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Summary

The concept of electrical circuit analysis is extended to include components found in
membrane ionic transport systems. As in classical electrical equivalent circuits, resistors
and capacitors are used to represent ion channels and the membrane capacitances,
respectively; batteries represent energy sources driven by chemical reactions. In the
extensions proposed, energy stored in various ionic concentrations is treated as charges
on compartmental capacitors; symporters and antiporters are treated as energy-coupling
devices analogous to transformers in alternating current electrical circuits. Pumps are
shown to be special cases of porters in which the input circuit derives its energy from a
chemical reaction. Using these components, circuit diagrams are drawn for several
examples of membrane ion transport systems. By applying appropriate circuit analysis
techniques, these diagrams facilitate the quantitative description of the energy
distributions throughout the system.

Introduction

Models of membrane-associated ionic events have long provided a conceptual
framework for organizing and communicating data obtained from real systems. Such
models usually take the form of equivalent electrical circuits which can be subjected to
standard electrical circuit analysis techniques to describe quantitatively the voltage and
current relationships among the components.

Probably the most familiar of the equivalent electrical circuits is the model of the squid
giant axon used by Hodgkin and Huxley (1952) to describe the ionic events associated
with the generation of nerve action potentials. Finkelstein and Mauro (1963) extended the
use of equivalent electrical circuits to model membrane systems and developed the
concept of the pure electrical equivalent of the membrane. The models proposed by
Hodgkin and Huxley and by Finkelstein and Mauro considered only the movement of
ions down their electrochemical gradients. Several years elapsed before electrogenic ion
pumps were included in the equivalent electrical circuits (e.g. Kishimoto et al. 1981).

The analysis of equivalent electrical circuit models has proved useful in studying
transmembrane ionic movements associated with transient events, like sensory receptor
potentials (Martin and Mote, 1980) and action potentials, which do not significantly
affect the transmembrane ionic gradients. By contrast, in the complex world of porters,
pumps and channels, the application of circuit analysis techniques has been scant. This
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paper proposes an extension of electrical circuit analysis technique to model ionic
systems typical of biological plasma membranes in single cells and epithelia. The
fundamental techniques of circuit analysis include Ohm's law, Kirchhoff s laws, the
Thevenin and Norton theorems, as well as mesh and nodal network analysis (e.g.
Edminister, 1965). These techniques are as applicable to ionic systems as they are to
electrical systems. However, ionic circuits are characterized by a multiplicity of current
carriers, by energy coupling between carriers, and by energy storage being distributed
between ionic activity gradients and the membrane capacitance. For these complex
circuits the definitions of some components have been refined. The components and their
assembly into ionic circuits is discussed.

Circuit components

Included in all equivalent electrical circuits are resistors, capacitors and batteries. Each
of these electrical components represents a corresponding physical component in the
membrane systems. Resistors represent the various ionic channels found in the
membrane. Capacitors represent the plasma membrane with its insulating lipid core
separating two conductive aqueous solutions. Batteries represent ionic gradients having
an electromotive force (emf) equal to the corresponding Nernst equilibrium potential.
However, symporters, antiporters and pumps do not have a typical component
designation in their own right, but are usually represented as constant current or constant
voltage generators in most electrical equivalent circuits (Lauger, 1991).

In the present analysis, resistors and capacitors are used to represent ionic pathways
and membrane capacitances in the usual way. Batteries, however, are restricted to
instances where chemical bonds are broken to generate a fixed emf or, more
appropriately, an ion-motive force (imf), related to the free energy of the reaction. The ion
activity gradients, porters and pumps are treated in a novel way using the concept of
compartmental capacitance.

Compartmental capacitances

The storage of energy in activity gradients presents a conceptual problem. The usual
method of representing them as batteries is particularly awkward. Ideal batteries have a
constant output potential determined by the free energy of the chemical reaction involved.
As batteries discharge, the open-circuit potential of the battery remains constant whereas
the closed-circuit output voltage decays. This condition can be schematized by including
an internal resistance in series with an idealized battery. As the battery discharges, the
amount of substrate decreases and the overall rate of the reaction decreases, raising the
effective internal resistance. The discharge of an activity gradient is not like the discharge
of a battery. When a gradient discharges, withdrawal of energy actually decreases the
magnitude of the free energy involved, a condition more like the discharging of a
capacitor than that of a battery.
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The capacitance ( Q of a device is mathematically defined as the ratio of a change in
charge (dQ) to the resulting change in electrical potential (d£):

C = dQ/dE. (1)

For any given ionic species, k (following the terminology of Snell et al. 1965), dgk can,
in turn, be defined in terms of the change in the number of ions (d/Vk) in a compartment:

d0k = ZkFxcWic, (2)

where z is the valency and F is Faraday's constant. The compartmental d£k for a given
djVk can be determined by the Nernst equation (for simplicity we will consider no change
in compartmental volume or ionic activity coefficient):

^ ^ (3)

where R is the gas constant and T is absolute temperature. By combining equations 1, 2
and 3, an equation for the ionic compartmental capacitance can be written:

Ck = - ^ x Zk2 x dMc/{ln[Wk/(Wk + dMO]} . (4)

From numerical analysis, it can be shown that as dMc approaches zero

Ck approaches —— x Zk
2 x Me. (5)

If activity (Ak) is used to express the number of ions present, then die ionic
compartmental capacitance can be shown to be directly proportional to the volume (v) of
the compartment and inversely proportional to the activity coefficient (ak) for the ion:

Compartments with large volumes and small activity coefficients will have larger ionic
compartmental capacitances than smaller compartments with large activity coefficients
for the ion of interest. Moreover, the ionic compartmental capacitance is not a constant
but varies proportionally with the number or activity of ions in the compartment. This
dependency on the number of ions in the compartment must be considered, and further
explored, when considering significant perturbations in the system.

A membrane always separates two compartments. If each compartment has an ionic
compartmental capacitance for each ionic species involved then a total ionic
compartmental capacitance for a two-compartment system can be determined (again, for
simplicity assume no change in compartmental volume or ionic activity coefficient).

The total ionic compartmental capacitance (Ok) of the two-compartment system can be
calculated by first determining the change in equilibrium potential as ions move from the
outside (o) compartment to the inside (i) compartment:

d/VjJ

(for the derivation of this equation see Appendix 1).
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Then, by finding the ratio between the change in voltage and the change in charge:

Ok = -¥- x Z k
2 x cWk/ln {[M>k(Mk + cWk)]/[Mk(M>k - cWk)]} . (8)

/? T

From numerical analysis, it can be shown that as cWk approaches zero:

Gk approaches - ^ x Zk2 x NokNik . (9)
VV RT Afo + M

Exactly this same equation is obtained when the inside and outside ionic compartmental
capacitances are in series with each other (see Appendix 2).

In cases where just two compartments are separated by a membrane (e.g. vesicles in
cytoplasm or vesicles in a bath) it is probably more convenient to lump both ionic
compartmental capacitances into a single combined capacitance. Since, in most cases, the
vesicular or cellular volume will be much smaller than the cytoplasmic or bath volume,
respectively, the vesicular or cellular ionic compartmental capacitances will be very close
to the combined ionic capacitance. When considering epithelia, which are, by definition,
polycompartmental systems (at least lumen, intracellular space and blood), it is necessary
to consider the ionic capacitances of each compartment individually since each
compartment can be ionically coupled to more than one other compartment by ionic
transport mechanisms.

Porters and pumps

Symporters and antiporters are commonly thought of as current-coupling devices.
They are often defined in terms of their coupling ratios of 1:1, 2:1, 3:2, etc. But they can
also be thought of as energy-coupling devices. Energy delivered to the device by an ionic
current will be dissipated by the device. The dissipated energy can take two forms: energy
lost as heat and energy used to do work. In the ideal porter, no energy would be lost as
heat and all the energy delivered by an ionic current would be used to do work. When the
work done is to generate an imf for a secondary ionic species, the relationship between
the primary and secondary ionic species is analogous to the relationship between the
primary and secondary coils in an a.c. transformer. The current, voltage and impedance
relationships for porters will be described using this transformer analogy.

Fig. 1A shows the circuit symbol for porters used in this paper. It was derived from the
typical symbol used to represent coupling devices in membrane diagrams (Fig. IB); its
origins can be traced back at least as far as Hodgkin and Keynes (1955). Input and output
circuits are arbitrarily assigned in the ideal coupler, i.e. the ideal porter is considered
reversible. The coupling coefficient (m) is considered positive if the input and output
currents through the device are in opposite directions.

If we assume that the porter is ideal, then power delivered in the input circuit (f\n) will
equal the power dissipated in the output circuit (Pout):

Pin = Pom (10)

and the current coupling ratio (m) will be defined as:

m = Imfloul • ( 1 1 )
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Fig. 1. (A) The circuit symbol for an ideal porter. (B) Diagram of a porter after Hodgkin and
Huxley (1955).

It can be shown that (see Appendix 2 for derivations):

m = EouJEm
and

== Roul/R'm ,

(12)

(13)

where R is resistance.
This analysis yields the following relationships. Anion/anion or cation/cation

antiporters would have positive coupling coefficients. Anion/anion or cation/cation
symporters would have negative coupling coefficients. Anion/cation antiporters would
have negative coupling coefficients whereas anion/cation symporters would have
positive coupling coefficients. This definition of the coupling ratio simplifies mesh
analysis of the ionic circuits and is consistent with the definition of positive current as the
passive movement (i.e. downhill movement driven by ionic electrochemical gradients) of
positive ions into cells. By implication, the active movement (i.e. uphill movement driven
directly or indirectly by metabolic processes) of positive ions out of cells is also positive
current.

For a more realistic depiction of porters, it is necessary that frictional losses of the
porter mechanism and also possible 'slip' of ions through the mechanism without
accompanying coupling be considered. Frictional losses can be modeled by adding a
resistance (Rs) in series with either the input or output sides of the porter. Slippage can be
modeled by adding a resistance in parallel (Rp) with either the input or the output side of
the porter. Exactly where these resistances are placed depends on what is known about the
particular porter being modeled and the degree to which a faithful representation of the
mechanism is desired. The impedance coupling relationship (equation 13) ensures that
appropriate values placed on either side will have an equivalent value on the opposite side
(see Fig. 2).

Pumps are special cases of porters. The input side of a pump is driven by the free
energy, expressed in volts, of the chemical reaction (usually ATP hydrolysis) driving the
pump, i.e. the pump potential (Vp). The pump coupling coefficient (mk) is the ratio of the
number of energy substrate molecules split to the number of ions pumped. Fig. 3A
depicts an ideal pump whereas Fig. 3B depicts a more realistic pump with frictional and
slippage resistances added. All power, current, voltage and impedance relationships hold
for pumps as they do for porters.

In order to determine the relationship between Vp and imf for the pumping mechanism
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Fig. 2. The circuit symbol for a porter with friction and slippage.

shown in Fig. 3B, the total load on Vp must be determined. First let R\ be the impedance
(resistance in this case) offered by the porter. This value can be determined by
substituting circuit components into equation 13:

R\=R*/mk
2. (14)

Then let /?2 be the parallel combination of the input side of the porter and the slip/leakage
resistance Rp:

R2= (15)

Ri forms a voltage divider with Rs, dropping a portion of the pump potential across the
input side of the porter. The output side of the porter (the imf) is related to the input
potential by equation 12. Combining all these equations yields the desired relationship:

Riimf = VpXmk x - (16)

Sample circuits (corresponding to the models in Harvey, 1992)

Example I: a proton pump in a vesicular membrane

An extremely simple system consisting of a pump for a single ionic species in a
membrane separating two aqueous compartments (Fig. 4A) is considered first. Based on

imf Vp -±-

I
Fig. 3. (A) The circuit symbol for an ideal pump. (B) A realistic pump circuit with internal
losses.
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Fig. 4. (A) A proton pump in a vesicle membrane (example I). (B) Circuit diagram for
example 1.

this hypothetical situation the circuit shown in Fig. 4B can be drawn. In the circuit, the
ionic (in this case, proton) pump is depicted by the Vp/porter combination. For the
purposes of these analyses the frictional and slippage resistances are considered to be
negligible and are ignored. In the steady state, in this case equilibrium, the pump will
generate a proton-motive force (pmf) which is the product of the pump potential (Vp) and
the proton porter coupling coefficient (mp):

pmf - Vp x mp. (17)

The pmf will be dropped across the series combination of the membrane capacitance
(CM) and the total proton compartmental capacitance ( O H ) . The proportion of the pmf
dropped by each capacitance is related to the size of each capacitor. The voltage drop
across CM is the membrane potential (EM) and its relationship to the other components in
the system is given by:

i = VD x m0 x - Ctn
O H + CM

(18)

The Nernst proton equilibrium potential (EH) for the system is the voltage drop across
and is the difference between £M and the pmf:

EH = EM - pmf. (19)

The voltage relationships in this circuit point out two interesting facets. If O H is large
with respect to CM then the pmf will be dropped mostly across the membrane capacitance
and the proton pump will look like a potential generator. If O H is small with respect to
CM then the pmf will drop mostly across the proton compartmental capacitance and the
proton pump will look like a pH gradient generator. A small O H at a typical pH for a
vesicle would necessitate a very small volume and a large activity coefficient. Hence,
whereas quite large membrane potentials could be developed depending on the mp, it
would be difficult to imagine a proton pump alone being responsible for significant
acidification of a vesicular compartment.
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Example 2: a proton pump in a vesicular membrane with gegenion leakage

To acidify a compartment significantly the value of the effective membrane
capacitance must be close to, or greater than, the proton compartmental capacitance. This
condition can be achieved by adding a channel for a non-pumped ionic species (i.e. a
gegenion), which moves under the influence of the membrane potential and its own
activity gradient only. A gegenion channel is included in the system shown in Fig. 5A,B.
In this circuit the £M is the sum of two voltages: the voltage drop across the gegenion
resistance (Rk) and that of the total gegenion compartmental capacitance Ok. In the
steady state no current will flow through Rk, effectively putting Ok and CM in parallel.
The equilibrium relationship of the membrane potential to the other components of the
system is described by equation 20:

O H
EM = Vp x mp x

O H + CM + Ok

Ey = EM ,

= EM- pmf.

(20)

(21)

(22)

In this example, acidification is made possible because the larger capacitors dominate
the system in the steady state. Since both the protons and the gegenions occupy the same
compartments, it is reasonable to assume that the compartmental capacitances for the two
ions will be similar. In this situation, significant charging of the proton compartmental
capacitance could be effected by the proton pump. It makes no difference whether the
gegenion is an inwardly moving anion like chloride or an outwardly moving cation like
sodium. Either can increase the effective steady-state membrane capacitance of the
system and cause development of a pH gradient with the inside of the vesicle being acid
with respect to the bath.

Example 3: a vesicular membrane with a proton pump, a porter and gegenion leakage

A proton pump can be used to make a compartment alkaline if its energy is used to
drive an ionic cotransporter and the effective membrane capacitance is made
correspondly large by passive gegenion movement. Diagrams for this circuit can be seen

ATP

ADP+P

Fig. 5. (A) A proton pump in a vesicular membrane with a gegenion leakage (example I).
(B) Circuit diagram for example 2.
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Fig. 6. (A) A vesicular membrane with a proton pump, an H+/K+ porter and a gegenion
leakage (example 3). (B) Circuit diagram for example 3.

in Fig. 6A,B. In these diagrams the cotransporter transfers energy in the proton circuit to
the potassium circuit. Consistent with the direction of energy transfer, the coupling
coefficient is designated mHK, and the cotransporter is designated an H+/K+ antiporter.
The potassium-motive force (Kmf) is related to the pmf by:

Kmf = mHK x pmf. (23)

The equations describing the remaining voltage relationships in the circuit can be
determined by writing and solving a pair of simultaneous equations. One equation
describes the voltage distributions throughout the circuit that would result if the pmf were
present but the Kmf were zero. The other equation describes the voltage distributions
throughout the circuit that would result if the Kmf were present but the pmf were zero.
The following voltage relationships will apply when the system comes to equilibrium:

O H + (mHK x O K )
EM = pmf x •

Ctn + CM + Cfk + CtK''

£k = £M ,

= EM- pmf,

= EM - Kmf.

(24)

(25)

(26)

(27)

For this circuit to be effective in compartment alkalization, O H would have to be
relatively large with respect to O K and Ok; this condition could be effected by buffering
the compartment to bring the proton activity coefficient to very low levels while keeping
the activities of the other ions involved relatively high. The increase in O H brought about
by buffering would increase the effective capacitance in parallel with the membrane
capacitor, thereby increasing EK- But even with significant buffering of the inside
compartment mHK must still be greater than 1. In order to alkalize the inside compartment
with respect to the bath mHK must be high enough to drive the EH positive and this is only
possible when:

mHK > 1 + • (28)
Ctk

(see Appendix 4 for derivation).
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Example 4: the goblet cell in the midgut epithelium of the larval lepidopteran

This example describes a polycompartmental system; it provides a basis for a
discussion of the salient points that must be considered whenever complex ion circuits are
to be analyzed.

Fig. 7A describes the principal ionic pathways found in the goblet cell of the larval
midgut of Manduca sexta (Harvey, 1992). The system represented has four
compartments: the midgut lumen, the goblet cavity, the goblet cell intracellular space and
the blood. A proton pump and proton/potassium antiporter are located in the membrane
lining the goblet cavity. Bicarbonate, or perhaps more likely carbonate, is generated by
metabolic activity and passes preferentially across the apical side of the epithelium. The

Gut lumen O

Goblet cavity O

Apical
membrane

Cell interior

Basolateral
membrane R\\

Blood O

Fig. 7. (A) Ionic movement through a goblet cell. (B) Circuit diagram of a goblet cell.
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apical membrane consists of the membrane lining the goblet cavity, continuing through
the valve region, and across the lumen/intracellular interface.

Fig. 7B is a schematic diagram of the goblet cell system showing the component parts
of the pathways shown in Fig. 7A. Each compartment has ionic compartmental
capacitances associated with it: CH, CK and Ck. These are single compartment ionic
capacitances rather then the combined compartmental capacitances used in the previous
circuits of this paper. Along with the polycompartmental considerations mentioned
previously, the single compartmental capacitances are used here to isolate each ionic
pathway from the others, d.c. connections between the different ionic pathways do exist
and will be the topic of a later publication.

MemBrane capacitances are found associated with each portion of membranes where
they separate different compartments; Cv is a composite capacitance for the valve
assembly. Although it is probably very small and not representative of the complexity of
this structure (see Moffett and Koch, 1992), it does allow the goblet cavity/lumen
interface to be drawn like all the others. Membrane potentials are measured at the
locations indicated by the test point circles and, hence, are only capacitatively coupled to
the voltage drops associated with the ionic currents.

As drawn here, the goblet cell has a 'power take-off in the potassium ionic circuit.
Potassium currents traveling longitudinally in the lumen and the blood can drive amino
acid uptake in neighboring columnar cells (see Fig. 8). These extra goblet cell pathways
would add to the load on the porter and hence to the load on the pump.

During, build-up to the steady state, membrane capacitances and ionic compartmental
capacitances (all non-pumped ionic compartmental capacitances are lumped with the
membrane capacitance in Fig. 8 to simplify the diagram) are charged in accordance with
the principles mentioned earlier. If the system is closed and reaches a steady state, the
load on the pump is a function of the load presented by the parallel combination of proton
leakage currents and proton currents through the potassium antiporters. The load
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ICM

!CK

CK

Lumen

ICM

_<-, Columnar
cell
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-Q Blood

Fig. 8. Simplified diagram of midgut epithelium showing the path of potassium current
through both goblet cell and columnar cell.
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contributed by the antiporter is a function of the net resistance of the potassium circuit.
Also, the size of the various membrane capacitances and ionic compartmental
capacitances will not affect the steady-state load on the pump in any way, except as
compartmental pH, transmembrane potential or the like can activate or inhibit membrane
channels in the pumped or ported circuits.

However, no real biological system is ever closed. For the living insect larvae, the
materials in the gut lumen and the materials in the blood are constantly in flux. In the gut
and the interstitial fluids, fresh material is constantly being added and old material is
being removed, giving these compartments a very large effective capacity and preventing
them from becoming fully charged. Under these conditions, the steady state is like a
sustained transition state. Currents would constantly be flowing in non-pumped and non-
ported ionic pathways and, to the extent that these currents were a function of the
pump/porter system, the magnitudes of their pathway conductances and capacitances
would affect the loading on the pump.

Future directions

Viewing the energy distributions in membranes as functions of the voltage, current,
capacitance and resistance parameters of the pumps, porters, channels, membranes and
compartments of the system presents an opportunity to write and use computer programs
like those successfully used in electrical and electronic engineering. These programs
allow investigators and students to study how different circuit configurations can
quantitatively affect the operation of a system. Circuit analysis programs able to handle
the ionic systems of unit and epithelial membranes must include provisions for d.c.
transformers of pumps and porters and provisions for handling the ionic compartmental
capacities. They must also be able to handle the inherent nonlinearity of the
compartmental capacitances and other components and the nonlinearities on circuit
components affected by protein conformational changes in response to membrane
potential, pH or ionic strength.

Another possible line of study with ionic circuit analysis is to consider the possible role
of impedance matching between various ionic circuits on fitness of the organism to its
environment and behavior. Maximum power delivered to a load is achieved when the
impedance of the load is equal to the internal impedance of the power supply circuit.
Whether the loads put on pumping circuits are relatively steady, as may be the case with
the constantly eating larva of the tobacco hornworm Manduca sexta, or periodic, as is the
case for the gypsy moth Lymantria dispar, which eats in spurts (M. G. Wolfersberger,
personal communication), the matching of the energy demand to the energy supply would
seem to be important, d.c. circuit analysis techniques described here could easily handle
conditions in which the loads are constant. Varying loads in capacitative circuits
introduce phase differences between the currents in the different ionic circuits that must
be considered. In circuit analysis terminology such varying loads are called reactive
loads. With periods of hours, days or perhaps weeks and months, matching the reactive
loads to the energy distribution system would require circuits with very large capacitors
such as the ionic compartmental capacitances described here. It would be interesting to
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study the degree to which evolutionary processes have selected for impedance matching
as an energy optimizing strategy.

Appendix 1. Determination of change in equilibrium potential with a movement of
ions from one compartment to another

The equilibrium potential before (££k) the transfer is:

(1.1)
)k

The equilibrium potential after (Eak) the transfer is:

t W " (1.2)
ZkF

The change in the equilibrium potential caused by the transfer is:

d£k = £flk-£fck. (1.3)

Substituting equations 1.1 and 1.2 into equation 1.3:

^L^L (1.4)
ZkF

On rearranging:

MkX(/Vok-cWk)

Equation 1.5 is the same as equation 7 in the text.

Appendix 2. The series combination of ionic compartmental capacitances

Two capacitors in series combine to give the following equation:

~ (2-0
; + Cik

In the text it was shown that:

(2.2)
RT

and

Cik = x Zk2 x Mk. (2.3)

Let

^ • • " ' ' ( 2 . 4 )
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Substituting the appropriate capacitance equations into equation 2.1 and using the
equivalence of equation 2.4:

_

Rearranging and canceling:

C^UxN°*X^
Nok + Mk

or:
^ N 0 k X ^ (2.7)Ct, xZ^
RT

Equation 2.7 is the limit of equation 9 in the text.

Appendix 3. Porter coupling considerations

From the power law we know that:

P = IE. (3.1)

So, from equation 1:

I'mX E\n —loulX Eout- (3.2)

Rearranging:

lirJIoul — Eoul/Em • (3.3)

Therefore, substituting equation 2 in the text:

m = Eoul/Em • (3.4)

From the power law, we also know that:

P = PR. (3.5)

So, from equation 1 in the text:

/in2 x Rm = /ou(
2 x flout - (3.6)

Rearranging:

/in2//out2 = RoJRin . (3.7)

Therefore, substituting equation 2 in the text:
2 . (3.8)

Appendix 4. Minimal value of coupling coefficient required to alkalize a
compartment

From equation 24:

O H + CM + Ok + O K
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From equation 26:

EH = EM - pmf. (4.2)

Substituting equation 4.1 into equation 4.2:

Rearranging:

EH = p m f x OH + dnmcxOK) _ ^ ( 4 3 )

Cm + CM + Ok + O K

r O H + (mHK x OK) "I
£H = pmfxl 1 I . (4.4)

L O H + CM + Ok + O K J
Alkalization of the inside compartment with respect to the outside compartment results
when:

£H > 0 . (4.5)

In order for this to occur, it is necessary that:

OH + (mHKXQK) ? ,

O H + CM + Crk + O K

Rearranging:
(4.7)

x O K > CM + C/k + O K , (4.8)

CM + a k 1 ( 4 9 )

CfK

Equation 4.9 is the same as equation 28 in the text.
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