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Summary

Chromaffin granules and clathrin-coated vesicles are major sources for V-ATPases of
mammalian cells. Studies of these organelles have helped us to understand the structure
and function of the enzyme. It was shown that V-ATPases are composed of distinct
catalytic and membrane sectors containing several subunits. The subunit stoichiometry
was determined to be 3A, 3fl, 1C, ID, 1£, 6c (proteolipids), lAci 15 and ?Ac39.
Additional subunits are likely to be discovered. Resolution and reconstitution of the
enzyme revealed that the catalytic and membrane sectors are interdependent for their
partial activity. The catalytic sector has no ATPase activity when detached from the
membrane sector, and the membrane sector when depleted of the catalytic sector does not
conduct protons. The mechanistic significance of these properties is discussed.

Subunit structure

The vacuolar H+-ATPase (V-ATPase) of chromaffin granules and clathrin-coated
vesicles has been studied more extensively than all other organelles of mammalian cells.
Historically, chromaffin granules provided the first evidence for the existence of an H+-
ATPase in the vacuolar system of eukaryotic cells (Kirshner, 1962; Bashford etal. 1975;
Njus and Radda, 1978; Mellman et al. 1986). It was demonstrated that catecholamine
uptake is driven by the proton-motive force generated by an ATP-dependent proton
pump, later named V-ATPase (Pollard et al. 1976; Johnson andScarpa, 1976; Casey et al.
1977; Holz, 1978, 1979; Schuldiner et al. 1978). Therefore it was established that an
electrochemical gradient of protons generated by an H+-ATPase is the driving force for
catecholamine uptake (Cidon and Nelson, 1983), a process that is a fine example of the
chemiosmotic theory (Mitchell, 1968). Lysosomes were next in providing evidence that
an ATP-dependent proton pump generates and maintains their acidic interior (Schneider,
1979, 1981; Reeves and Reames, 1981). Clathrin-coated vesicles were added to the
family when ATP-dependent proton accumulation into the organelles was clearly
demonstrated in two laboratories (Forgac et al. 1983; Stone et al. 1983). Subsequent
structural studies demonstrated that the V-ATPases of the two different organelles are
almost identical in their subunit structure and biochemical properties (Xie and Stone,
1986; Arai et al. 1988; Nelson, 1989; Moriyama and Nelson, 1989a). It was shown that
the catalytic sector (Vi) is composed of five polypeptides, denoted as subunits A to £
(Nelson, 1989). This sector can be dissociated from the membrane by treatment with urea
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(Xie and Stone, 1986), KI plus MgATP (Arai et al. 1989) or by cold inactivation in the
presence of NaCl and MgATP (Moriyama and Nelson, l9S9a,b,c). The genes encoding
subunits A, B, C and E were cloned and sequenced (Hirsch et al. 1988; Siidhof et al. 1989;
Nelson etal. 1990; Pan et al. 1991; Puopolo etal. 1991,1992). The membrane sector (Vo)
is composed of more than four subunits with relative molecular masses of 115, 32, 20 and
16X103 (Arai et al. 1988; Moriyama and Nelson, 1989a). The genes encoding three of
these subunits were cloned and sequenced (Mandel etal. 1988; Wangef al. 1989; Perine/
al. 1991), and only the gene of the alleged subunit of 20xl03Mr awaits cloning. Table 1
depicts the subunit composition reported for V-ATPases from different sources. There is
general agreement on the presence of subunits A, B, C and E of Vi and the proteolipid of
Vo in all of the preparations reported so far. The 115xlO3Mr polypeptide is probably
present in all mammalian V-ATPases and is present in yeast and Neurospora cells. In
plants, however, it is not clear if it is necessary for the activity of the enzyme (Ward et al.
1992). The 39xlO3A/r polypeptide was shown to be present only in mammalian V-
ATPases. Several additional polypeptides were identified in preparations of V-ATPases
from various sources, but their involvement as subunits of the enzyme was not proven
(Percy and Apps, 1986; Xie and Stone, 1986; Gluck and Caldwell, 1987).

The amino acid sequences of V-ATPase subunits revealed their relationships to F-
ATPase subunits (Nelson, 1989). The sensitivity of eukaryotic V-ATPases to -SH
reagents was localized to cysteine 254 in subunit A of the bovine enzyme (Feng and
Forgac, 1992). Reconstitution studies together with chemical modifications shed some
light on the function of the various subunits in the catalytic activity of V-ATPases.
Nevertheless, we are far from understanding the fine structure of the enzyme and its
mechanism of action.

Function of V-ATPases in the various organeiles

Whereas the function of the V-ATPase in coated vesicles is to provide limited
acidification for processes such as recycling of receptors, the main function of the enzyme
in synaptic vesicles and secretory granules is to provide energy for a massive uptake of

Table 1. Subunit structure of mammalian V-ATPases

Vi sector Vo sector

Source of V-ATPase A B C D E Acll5 Ac39 a c (proteolipid) Additional

Clathrin-coated vesicles 68* 57* 40 34 33 96* 38 20 16
Chromaffin granules 68* 57 44* 34 33 115 32* 20 16*
Kidney 70 56 42 33 26* 38 15 45, 14, 12
Lysosomes 72 57 41 34 33 39 18 15 55
Golgi apparatus 68 58 40 34 33 37 16

Apparent relative molecular masses of the various subunits are given xlO~3.
•Relative molecular masses deduced from cDNA sequences (Puopolo et al. 1991, 1992; Perin et al.

1991; Pan etal. 1991; Nelson et al. 1990; Wang et al. 1989; Mandel et al. 1988; Hirsch et al. 1988).
The remaining relative molecular masses were estimated on SDS gels (Xie and Stone, 1986;
Moriyama and Nelson, 1989a,t,c; Wang and Gluck, 1990; Young et al. 1988).
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neurotransmitters (Cidon and Shira, 1989; Moriyama et al. 1990). Synaptic vesicles
contain up to 0.8moll"1 of neurotransmitters, and chromaffin granules may contain
0.5moll"1 catecholamines as well as 0.15 moll^1 ATP. In addition to these chemicals,
chromaffin granules contain a large number of enzymes and proteins sensitive to low pH.
Therefore, the V-ATPase should provide abundant energy in the form of proton-motive
force while preventing overacidification in the interior of the organelle (Moriyama and
Nelson, 1988). Understanding the mechanism controlling these processes is one of the
most challenging tasks in the field. It will also be interesting to learn whether the same
enzyme functions in the wide variety of synaptic vesicles in the brain. V-ATPases are also
likely to be involved in the biogenesis of various internal organelles in brain cells. The
initial studies of V-ATPases in chromaffin granules and clathrin-coated vesicles provided
the foundation for such studies.

Future

In the future more attention will be given to the specific properties of V-ATPases in the
various organelles. One of the most challenging questions is how such a conserved
enzyme can function in so many organelles each with specific requirements for the extent
and composition of the proton-motive force. It was observed that only a single gene
encodes the A subunit in the bovine genome (Puopolo et al. 1991). Even the presence of
isogenes encoding subunits B and E cannot explain the diversity of V-ATPases in
eukaryotes (Puopolo et al. 1992). Moreover, it is not clear how die different gene
products can assemble specific enzymes in the different organelles because no signal
sequences have yet been identified. Recently, it became apparent that V-ATPases
function not only in internal organelles but also on the plasma membrane (Nelson, 1991).
A V-ATPase with unique enzymatic properties was recently identified in osteoclasts
(Chatterjee et al. 1992). One of the ways to study specific mammalian gene products is to
express them in yeast mutants in which the corresponding gene has been interrupted
(Beltra'n et al. 1992). A combination of yeast genetics with biochemistry in mammalian
cells is a powerful approach that is likely to advance us to the future.
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