of the threaded steel bars was 100%. This
was certainly the case for the short-term compliance tests. However, after the bending
experiments had been completed and the threaded bars were removed from the
specimens, very slight distortions were sometimes observed in the centre of the bars. This
meant that some of the work done to deform the bars was not recovered and that the
resiliences of the bars were less than 100%. Therefore, the intervertebral joint resiliences
quoted in Table 8 may have been slightly underestimated.

Fig. 8 shows the bending responses of intervertebral joints from the seven initial
species to specific static bending moments. It gives the impression that the lumbosacral
joints of some species are much less resistent to bending than are the adjacent
lumbar–lumbar joints (wallaby and tiger, for example). However, the maximum ratios for
the static bending comparisons (±0.10Nmkg21) were chosen because they were within
the ranges of applied moments of nearly all of the experimental data sets, so that
extrapolations were avoided. If a particular moment ratio forced a plateau angle in one
joint but not in an adjacent joint, the latter would appear less resistant to the bending
mode concerned. The results of the dynamic bending experiments (see Tables 2–5) show
that the compliances (B values, indices of joint stiffness) of the lumbar–lumbar and
lumbosacral joints are similar within the species groups selected. Lumbosacral joints
differed from lumbar–lumbar joints primarily in their enhanced capacities for bending.

This may not be the case for all mammalian lumbosacral joints. As discussed
previously, the lumbosacral joints of some species seem to be anatomically predisposed
to large ranges of movement. The lumbosacral articulations themselves are uniquely
constructed in horses and rhinoceroses, for example. The transverse processes of the most
caudal lumbar vertebrae form synovial articulations with the sacral wings. This hinge-
like effect is enhanced by the fusion of some of the lower lumbar transverse processes,
thus further restricting lumbar movement to the lumbosacral articulation. Synovial joints
have characteristically low friction, so it is possible that the lumbosacral joints of horses
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and rhinoceroses have different resistances to bending compared to their lumbar–lumbar
counterparts, in addition to their enhanced capacities for bending (Jeffcott and Dalin,
1980; Townsend and Leach, 1984).

Comparisons of homologous terrestrial mid-lumbar joints in extension show
insufficient differences to warrant separate functions (see Table 7). A stated earlier,
comparisons were confounded by the relatively large standard errors of their B values
(see Tables 2–4). Extension capacities were typically limited to about 3–8˚. However,
the extension compliances and plateaus were much greater in the seal joints. It may be
reasonable to assume that in vivo spinal extension (positive bending or sagging) is at least
partly a gravitational phenomenon. Beam sagging, for example, may be induced by the
support of a suspended weight. One might expect that the extension properties of
intervertebral joints should follow a scaling law if the quadrupedal spine behaves like a
horizontal beam supporting the abdominal mass. Elastic similarity theory (McMahon,
1973; 1975) states that structural dimensions should scale such that gravity-induced
buckling is avoided. Here, bending moments have been divided by body mass. It is not
obvious that dividing the bending moments applied by body masses raised to exponents
greater than one (see Materials and methods, The static bending experiments for details)
would alter the standard errors of the extension parameters of the joints of terrestrial
species and clarify statistical similarities and differences. Perhaps the absence of the
constant pull of gravity has somehow lessened the requirement for a very stiff spine in the
semi-aquatic seal.

Homologous joint comparisons in flexion (see Fig. 10B for example) showed four
compliances for the four groups. High-flexion compliances in the seal joints were similar
to the high-extension compliances. However, monkey and wallaby flexion compliances
(B values) were considerably less than those for the tiger and jaguar joints. Interestingly,
monkey and wallaby flexion capacities (A values) were greater than those for the tiger and
jaguar joints. Therefore, despite having relatively higher flexion stiffnesses, monkey and
wallaby joints had greater flexion capacities than homologous tiger and jaguar joints. It
remains to be seen what structures are responsible for endowing these species with the
observed bending properties.

Specific strain energy functions for intervertebral joints of the different species in
extension and flexion appeared to be sufficiently different to warrant description by
separate functions (Q test results, Table 8). Much less work was required to bend the seal
joints than to bend the joints of the land mammals. More specific energy was required to
extend and flex the monkey joints than to bend the tiger and jaguar joints. Exponents of
the power curves were generally less than 2, that expected for a Hookean spring.
However, given the magnitudes of the standard errors, these exponents are probably not
different from 2. Most biological materials show non-linear elastic behaviour
(Wainwright et al. 1976) so that one might have expected exponents even greater than 2.
This was observed only in the tiger/jaguar flexion results.

Approximate intervertebral joint resiliences are listed in Table 8. Although terrestrial
joint resiliences were similar in extension, tiger/jaguar flexion resilience was much less
than those for monkey and wallaby joints. Joint resiliences may have been
underestimated if the resiliences of the steel bars were overestimated. There was evidence
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of the latter (slight irreversible distortions of the bar) following some of the bending tests
of all except the seal specimens. From these experiments, it is not clear why tiger and
jaguar resiliences were so low.

The results of these experiments suggest that bending resistance, particularly to flexion
moments, may be manifest by different materials and/or structures in monkeys,
wallabies, tigers and jaguars and seals. All of the terrestrial species showed similar
tendencies towards enhanced joint flexion, relative to extension. However, the
compliances differed markedly. Monkey and wallaby joints were relatively stiffer in
flexion than tiger/jaguar joints, despite having greater flexion ranges. Most discussions of
mammalian intervertebral joint mobility and/or flexibility make no distinction between
these two aspects of joint movement (Jeffcott and Dalin, 1980; Townsend et al. 1983;
Halpert et al. 1987, for example). Perhaps hypotheses pertaining to stiff and/or flexible
spinal morphologies (Smeathers, 1981, for example) require reconsideration.
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