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Summary

The complex morphology of an insect campaniform sensillum is responsible for
transforming strains of the integument into a displacement of the campaniform
dome and subsequently a deformation of the dendritic membrane. In this paper,
the first step in this coupling process was investigated in identified campaniform
sensilla on the wing of the blowfly by stimulating the sensilla with chord-wise
deflections of the wing blade. Campaniform sensilla neurones were sensitive to
both dorsal and ventral deflections of the wing, and thus exhibited no strong
directional sensitivity to the chord-wise components of wing deformation. These
results are consistent with a simplified mechanical model in which the wing veins
act as cylinders that undergo bending and torsion during chord-wise wing
deformation.

By comparing the responses of campaniform neurones to chord-wise deflections
of the wing with those evoked by direct punctate stimulation of the dome, it is
possible to estimate the dynamic properties of the coupling process that links wing
deformation to dome deformation. In the identified campaniform neurone
examined, wing-dome coupling attenuates high frequencies and transforms the
chord-wise deflections of the wing into dome deformation similar in degree of
excitation to that caused by direct punctate indentions that are two or more orders
of magnitude smaller in size.

Introduction

The task of mechanosensory neurones is to translate the mechanical energies
that impinge upon body structures into streams of electrical signals that can be
interpreted by the cells of the central nervous system. Typically, the first stage of
this process is executed by one or a series of coupling structures that transform and
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conduct mechanical energy to the dendritic surface of the sensory neurone. One
example of such a structure is the dome and socket of campaniform sensilla, strain-
sensitive proprioceptors of the insect cuticle. The complex morphology of each
sensillum is responsible for transforming compression and tension in the cuticle
surrounding the socket into a small deformation of the dome and ultimately a
distortion of the dendritic membrane that produces a transduction current
(Chapman et al. 1973; Spinola and Chapman, 1975; Thurm and Kiippers, 1980;
Barth, 1981). The geometry of the dome and socket also endows elliptical sensilla
with directional sensitivity, because of a higher sensitivity to compression
perpendicular to their long axis (Thurm ez al. 1975; Zill and Moran, 1981). The
coupling apparatus of campaniform sensilla can also play an important role in
establishing the frequency response of the sensillum, as has been shown for
mechanosensory hairs of a cricket (Shimozawa and Kanou, 1984a,b) and a
caterpillar (Tautz, 1977a,b).

The role of mechanical coupling in establishing directional sensitivity has been
elegantly analyzed for the campaniform sensilla on the relatively stiff cockroach
leg (Zill and Moran, 1981). These elliptically shaped campaniform sensilla display
a directional sensitivity established by the orientation of their long axis with
respect to the tension and compression vectors produced during loading of the
cylindrical leg. Extreme axial asymmetry is also correlated with directional
sensitivity in the closely packed campaniform fields at the base of the haltere in
Calliphora (Thurm et al. 1975). A similar phenomenon is responsible for direc-
tional sensitivity in the arachnid analogues of campaniform sensilla, slit sensilla,
which have been the subject of a detailed analysis of coupling mechanics (see
Barth, 1981, 1984, for reviews). Little is known, however, of the coupling process
for sensilla that reside on more flexible and geometrically complex structures such
as the wings. Flies bear on their wings a discrete and stereotyped array of
campaniform sensilla whose encoding properties have recently been analyzed
using direct punctate stimulation (Dickinson, 1990a,b). However, the responses of
these sensilla to deformation of the wing and the dynamics that couple wing
bending to dome indentation have not previously been quantified.

In this paper, I examine the responses of campaniform sensilla on the wing of
the blowfly, Calliphora vomitoria, to chord-wise deformations of the wing. Chord-
wise deflections occur during flight as the wings develop a positive camber during
each half-stroke (Nachtigall, 1979; Ellington, 1984; Ennos, 1989). An interesting
feature of these deformations is that they can occur in both directions during the
wing beat, since the wing is thought to adopt an appropriate camber for both the
upstroke and downstroke. Thus, the first goal in this paper is to examine
qualitatively the responses of campaniform neurones to both dorsal and ventral
directions of chord-wise wing flexion. Second, in order to examine the contri-
bution of coupling to the dynamic response of the campaniform sensilla, a
quantitative measure is made by comparing the neuronal responses elicited by
mechanical noise stimuli applied to the wing with those measured during direct
punctate stimulation of the sensillum dome.
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Materials and methods
Stimulation and recording

Previously published techniques for recording the responses of wing campani-
form sensilla neurones (Dickinson, 1990a) were modified to allow chord-wise
deformations of the wing. Fly wings were removed and glued dorsal side up with
cyanoacrylate glue to an acrylic recording stage containing two recording wells
filled with saline, which made contact with the cut distal and proximal ends of the
wing. One side of the stage was cut away parallel to the long axis of the wing so
that the second vein and all anterior portions were glued down, while the posterior
portion extended unsupported off the edge (Fig. 1). The stimulus probe consisted
of a Ling model 201 vibration generator driven by a PID feedback amplifier. The
probe position was monitored optically as described previously (Dickinson,
1990a). The wing was attached to the probe by means of a small spring-loaded
clamp (a modified doll’s clothes pin, Archie McPhee, Seattle), which held the
posterior portion of the wing firmly near the fourth vein. The optical sensor
measured displacements of the probe tip and thus recorded the movements of the
wing just posterior to the fourth vein. As the stimulus probe moved up and down,
the posterior portion of the wing was translated vertically relative to the fixed
anterior portion, eliciting responses from the campaniform sensilla neurones.
Upward vertical deflections of the posterior portion of the wing are defined here as
dorsal displacements and correspond to concave deformations of the dorsal
surface. Deflections in the opposite direction are termed ventral displacements.
The nomenclature and map of the identified distal campaniform sensilla have been
previously published (Dickinson and Palka, 1987; Dickinson, 1990a).

All the neurones of the third vein displayed some sensitivity to the stimulus and,
consequently, it was not possible unambiguously to identify the spikes of
individual cells in the extracellular recordings. Consequently, the preparation was
typically simplified to localize the stimulus and to allow for unambiguous
recordings from just two neurones, the ACV (anterior cross-vein sensillum) and
L3-1 (the first sensillum of the third vein), whose spikes are easily distinguished by
size (Dickinson and Palka, 1987). Two chord-wise incisions were made from the
trailing edge of the wing to the posterior side of the third vein; one distal to L3-1
and the other proximal to the ACV (Fig. 1A). These incisions decreased the
amount of tension on the most distal and most proximal portions of the third vein
during translation of the posterior half of the wing. In addition, the third vein was
crushed distal to the L3-1 sensillum, destroying the axons of the L3-2 and 1.3-3
sensilla, and the giant sensillum of the radius (GSR) and the dorsal humeral cross-
vein sensillum (d-HCV) were ablated with a fine razor blade shard. The only
sensillum that could potentially contaminate the recordings was the L3-v, whose
spikes are rarely detectable in extracellular recordings. Further, by crushing either
the ACV or the L3-1 sensillum with forceps, it was possible to record the response
of the other neurone unambiguously.

At the start of each experiment, the vertical offset of the stimulus probe was
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Fig. 1. Preparation used to study the responses of campaniform sensilla to chord-wise
deformations of the wing and linear systems model. (A) The anterior half of a
Calliphora vomitoria wing is glued with cyanoacrylate adhesive to an acrylic stage.
Electrical contact with the veins is made by saline wells at distal and proximal ends of
the wing. To record unambiguously the responses of the ACV and L3-1 neurones, the
third vein is crushed distal to the L3-1 and proximal sensilla are ablated with a razor
blade shard. To localize the stimulus and minimize tension acting on the distal portion
of the third vein, two incisions are made in the wing, one at the level of the L3-v and
another just distal to the L3-1. (B) Detail of stimulus arrangement and method for
calculation of wing—dome coupling. (Top) A schematic slice through the wing at the
level of the ACV sensillum. Note that the anterior cross vein runs perpendicular to the
long axis of the wing. The first and second veins are glued to the recording stage, and
the stimulus clamp holds the wing between the fourth and fifth veins. The entire
encoding process, G, is modelled as a cascade of two linear functions, G4, Which
accounts for the conversion of wing deformation to dome deformation, and G4, which
represents the transformation from dome deformation to spike code (below). Both G,
and G4 can be measured using noise stimuli applied to the wing and dome,
respectively, with the assumption that punctate indentation is a reasonable substitute
for the naturally occurring deformation of the dome. The unknown function Gy,
wing—dome coupling, is computed from the ratio of G,,/G, in the frequency domain.

positioned to correspond to the resting, undeformed state. This was done by eye
through a dissecting microscope and by monitoring the spike discharge of the
tonically active L3-1 neurone, which is excited by both dorsal and ventral
deflections and shows no response when the wing is in the resting position. The
campaniform sensilla neurones were stimulated with either dorsal or ventral
trapezoidal deflections (1 ms rise time) or noise stimuli (20-400 Hz bandwidth).
The offset and the magnitude of the stimuli could be varied independently.

Analytical methods
The complete coupling mechanism that transforms wing deflection to strain of
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the dendritic membrane may be divided into two sequential components. The
mechanics that link wing deformation to dome deformation are defined as
wing—dome coupling and the process that transforms dome indentation into
membrane strain as dome-neurone coupling. The net coupling behaviour, wing-
neurone coupling, which precedes the physiological response of the neurone, is
modelled here as a simple cascade of these two processes.

Although it is difficult to measure the separate components of coupling directly,
the first element in the cascade, wing—-dome coupling, can be measured by the
techniques described below. Both the gain and phase of the linear function
describing the spike response of a campaniform neurone to a noise stimulus,
applied either to the wing or directly to the dome, may be computed from the pre-
spike stimulus average (Dickinson, 1990a). The functions G4(f) and G(?), where ¢
is time, represent linear response functions calculated from direct punctate
stimulation of the dome and chord-wise deformation of the wing respectively
(Fig. 1B). The linear model of wing—dome coupling is represented as Ggq(f). In
the frequency domain, these three functions are related in a simple manner:

Gwd(jw) = Gw(iw)/Gd(.iw) ’ (1)

where jis V-1 and w is frequency.

Thus, the dynamic behaviour of wing—dome coupling is computed by the ratio
of the linear response functions measured using wing deformation and punctate
indentation. Because proper stimulation using direct punctate indentation re-
quires that the wing be glued firmly to the recording chamber, and the life time of
the excised wings is approximately 20 min, both calculations could not easily be
made from individual sensilla. Instead, G(f) and G4(¢) functions were measured
from the ACV neurone in separate preparations. The data from punctate
stimulation (15 experiments) have been previously published in another form
(Dickinson, 1990a). In those experiments it was possible to calculate the actual
indentation of the dome relative to the surrounding vein cuticle by careful
measurement of the campaniform dome, socket and stimulus probe compliances.
The magnitudes of the wing deflection stimuli were chosen to produce a mean
spike rate that closely matched that elicited during punctate stimulation. The
results of the dome and wing stimulation experiments were averaged after
transformation to the frequency domain. The ratio G,(jw)/G4(jw) was then
computed to yield the transfer function that describes wing—dome coupling. The
phase introduced by this coupling process was found from the difference of the
phases calculated from G,, and Gg4.

Results
Response polarity

The rapidly adapting ACV neurone was responsive to both dorsal and ventral
deformations of the wing. However, as shown in Fig. 2 (left-hand column), the
polarity of the deflections to which the neurones responded was strongly
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Fig. 2. Response of ACV and L3-1 neurones to direction and mean offset of chord-
wise wing deformations. Both left and right panels consist of three pairs of traces
recorded with the mean offset values shown at the left (in um, positive values indicate
dorsal deflection). The stimuli, consisting of trapezoidal deflections, are indicated at
the bottom of each panel. The top and bottom traces in each pair of recordings show
the responses to dorsal and ventral deflections, tespectively. With no stimulus offset,
the ACV and L3-1 neurones respond to both dorsal and ventral stimuli and display no
obvious directional sensitivity. When an offset is imposed upon the wing, the neurones
respond only when the wing is deflected further from the resting, undeformed position.
The L3-1 displays an off-response at the end of stimuli that deflect the wing towards the
resting position.

dependent upon the stimulus offset. If the posterior portion of the wing was bent
dorsally, the ACV responded at the onset of trapezoidal deflections that moved
the wing to a more extreme dorsal position. If a ventral offset was imposed on the
wing, then the neurone responded to further ventral deflections. With no offset,
the neurones responded to both dorsal and ventral deformations. The ACV
typically responded to trapezoidal deformations of the wing with a single spike at
the onset of the stimulus. However, a small burst of spikes at the onset and an off-
response were sometimes seen, especially in response to stimuli with larger
magnitudes.

The tonically responding L3-1 neurone displayed a directional response similar
to the ACV cell (Fig. 2, right-hand column). However, a background spike
frequency was present in the L.3-1 whenever the wing was offset from the resting
position. In these experiments, the L3-1 neurone was allowed to adapt for several
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Fig. 3. Noise stimuli that elicit responses of an L3-1 neurone applied at different levels
of mean wing deflection. The three traces on the left show the pre-spike stimulus
average computed from 10ms noise segments preceding 100 spikes during a 2.5s
stimulation of the wing. Fifty individual stimulus traces preceding spike occurrences
are displayed to the right. The mean level of wing deflection is indicated at the left of
the superimposed traces (in um, positive values indicate dorsal deflections). When the
noise stimulus was added to a mean dorsal deflection, the neurone responded to
further dorsal deformations. However, if a mean ventral deflection was imposed, the
neurone responded only to ventral transients of the noise stimulus. With no stimulus
offset, the cell responded to both dorsal and ventral deflections, as clearly indicated by
the bimodal distribution of stimulus events preceding each spike occurrence.

minutes to any imposed steady offset until the spike rate was near zero. The spike
frequency increased with trapezoidal stimuli that deflected the wing further from
the undeflected position. In contrast, if the wing was bent towards the undeflected
position, the cell displayed an off-response at the end of the stimulus. This off-
response was a characteristic feature of the two other tonic neurones (L.3-3, L3-v)
on the third vein (data not shown).

The effects of stimulus offset on the directional response of the campaniform
sensilla neurones were also manifest when the wing was stimulated with mechan-
ical noise. Fig. 3 (left) shows the averaged time course of the stimulus preceding
spike occurrences in an L3-1 neurone, measured at three different levels of
stimulus offset. Superpositions of individual stimulus traces preceding spike
occurrences are shown to the right of each averaged trace. When the probe was
positioned to produce a net ventral deformation of the wing, the L3-1 responded
to further ventral deflections. Yet when the noise stimulus was offset with a dorsal
deformation, the same campaniform sensillum responded to further dorsal
deflections. With no net stimulus offset, the neurone responded to both dorsal and
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ventral transients in the noise stimulus, resulting in a pre-stimulus average that
nearly cancelled out.

Dynamics of wing—dome coupling

Fig. 4A compares the frequency response functions measured with direct
punctate and whole-wing stimulation. The data from six wing stimulus exper-
iments and 15 dome stimulus experiments were averaged separately and used to
construct the frequency response of wing—dome coupling. Because the ACV
neurone was responsive to both dorsal and ventral deflections it was necessary to
apply a small offset to the noise stimulus to ensure that the sensilla responded to
wing movements of one polarity only. The results of three experiments with dorsal
offset and three with ventral offset revealed similar frequency responses, and the
data from all six experiments were pooled.

The calculated gain and phase of wing—dome coupling are shown in Fig. 4B.
Wing-dome coupling attenuated high frequencies, yet had little effect on the phase
response. At 150Hz, the typical wing-beat frequency of Calliphora, a given
displacement of the posterior end of the anterior cross vein resulted in an
excitation of the campaniform neurone equivalent to that produced by a direct
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Fig. 4. Comparison of frequency responses of the ACV neurone calculated with direct
punctate indentation and chord-wise wing deformation. (A) The gain and phase
relationships calculated from punctate indentation experiments and wing deformation
experiments are superimposed. For both functions, the gain (in spikess™' nm™') has
been plotted on a decibel scale. The data are the mean values from several experiments
(wing stimulation, N=6; dome stimulation, N=15). The dome stimulation data have
been previously published in another form (Dickinson, 1990b). The gain measured
with deformation of the wing shows a greater attenuation at high frequencies. (B) The
two frequency responses in A were used to calculate the gain and phase response of the
wing—dome coupling process (see Materials and methods). The coupling is a unitless
function since it is calculated from the ratio of two functions with identical units.
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punctate indentation approximately 100 times smaller in magnitude. Thus, a 1 um
displacement of the fourth vein would result in deformation equivalent in level of
excitation to the response elicited by a 10nm indentation of the campaniform
dome.

Discussion
Lack of directional sensitivity among wing campaniform sensilla

The responses of the ACV and L3-1 neurones elicited by chord-wise deflections
of the wing are similar to those produced with direct punctate indentation of the
dome (Dickinson and Palka, 1987). The ACV neurone adapts extremely rapidly to
step deflections of the wing, whereas the L.3-1 continues to fire for the duration of
the stimulus. In the absence of a mechanical offset, neither the ACV nor the L3-1
neurone exhibit a strong directional sensitivity to the polarity of chord-wise wing
deformation (Fig. 2). During maintained deformations, the campaniform sensilla
neurones responded to stimuli that increased the deflection of the wing and not to
those that moved the wing towards the undeflected position. In this latter case,
however, the L3-1 neurone typically displayed an off-response burst after the
termination of the stimulus.

The similarity in the responses of the fly wing neurones to both dorsal and
ventral flexion must result from the interaction of two factors: the strain
distribution on the wing during deformation and the intrinsic directional sensi-
tivities of the sensilla. A simple prediction of the wing strain, in which the anterior
cross vein and the third vein are modelled as orthogonal hollow cylinders is shown
in Fig. 5 and is based on well-characterized solutions of the stress distributions for
this geometry (Beer and Johnston, 1981). An upward deflection of the wing
(Fig. SA), would result in compression forces on the dorsal surface of the cross
vein acting parallel to the vein axis, with tension forces acting perpendicularly
around the circumference of the vein. The cross vein also transmits the upward
displacement to the third vein, thereby creating orthogonal helices of compression
and tension forces that are maximal at an angle of 45° with respect to the long axis
of the vein. During downward flexion of the wing (Fig. 5B), the dorsal surface of
the cross vein would undergo tension axially with compression forces oriented
circumferentially, and the maximum compression and tension helices on the third
vein would rotate by 90°. According to this model, the neurones of the
campaniform sensilla could only respond to both upward and downward wing
flexion if they display little or no intrinsic directional sensitivity. That is to say, the
model requires that the sensilla respond equally to compression forces acting from
orthogonal directions. Gnatzy et al. (1987), who examined the ultrastructure of the
campaniform sensilla in the closely related Calliphora vicina, found that the six
most distal campaniform sensilla on the fly wing, including the ACV and L3-1
sensilla, possess dendrites and tubular bodies that are circular in cross section.
Thus, these sensilla lack the flattened dendritic morphology characteristic of
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Fig. 5. Model of forces acting on campaniform sensilla during chord-wise flexion of the
wing. The diagram shows the predicted distribution of compression (solid arrows) and
tension (open arrows) acting on the ACV and L3-1 sensilla. (A) During upward flexion
of the fourth vein, the cross vein would undergo simple upward bending, resulting in an
axial compression of the ACV sensilla and circumferential tension. The upward
movement of the cross vein would transmit a torsional force acting on the third vein,
resulting in orthogonal helices of compression and tension. (B) A downward
displacement of the fourth vein results in a reversal of the compression and tension
vectors acting on both sensilla.

directionally sensitive sensilla, and it is certainly plausible that they could respond
equally well to compression stimuli with orthogonal orientations.

Although the dendrite of campaniform sensilla neurones is circular, the dome
and socket are slightly elliptical in outline (Gnatzy et al. 1987; Dickinson, 1989),
with the long axes oriented parallel to the veins as indicated in Fig. 5. Such
morphology would tend to resist compression oriented parallel to the wing veins,
thus endowing the sensilla with directional sensitivity. This arrangement would not
alter the response of the 1.3-1 neurone to upward and downward wing displace-
ments, because in both cases compression forces would be acting obliquely to the
long axis. However, the ACV neurone would be expected to display less sensitivity
to upward flexion because the compression forces are parallel to the long axis of
the sensillum. However, according to linear elastic theory, the compression forces
acting along the parallel axis during an upward flexion will be greater than the
compressive forces acting circumferentially during a downward flexion of equal
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magnitude. Therefore, it is possible that the elliptical morphology of the ACV
dome and socket might function to counteract the directional bias that results from
the expected asymmetry in strain magnitudes, thus endowing this sensillum with
similar sensitivities to upward and downward wing flexion.

The above model oversimplifies the geometry of the wing, and the actual stress
distributions are likely to be more complex than those shown in Fig. 5. For
example, the interior morphology of the anterior cross vein has been likened to a
vacuum cleaner hose (Wisser, 1987), consisting of thick rings of cuticle, separated
by narrow segments of thinner, presumably more flexible, cuticle. In addition, the
model ignores the wing membrane that must act in some degree to transmit forces
from one vein to another. Nevertheless, the simplified model is consistent with the
ultrastructure of the campaniform sensilla and represents a parsimonious expla-
nation of the physiological results.

By whatever mechanical or physiological means it is achieved, the lack of
directional sensitivity presents a potential source of processing error for the central
nervous system (CNS), because the afferent spike trains produced by a single
sensillum during dorsal and ventral flexion could be identical. There are several
plausible means by which the CNS could interpret these potentially ambiguous
signals. During flight, wing deformation is complex, consisting of length-wise,
chord-wise and torsional components (Wooton, 1981; Ellington, 1984; Ennos,
1989). It is possible that the responses of the campaniform sensilla to the net
pattern of wing flexion are less directionally ambiguous. Further, the kinematics of
wing deformations during flight, although variable, may be stereotyped enough for
directionality not to be important. For example, the torsional wave generated
during supination is usually much larger than that during pronation, and the CNS
might be wired such that it always interprets campaniform activity during flight as
an indication of supination. This strategy would be facilitated by the fact that each
campaniform sensilla neurone probably fires only one action potential during each
wing-beat cycle (Dickinson, 1990a). Finally, although the response of a single
neurone may be ambiguous, the CNS might be able to derive the direction of wing
flexion from the population response of all the campaniform sensilla neurones and
mechanoreceptors from other qualities. For example, the wing base contains a
large number of small campaniform sensilla that appear to be well placed to
encode the position of the wing with respect to the thorax. The activity of the distal
campaniform sensilla during pronation and supination could be distinguished by
the CNS through comparison with this independent monitor of wing position.

Dynamics of the wing—dome coupling process

A comparison of the frequency responses of the ACV neurone measured with
chord-wise deformation and punctate stimulation indicates that wing—dome
coupling attenuates high frequencies (Fig. 4B). Thus, this initial stage of mechan-
ical coupling acts as a-lew-pass filtcr-on wing deformations. The attenuation of
high frequencies may result from filtering behaviour residing in the mechanical
and geometrical properties of the wing, most probably due to the viscoelastic
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properties of the vein cuticle, underlying epithelial cells and internal haemolymph.
As argued more fully elsewhere (Dickinson, 1990a), it is likely that the ACV and
the other campaniform neurones of the wing each fire a single action potential at a
precise phase in the wing-beat cycle. Because the low-pass cut-off is near the wing-
beat frequency in Calliphora (150Hz), this filtering will further decrease the
probability that the neurone will fire more than once during each wing stroke.

One task of the mechanical coupling process is to transform the relatively large
deformation of the cuticle into a much smaller deformation of the dome.
However, it is not clear how the coupling apparatus of a campaniform sensillum
transforms strain in the surrounding cuticle into a deformation of the dome and
excitation of the underlying sensory dendrite. Spinola and Chapman (1975) argued
that a naturally occurring stimulus results in an indentation of the dome, on the
basis of experiments in which cockroach tibial campaniform sensilla were
stimulated simultaneously with leg deformation and direct punctate indentation.
However, on the basis of a detailed analysis of ultrastructure and by analogy with
the well-characterized arachnid slit sensilla, Barth (1981) has argued that an
outward bulging of the dome is the adequate stimulus during cuticle deformation.
Because of the experimental difficulties with direct elevation of the campaniform
dome, I have used punctate indentation as a means of transmitting a mechanical
stimulus directly to the campaniform dome, bypassing the first stage of stimulus
transmission. I must explicitly assume, therefore, that the dynamics of defor-
mation revealed by direct punctate stimulation are not fundamentally different
from those occurring naturally, irrespective of the actual direction or form of dome
indentation.

Given the above assumptions, displacement of the third vein of the fly wing
relative to the fourth vein results in an excitation that is equivalent in magnitude to
that produced by a direct punctate indentation of approximately 1/100 the size
(Fig. 4B). This coupling factor is likely to be nonlinearly related to the magnitude
of wing deformation, and the above value, calculated from experiments using
small-amplitude wing deflections, probably underestimates the degree of attenua-
tion during large deformations. Unlike campaniform sensilla positioned on stiff
cylinders such as cockroach legs, the wing campaniform sensilla reside on a
relatively flexible plate. The magnitude of the wing deformations that are
encountered during flight or grooming are quite large relative to those expected on
the much less compliant legs during walking. The mechanical properties respon-
sible for the appropriate transformation of cuticle deformation into dome
indentation must vary according to location to ensure that the strains produced
during flight and other activities result in dome deformations of the appropriate
magnitude.

I wish to thank Andy Biewener, John Palka, Tom Daniel and Bob Pinter for
their comments and suggestions with this project. This work was supported by a
NSF Graduate Fellowship, and NSF Grant BNS-8507460 to John Palka.
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