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Summary

The rapid shell-closing mechanism in articulate (hinged) brachiopods is subject
to important hydrodynamic constraints related to expulsion of water from the
shell. Fluid forces influence, for example, the speeds of shell closure and the mass
flux rates of water from the shell. The principal hydrodynamic forces acting on a
shell during rapid closure are (1) inertial reactions, due to the acceleration of
water (=acceleration reaction), and (2) water pressure forces which develop as
water is expelled from the shell. A generalized hydrodynamic model describes the
relative magnitudes of the acceleration and pressure forces as functions of the
shell's angular acceleration, velocity and gape. In general, the acceleration
reaction dominates the kinematics of shell closure during the initial phases of a
closing event, whereas pressure forces dominate towards the later phases of shell
closure. Solutions of the general model predict how variables such as the closing
speed and the mass flux of water depend on shell size, initial shell gape and on the
magnitude of the closing force. Results indicate that inertial reactions (due to
acceleration of water) dominate the mechanics of shell closure in articulate
brachiopod taxa.

Introduction

Articulate brachiopods are sessile, suspension-feeding organisms, with a shell
either free-lying on the sea floor, or fixed to the substratum by a fleshy pedicle or
by cementation. A brachiopod's repertoire of skeletal motions is restricted to a
few movements of the shell, including rapid shell closure by a twitch contraction of
the 'quick' adductor muscles (Rudwick, 1961; Wilkens, 1978a) (Fig. 1). Rapid
shell closure serves several functions, including (1) protection from predators
(brachiopod predation is documented in Paleozoic taxa), (2) protection from
environmental adversities, such as turbidity, salinity or exposure to air, (3)
expulsion of detritus, feces and gametes from the shell, and (4) reorientation of the
shell in free-lying taxa (e.g. Rudwick, 1961). In general, the performance of the
closing mechanism depends on the ability to achieve high closing speeds of the
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Fig. 1. Diagram of the brachiopod shell showing (A) the kinematic parameters, (B)
the forces involved in closure, and (C) the 'quick' adductor muscle position, d, moment
arm distance; Am, cross-sectional area of muscle base.

shell, utilizing a rapid twitch contraction of the closing muscles. Rapid closing
speeds increase the rate of mass flux of water for expelling material from the shell
and also enhance the protective value of the closing mechanism. There are,
however, fundamental mechanical constraints on the attainable rates of shell
closure, related to both (1) the physiological properties of the muscle contractile
tissues, and (2) the nature of the hydrodynamic reactions as water is expelled from
the shell. This paper addresses the hydrodynamic properties of rapid shell closure
(muscle properties will be discussed in a subsequent paper; S. C. Ackerly, in
preparation). What are the hydrodynamic forces acting on a rapidly closing shell?
In what ways have hydrodynamic forces influenced the evolution of the rapid shell-
closing mechanism? Are there upper limits to the speeds of shell closure or to size
based on hydrodynamic considerations? Hydrodynamic principles are explored
using a variety of 'shell' structures, including idealized flat plate models with
simple geometries and actual shells of brachiopods.

Hydrodynamic principles

There are two important hydrodynamic forces acting on a rapidly closing shell,
be it a bivalved shell, a shell model or two flat plates. The first is related to the
acceleration of water surrounding the shell and is the acceleration reaction
(Daniel, 1983, 1984); the second is related to the development of water pressure
inside the shell. The acceleration reaction describes the forces necessary to
accelerate, or decelerate, a certain mass of water in the vicinity of the shell as the
shell closes. The so-called 'added mass' of the water plus the mass of the shell (and
any tissues) constitute the total inertia of the system (the m in Newton's F~ma,
where Fis force, m is mass and a is acceleration). The second force, that due to
water pressure, is related to the exit velocity of water leaving the shell. As the shell
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closes, water is forced out of an increasingly small gap in the shell margin, and
there is a corresponding pressure rise inside the shell. The pressure gradient across
the shell margin and the exit velocity of water from the shell are related by the
Bernoulli equation (pressure«velocity2).

In general, the initial phases of shell closure are dominated by inertial
considerations, when accelerations are high and water exit velocities are relatively
low. Pressure forces, in contrast, tend to dominate towards the end of a closing
event, when shell closing velocities are high and shell gapes are small. This analysis
attempts to define the relative magnitudes of the acceleration and pressure forces,
and to determine how these forces are related to shell size, initial shell gape and
closing speed.

The quantitative analysis of shell closure follows from Newton's third Law,
2,F=ma, or

closing forces — pressure forces = ma, (1)

where the closing forces are due to gravity (in the models) or muscles (in
organisms), and the mass m and acceleration a refer to the masses and
accelerations of the shell and surrounding water. According to equation 1, the
system accelerates when the closing forces exceed the internal pressure forces, and
decelerates when the opposite is true. The principal difficulties of determining the
magnitudes of the hydrodynamic forces acting in situ in living brachiopods are (1)
most brachiopods are small, of the order of one to several centimeters, and the
corresponding forces are small; (2) shell closure is rapid, with durations of the
order of tens to hundreds of milliseconds; and (3) the muscle forces and the
hydrodynamic forces are non-steady and highly transient. Because of these
inherent difficulties, the present analysis uses empty shells and shell models to
determine the hydrodynamic properties of shell closure. In the models the closing
forces are due to gravity, and friction and other 'external' forces are assumed to be
negligible (see below).

In this analysis, the hydrodynamic forces are determined by a combination of
empirical measurements and theoretical calculations. In the empirical work I
applied known forces to close the shell models, and then calculated the
magnitudes of the pressure and inertial forces by fitting equation 1 to the data on
closing speeds observed in the models. Solutions of the hydrodynamic model were
then generalized in order to predict the velocity of shell closure, given the initial
starting conditions (shell size, closing forces and initial gape).

Mechanics of shell closure

For a shell rotating about a fixed hinge axis (a reasonable approximation in this
instance), the angular equivalent of Newton's third Law is:

ZM = Ia, (2)

where 1.M is the sum of the moment forces acting on the system, / is the system's
moment of inertia and a-is the angular acceleration. A moment force is a force F
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acting at some distance d from the hinge axis, or fulcrum, so that M=Fd. The
inertia / is the angular equivalent of mass.

The principal moment forces acting on the shell model are the gravitational
closing forces M& and the water pressure forces Mp (Fig. 1), so that:

2M = Mg + Mp . (3)

The system's inertia consists of one component due to the shell's mass /b, and one
component due to the added mass of water I|. The right-hand term in equation 2
becomes:

la=lba+I\ax, (4)

(the subscripts b and 1 stand for body and liquid, respectively). Combining
equations 2-4 gives the model:

Mg + Mp = Iba+hai. (5)

Gravitational closing forces

The closing forces are due to gravity, acting both on the shell mass mb and the
mass of any external loads m{, such as the velocity transducer which measures the
closing event (Mg=Mb+Mf). The weight of the shell m^g, where g is the
acceleration due to gravity, is acting at the center of mass of the shell, located at
kcmL, where kcm is a coefficient and L is the shell length, so that the moment due
to gravity is:

L . (6)

The shell mass may be expressed as:

mb = (Pb - P\)Vb , (7)

where Pt, is the density of the shell material, f>\ is the fluid density and Vb is the
volume of shell material. Volume may be expressed as:

Vb = kwktL\ (8)

where kw is a width coefficient (see equation 12) and kt a thickness coefficient (the
coefficients k are derived in the Appendix). Combining equations 6-8 gives:

gL4. (9)

The gravitational forces of external loads are:

(10)

where d{ and a{ are, respectively, the position of the load with respect to the hinge
and the downward Linear acceleration of the load. The load is uncoupled from the
shell and hence produces zero force on the shell in a free fall (where a{=g). The
moment forces due to gravity are known quantities in the analysis, and are readily
measured or derived.
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Pressure forces

The pressure in the shell P (pressure=force per unit area) is acting upon the
internal shell surface area As to produce a pressure force equal to ASP. The
pressure force is taken to act at the center of pressure, at a distance k^L from the
hinge axis, to produce a pressure moment Mp, where:

Mp = AsPkcpL . (11)

The surface area As is related to shell length by:

^ s = KL2. (12)

From Bernoulli's equation, the pressure is related to the mean exit velocity of
water from the shell u{ by:

P = C P * A « I 2 / 2 , (13)

where Cp* is a pressure coefficient. Cp* is related to the Reynolds number, where
the length term is the width of the shell gape (OL, where 8 is the gape) and the
velocity term is the exit velocity of water from the shell u\.

Re = BLui/v, (14)

where v is the kinematic viscosity of water.
The mean water exit velocity is related to the rate of change of internal shell

volume dV/dt and to the area of the gape at the shell margin Aex by:

u, = (dV/dt)/Aex . (15)

The volume derivative dV/dt is:

dV/dt = kakwL3co, (16)

where ka is a coefficient of the first moment of area (see Appendix). The exit area
Aex is:

Aex = kexL
2d, (17)

where kex is a coefficient of the first moment of the shell's perimeter (see
Appendix). <x> and 6 are the instantaneous values of the shell's angular velocity and
gape. Combining equations 15-17 gives the mean exit velocity of water U\ as:

u, = kakwLco/kex6. (18)

The expression for the pressure moment becomes:

Mp = ftCptk^kWL3/! (19)

or, by substitution of equation 18,

Mp = PlCpka
2kJiLW/2kex

2d2 , (20)

where Cp=Cp*kcp. The pressure moment depends directly on the square of the
shell's closing velocity and inversely on the square of the shell's gape {Mp^oiLj02').
The coefficient Cp is the only unknown in equation 20.
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The shell's inertia

The standard equation for the moment of inertia /b of a body is:

7b = J^nhL
2 , (21)

where / b is an inertia coefficient, mb is the mass of the body and L is the length of
the body. Substituting equations 7 and 8 into equation 21 gives the shell's inertia
as:

4 = JbPbk^L5 , (22)

showing that the angular inertia (mass) is proportional to the fifth power of shell
length. All of the coefficients in equation 22 can be measured or calculated.

Inertia due to water

The added mass of water surrounding a thin plate may be taken as (Saunders,
1957):

h = Af^L5, (23)

where J\ is the coefficient of inertia of the water and pi is the fluid density. Saunders
(1957) gives a value of 0.178 for the added inertia of a thin semi-circular plate. An
alternative expression for 7! is:

h = YhP\VhL
2 , (24)

where y is the added mass coefficient, or the proportion of a body's inertia
attributable to the surrounding water (equation 24 is the angular equivalent of the
linear form: I\=yp\Vh). Equation 24 is not, however, useful for very thin plates
where the body's mass is negligible in comparison to the added mass of the water.

This analysis adopts the expression in equation 23, but relates the water's inertia
to the mean acceleration of water leaving the shell, rather than to the acceleration
of the body (in a similar fashion, pressure was related to the exit velocity of water
from the shell and not to the shell's velocity). The mean exit acceleration a\,
substituting a for a> in equation 18, is:

d. (25)

Thus, the inertia term for the water mass I\a\ becomes:

^/k^d. (26)

Ji, the coefficient of fluid inertia is, an unknown in the analysis.
It should be noted that the use of the water's exit acceleration rather than the

shell's acceleration introduces a unit discrepancy in this moment force term (units
become Nm2, rather than Nm). In an isometric system, the term also scales as L6

rather than L5. The rationale for this choice is that using the water's exit
acceleration provides a better empirical fit of the model to the data than using the
shell's acceleration.
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Solution of the hydrodynamic equations

The differential equation describing the hydrodynamics of shell closure is, from
the equations above:

K1a+K2a/6+K3uf/d2 + K4 = 0, (27)

where K\ is a coefficient of shell acceleration:

*i = JbPbk^L5, (28)

K2 is a coefficient of fluid acceleration:

K2 = J]P]kakwL6/kex , (29)

K3 is a coefficient of pressure:

K3 = PlCpka
2kJiLs/2kex

2 (30)

and K4 is the magnitude of external forces on the shell:

K4 = - (pt, - pdkvktkcmgL4 - rrifdfg. (31)

Strictly speaking, the second term in the equation for K4(mfdfg) should be
corrected for the shell's acceleration, but the correction is small and can be
neglected.

The only unknown terms in equation 27 are the coefficient of fluid inertia /] and
the pressure coefficient Cp. J\ may be found by solving equation 27 at time t=0
when the pressure force (third term in equation 27) is approximately zero (a>=0).
Cp may be found by solving equation 27 at the time of maximum velocity, twmax,
when the shell's acceleration is zero (for a=0, the first two terms in equation 27
equal zero).

In this analysis, equation 27 has been solved by a simple stepwise numerical
algorithm (Euler's method) where the starting condition is the initial gape 60, and
where the initial velocity and acceleration are zero (ioo= ao=0) (the Runge-Kutta
method gives very similar results). The step length was set so that a solution was
obtained in 75-250 steps. Equation 27 appears to be well-behaved under most
conditions (except at high closing forces); variation in step length within the above
bounds had no noticeable effect on the solution.

Once /, and Cp have been established for a particular shell morphology,
equation 27 can be used to predict the hydrodynamic behavior of the shell-closing
system. We may ask how closing speeds are related to external forces on the shell,
to changes in size, or to changes in the initial shell gape. What are the
disadvantages, if any, of large size or high speeds? Are hydrodynamic forces an
important constraint on the design of a rapid shell-closing system?

Mass flux of water - mean thrust

The brachiopod's ability to expel material (e.g. gametes, detritus) from the shell
should be related to the mass flux of water from the shell (thrust, in many
situations moves the animal; here the animal is stationary and the water moves). A
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calculation of the thrust produced during shell closure should provide an estimate
of the capacity to entrain material in water leaving the shell. Thrust (units of force)
is the product of the mass flux dM/dt and the exit velocity of the fluid u\.

T = mdM/dt. (32)

Substitution of equations 15 and 16 for the mean fluid exit velocity and the mass
flux (dM/dt=pdV/dt) gives the equation for the thrust:

T=KPlLW/d, (33)

where K=ka
2kw

2/kex. The thrust force varies during the course of a closing event
in proportion to the quantity a//6. Equation 33 gives the magnitude, but not a
direction, for the thrust force. The mean thrust Tm is taken as:

Tm = l/tepTdt, (34)

where tc is the closing time and T is the thrust at time t during the interval dt. The
mean thrust may be calculated during solution of equation 27.

The efficiency e of the closing moment for the generation of thrust is denned as
the ratio of the energy outputs (work done by thrust forces) to energy inputs (work
done by the closing forces, i.e. the muscles in living animals, gravity in the
models). Energy output Eo is:

E0 = j'TUldt. (35)

Energy input E\ is the product of the closing moment M on the shell and the shell
gape 0:

(36)

The thrust force and efficiency of thrust production, calculated by the model, are
discussed below.

Methods for measuring shell closure

Models and shells were immersed in water and closing events measured either
electronically or strobo-photographically. The brachiopod shells, with tissues
removed, were of the species Terebratalia transversa. Two types of models were
used: (1) semi-circular flat-plate models, and (2) 'brachiopod-like' models hand-
molded from the compound Polyform (Fig. 2). The brachiopod shells were
mounted by gluing the pedicle (ventral) valve to a plate, and letting the brachial
(dorsal) valve rotate freely about the hinge. A trip mechanism, inserted between
the two plates or valves, set the initial gape, and rapid removal of the trip rod
initiated the closing event. In all cases, the shells closed under their own weight,
the weight of the velocity transducer and, in some cases, the weight of additional
loads (Fig. 2). The plate models were constructed from 5.7mm thick Plexiglas.
One plate was fixed about 2cm above the aquarium bottom, and a second plate
was hinged to it using a strip of duct tape. Closure occurred as in the empty
brachiopod shells.
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Fig. 2. Experimental apparatus for measurements of shell closure. (A) A velocity
transducer is connected to a Plexiglas plate model by a thin wire, with output to an
oscilloscope. (B) Same as A, but the transducer is connected to a shell. (C) Models
made of Polyform were closed by a wire connected to a weight (W). The position of the
shell with time was measured photo-stroboscopically (see text).

Closure in the empty shells and Plexiglas models was measured with a linear
output velocity transducer (Trans Tek model 001) with output recorded on a
storage oscilloscope (Tektronix model 564B). The voltage output of the transducer
was calibrated to the slope of the time-velocity curve of the transducer in free fall
(constant slope equal to the acceleration of gravity, 9.8 m s~2). The transducer was
connected to the shell or model by a wire rod resting in a shallow hole in the upper
valve, usually about 0.5-1.0 cm from the hinge (Fig. 2A). Linear velocities v
recorded by the transducer were transformed to angular velocities co of the shell by
the usual convention a>= v/df where d( is the position of the transducer relative to
the hinge. Tracings from the oscilloscope recordings were digitized and data were
analyzed by computer.

In the shells fabricated from Polyform, the valves were articulated by a wire pin.
The upper valve was fixed to a frame and the lower valve rotated upwards by a
weight fixed to a fine wire running through the upper valve and through a pulley
system (Fig. 2C). The wire was connected to a trip mechanism which initiated
closure. During closure, valve motions were illuminated by a stroboscope (60-420
flashes s"1), and successive valve positions were recorded photographically.

Results

Figs 3 and 4 show data on the gape, angular velocity and angular acceleration of
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Fig. 3. Kinematic data for a typical Plexiglas model 'shell'-closing event; showing the
shell's gape (A), angular velocity (B) and angular acceleration (C) as functions of time.
Figures show observations (circles) and predictions of the hydrodynamic model (lines).
The 'shell', a semi-circular Plexiglas model, accelerates under a constant load to a
maximum velocity part way through the event, and then decelerates due to the
development of water pressure within the shell. R002 identifies the event (see Tables 2
and 3), J\ is the coefficient of fluid inertia, Cp is the pressure coefficient and dr is the
time step in seconds for the numerical solution.

a shell model, as functions of time, during typical shell-closing events (Fig. 5 shows
additional data on the angular closing velocity in a selection of closing events). The
data show rapid accelerations during the initial phases of shell closure, maximum
velocities roughly midway through the closing event, and rapid decelerations of
the shell as the two valves approach each other. These data on the kinematics of
shell closure, together with data on the size and shape of the shells (see Table 1),
permit calculations of the hydrodynamic forces involved in a shell-closing event, in
particular (1) the mass of water accelerated as the shell speeds up and slows down,
and (2) the pressure forces that develop as water is expelled from the shell. These
forces may be estimated from solutions of the hydrodynamic model, and the
results compared with empirical data.

The coefficients of fluid inertia (J/) and pressure (Cp)

Values of the coefficients /] and Cp, determined for each model closing event,
are tabulated in Table 2. The predictions of the hydrodynamic model, using these
coefficients, are indicated by solid lines in Figs 3 and 4 and in the plots in the left-
hand column of Fig. 5. The model gives a reasonable approximation of the shell's
closing history, although there is some variability in the values of the coefficients
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determined for different shell-closing events (a closing event refers to a single
closing episode). The mean values of J\ and Cp are 10 and 1.5, respectively.

The variability in J\ and Cp can be assessed by solving the model using the mean
values of the coefficients, rather than specific values, to see how well the
generalized model fits the data. Figs 5 and 6 show the fit between model and data
when mean values of the coefficients are used in place of event-specific values. The
model often gives a reasonable description of the initial phases of shell closure, but

0.02 0.04 0.06 0.02 0.04 0.06

1000

•2 -500

-1000
0.02 0.04

Time (s)
0.06

Fig. 4. Kinematic data for a closing event for an empty brachiopod shell (Terebratalia
transversa) (for further details see Fig. 3 legend).

Table 1. Size and shape characteristics of the models used in the analysis of shell
closure

kw

kt

h
u

kcx

A-'a
L (xHT2

p(xKT 3
m)
kgm"3)

A

1.57
5.7/L*
0.250
0.424
2.00
0.424
4.42
1.21

B

1.57
5.7/L*
0.250
0.424
2.00
0.424

11.1
1.21

T

1.20
0.056
0.130
0.45
1.70
0.450
1.81
2.7

Alice

1.20
0.056
0.130
0.45
1.70
0.450
4.2
1.8

Fred

1.20
0.056
0.130
0.45
1.70
0.450
4.6
1.8

A, B, T, Alice and Fred refer to specific models (see text for details).
A, B, semicircular Plexiglas plates (r=5.7mm); T, shell of the brachiopod T. transversa;

Alice, Fred, models molded from Polyform.
* L is the shell length in mm; ris the shell thickness in mm.
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Fig. 5. A comparison of predicted (lines) shell-closing velocities using the event-
specific (left column) and mean (right column) values of the hydrodynamic coef-
ficients. Circles represent observations. R019 identifies the event (see Tables 2 and 3),
J\ is the coefficient of fluid inertia, Cp is the pressure coefficient and dt is the time step in
seconds for the numerical solution. Also see Fig. 6.

diverges from observations towards the end of a closing event (Figs 5 and 6). For
this reason, the half-time of shell closure is a better predictor of the closing event
history than is the time for complete closure. In general, it is possible to predict
maximum closing velocities and closing times to within 10 % of their measured
values, using the event-specific values of the coefficients, and to within about 25 %
using the mean values of these coefficients (Table 3).

The most likely sources of variability in the coefficients Jx and Cp are
hydrodynamic instabilities, experimental error and limitations of the theoretical
model. Experimental difficulties are suspected because of variability in results

Table 2. Values of the hydrodynamic coefficients derived for different models and
for different closing events

Model

A
A
A
A
A
A
B
B
B
T
T
Alice
Alice
Alice
Alice
Fred
Fred
Fred
Means (e:

Event

R002
R019
R018
R020
R023
R025
R021
R022
R026
R009
R010
A03
A07
A l l
A15
F03
F05
F08

e
(rad)

0.453
0.240
0.239
0.236
0.369
0.483
0.303
0.588
0.130
0.265
0.199
0.687
0.719
0.688
0.646
0.844
0.549
0.419

scludine values marked

Ms

(NmxlO4)

8.72
8.72

72.8
73.1

266.8
270.1

8.44
2046.9
2046.9

2.76
2.76

34.5
83.7

124.5
175.4
48.1
48.1
48.1

*):

h
10.0
8.0
5.5
5.0

12.5
6.0
3.5

24.0
1.4

10.0
9.0

12.0
10.0
10.0
7.0

17.0
14.0
10.0
10.0

cp
1.3
1.0
0.6
0.65
0.2
2.0
1.0
8.0*
0.6*
0.6
0.55
2.0
1.8
1.5
1.6
3.5
2.2
1.8
1.5

Remax

1.4X103

8.6X103

2.2X103

2.2X103

4.9X103

5.5X103

1.8X103

5.7X103

4.6X103

8.9X102

7.1X102

3.3X103

5.1X103

6.4X103

7.0X103

3.6X103

2.9X103

2.3X103

ha/lba
(rad"1)

5.3
8.0
5.5
5.1
8.1
3.0

20
59*
19
11
13
15
12
12
9.2

19
24

22

Data for each closing event include the initial shell gape (6), and the static closing load (Ms)-
The hydrodynamic coefficients are the coefficient of inertia of the fluid (J{), and the pressure

coefficient (Cp).
The maximum Reynolds number (Remax) occurs at the time of the maximum shell closing

velocity.
I\a/I\,a represents the ratio of liquid inertia to body inertia at the initiation of the closing

event.
lgcm=0.98xKT4Nm.



0.1 0.2 0.3 0.4 0.5

8 l

Time (s)

Fig. 6. Comparison of observed (circles) and predicted (lines) shell-closing events
using the mean values of the hydrodynamic coefficients (7i=10 and Cp=1.5) rather
than the event-specific values listed in Table 2. (A) Shell gape, event R002. (B) Shell
velocity, event R002. (C) Shell gape, event R009. (D) Shell velocity, event R009.
Predicted values are reasonably close during the initial phases of the event. R002
identifies the event (see Tables 2 and 3), J\ is the coefficient of fluid inertia, Cp is the
pressure coefficient, and dt is the time step in seconds for the numerical solution.

from successive runs on the same models, with the same starting conditions. I
believe the difficulty is due to hydrodynamic instabilities that occur at high
accelerations and decelerations of the shell. Some variations in the initial starting
conditions are also possible, for example if the load orientation is at a small angle
from the vertical or if removal of the trip rod causes some vibration or movement
of the apparatus. Hydrodynamic instabilities are noted as small velocity oscil-
lations in some of the runs. The instabilities are probably related to shedding of
vortices from the valve margins. For example, certain models (large plates, length
about 12 cm) were not included in the analysis because of their unsteady behavior
while moving through the fluid (strong velocity oscillations).

The hydrodynamic model is apparently not robust at small gapes (see above).
This is probably because the model is based on inviscid flow principles where
strong boundary layer effects are ignored. However, as the shell gape becomes
very small, there are potentially large boundary layer effects on the flow. Violation
of these model assumptions perhaps results in the poor fit between model and data
observed at small gapes (see above). A statistical analysis of the data in Table 2
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Table 3. Comparison of model predictions with observations

Event

R002
R009
R010
R018
R019
R020
R021
R022
R023
R025
R026
A03
A07
A l l
A15
F03
F05
FO8
Means

3,1/2

-1 .1
-8.5

1.1
-5.2

4.4
-5.6
-0.0

0.4
17.0
1.7
4.7
4.2
3.7
8.9

14.2
14.0
10.0
12.0
6.4

9,1/2

-1 .1
-2.9
14.3
21.8
16.6
24.1
60.3

-35.2
—
11.6

136.7
-5.4

3.7
8.9

22.8
-13.0
-6.6
12.0
23.3

4.8
1.0
0.4
0.8
1.8
0.3

-0.5
1.2
2.7
2.7
2.7
8.6
4.7

-1.4
0.5
2.0

-1.9
9.9
2.7

'-'(umax

1.5
-17.9
-22.0
-26.6
-12.1
-27.3
-33.0

76.7
—
2.3

-49.3
20.8
8.7

-1.4
-4.2
38.8
15.8
14.1
21.9

The table gives the percentage error in the predicted time for closure of the shell to half the
initial gape for event-specific values of the hydrodynamic coefficients J\ and Cp (9,i/2)> ar>d f°r

mean values of the coefficients (3*/2), and also the percentage error in the predicted values of
the maximum closing velocity, for both event-specific values of the coefficients (S^ma*), and for
mean values of the coefficients (3Jm0Ut).

Specific and mean values of the coefficients are given in Table 2.
The percentage error= 100[(predicted value—observed vale)/predicted value].
Mean errors reflect means computed on the errors' absolute values.

shows a weak but significant dependence of the coefficients (J\ and Cp) on the
initial shell gape 6, the closing moment M and the Reynolds number Re. These
patterns indicate that the mathematical model does not account for all the
variables.

Discussion

Hydrodynamic reactions

The primary forces involved in shell closure are (1) the closing force, which is
gravity in the models, (2) the acceleration reaction, or the force required to
accelerate the shell and surrounding fluid, and (3) the pressure force, which is
related to the velocity of water leaving the shell. The relative magnitudes of these
forces, as predicted by the hydrodynamic model, are indicated in Fig. 7 for two
closing events.

When a shell closes rapidly (60 ms is roughly the duration of a shell-closing event
in the brachiopod T. transversa. S. C. Ackerly, in preparation), the hydrodynamic
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Fig. 7. Magnitude of the closing moment force (Mom), the acceleration reaction
(AccRx) and the water pressure force (Pres), during typical closing events, in a
Plexiglas model (A,B) and in an empty brachiopod shell (C,D). Models (R002 and
R009) are described in Table 1. The vertical scale is expanded in B and D.

forces are (1) the acceleration reaction, related to the acceleration of water from
the shell, and (2) pressure forces, which develop as water is expelled from the
shell. Fig. 7 shows that the acceleration reaction is large and positive at the
initiation of shell closure (corresponding to rapid acceleration of the shell) and
large and negative as the shell comes to a close (corresponding to a rapid
deceleration of the shell). A positive reaction means that energy is required to
accelerate the shell system (shell mass plus added mass of water). A negative
reaction, in contrast, means that energy must be extracted from the system to slow
it down (the acceleration reaction of a train is very large - difficult to speed up and
difficult to slow down).

Calculations indicate that the forces required to accelerate water are of the
order of 5-15 times the forces required to accelerate the actual shell model
(Table 2). Maximum Reynolds numbers for the tests, which occur at the time of
maximum shell-closing velocity, are between 7.1X102 and 8.6xlO3 (equation 14
and Table 2).

Fig. 7 shows that high water pressures, as calculated by the hydrodynamic
model, are correlated with rapid decelerations of the shell (compare with Figs 3
and 4). Interestingly, at small gapes the calculated water pressures exceed the
magnitude of the closing forces, and yet the shell continues to close. This result
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'could occur because the model is not robust at small gapes (see Results).
Alternatively, it is possible that the system's inertia, especially the added inertia of
the water, is effectively forcing the shell to close. The system's mass is resisting
closure during the initial phases of a closing event, but assisting closure during the
later phases of the event. These observations require empirical confirmation by
direct measurements (though direct measurements of the acceleration reaction in
a rotating inertial system may be very difficult to acquire; T. Daniel, personal
communication).

There is a rough correspondence between model predictions and empirical data
on actual closing events in brachiopods. For example, data on shell closure in the
articulate brachiopod T. transversa (S. C. Ackerly, in preparation) indicate that
closing times are around 70 ms (time for half-closure is roughly 30 ms), for a shell
about 2 cm long and for an initial shell gape of about 0.08 rad (4.5°). Solution of
equation 27 for a shell model with these closing characteristics predicts that the
mean closing forces on the shell should be about 4.9xlO~4Nm (5gem). Some
data on isometric force production in T. transversa indicate that peak moments
during a twitch contraction of the 'quick' adductor muscles, for a 2 cm long shell,
are of the order of 10.8xl0~4Nm (11 gem) (S. C. Ackerly, in preparation). If we
assume that the time-averaged force is about half this value (a guess), we obtain an
observed moment force equal to 5.39xlO~4Nm (5.5gem), which is similar to the
predicted value. Observations for the species Terebratulina retusa, following a
similar argument, give a moment force of about 3.92xlO~4Nm (4gcm).

The modeling presented here does not exactly simulate the biological realities
observed in living organisms. In living brachiopods, the forces developed during a
twitch contraction of the 'quick' adductor muscles are transient and non-steady,
whereas in the models the closing force, gravity, is constant and steady. Also, in
living brachiopods body tissues occur within the shell and line the shell walls,
although the shell gape is not obstructed by mantle tissues as it is in many bivalve
molluscs. The diductor muscles, which open the shell, are in direct opposition to
the muscles closing the shell. Soft tissues might influence the mechanics of shell
closure either by altering the fluid motions as water leaves the shell or by offering
resistance (e.g. frictional) to rapid closure (Jaanusson and Neuhaus, 1965).
Several lines of evidence suggest that these effects are small. First, the exact
pathways of the water are probably less important than the actual mass of water
that is accelerated during a closing event. The mass of water accelerated depends
primarily on the shell gape and the projected shape of the valves (in a dorsal or
ventral view) and not on the configuration of tissues within the shell. Also,
Wilkens (19786) reports that the diductor muscles acting in opposition to the
adductor muscles possess a remarkable 'slip' mechanism, and tension in this
muscle drops suddenly to zero when the muscle is stretched (time interval not
specified). Finally, the orientation of the valves might have an effect on the forces
required for closure, for example if the brachial valve was above or below the
pedicle valve. However, the analysis shows that the mass of the valve is small
compared to the mass of water accelerated during a rapid closing event.
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Hydrodynamics and skeletal design

Important functions of rapid shell closure are (1) protection of the organism
from predators and environmental adversities, and (2) expulsion of material
(gametes, feces, detritus) from the shell. From a functional standpoint, protection
should be enhanced by maximizing the shell's closing speed, while expulsion
functions should be enhanced by maximizing the thrust forces (the product of mass
flux and water exit velocity; equation 32). The hydrodynamic model predicts how
the closing time and the thrust force depend upon three specific design para-
meters: (1) the initial shell gape, 6; (2) the closing forces on the shell, M; and (3)
shell size, L. For example, the closing time tc may be expressed by an equation of
the form:

tc = eaLbAfc9d . (37)

where the coefficients a-d are found by regression. The regression is performed on
a data matrix representing multiple solutions of equation 27 for different
combinations of initial shell gape 6 (0.1-0.4 rad), closing force M
(1 .96xl (T 4 -98xl ( r 4 Nm or 2-100gcm) and shell length L (l-5cm) (statistics
package Statview 512+, Macintosh PC). Values of the coefficients a, b, c and d
have been derived for the closing time tc, the time to half-closure ti/2, the mean
thrust force Tm and the efficiency of thrust production e (Table 4).

The equation for the time to half-closure of the shell:

h/2 = e-4.7L2.8M-O.5O0O.OOl ( 3 g )

gives some interesting predictions about the influence of hydrodynamic forces on
the performance of the shell-closing mechanism (the time to half-closure ti/2 is a
better model predictor than the closing time tc; see above). Interestingly, the initial
shell gape has very little effect on the closing time. This result probably reflects the

Table 4. Dependence of the time for shell closure (tc, in seconds), the time for half-
closure of the shell (tj/2, in seconds), the mean propulsive thrust force generated
during closure (Tm, in Newtons) and the efficiency of thrust production (e) on shell
length (L, in xlO~2m), closing moment (Ms, in gem) and initial shell gape (6, in
radians), as defined by multiple regression (Statview 512+, Macintosh PC) on
results of multiple solutions of the basic hydrodynamic equation, using the mean

values of the coefficients, Cp=1.5, ]/=10 (see text)

a b c d r2 N

88
'1/2

Tm
e

-2.62
-4.74
-5.88
-0.457

2.21
2.81

-0.578
0.440

-0.501
-0.498
0.999

-0.006

0.141
0.001
0.872
0.023

0.999
1.000
0.998
0.907

Relationships of the form: /c=eaLbjWc0d.
r is the correlation coefficient and A' the size of the data matrix.
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relatively large inputs of energy required to accelerate and decelerate the shell,
and indicates that these 'costs' are high regardless of the initial shell gape.

Equation 38 also predicts the dependence of the time to half-closure on shell
size. If a muscle system scales geometrically, then muscle force (proportional to
muscle cross-sectional area) should scale as L2, and the closing moment (M=Fd)
should scale as L3. Substituting M^L? into equation 38 gives the result that the
time to half-closure should depend on the length raised to the 1.3 power. In other
words, all else being equal, large animals should close more slowly than small
animals, thus being at a disadvantage with respect to closing time. A compensa-
tory strategy might be positive allometric growth of the muscle system, i.e. a
disproportionate increase in muscle mass, or a shift in muscle position, with
increasing shell size (see S. C. Ackerly, in preparation).

The energetic trade-offs between force and speed are difficult to assess.
Increasing the muscle mass will, of course, increase the shell's closing speed, but
by how much and at what cost? Fig. 8 shows the dependence of the time to half-
closure on the closing moment, as predicted by the hydrodynamic model, for shell
lengths from 1 to 5 cm. At small forces, the curves have a large negative slope, and
small increases in the closing force result in large reductions in the closing time. At
larger forces, however, further reductions in the closing time require inordinate
increases in the applied moment force. The problem in interpreting these curves is
that we must attach specific values to the 'cost of speed' and to the 'cost of force',
which are meaningful in terms of an organism's fitness. How fast is fast enough?
What forces are 'reasonably' achieved by a brachiopod muscle, and what is the
energetic investment of the organism in muscle tissue? These questions can only
be resolved by specific case studies. The analysis does, however, suggest that

10 15
Moment (NmxlO4)

20 25

Fig. 8. Dependence of the time to half-closure on the closing moment for different
shell sizes (1-5 cm), as predicted, and statistically generalized, by the hydrodynamic
model (see text). Increasing the closing force results in reductions in the time to half-
closure. Curves are based on an initial shell gape of 0.2 rad.



Fig. 9. Calculated magnitudes of the thrust force generated during shell closure.
(A) In R002, the static closing force is 0.10 N. (B) In R009, the static closing force is
0.05N.

0.06

there are practical limits to the speeds of shell closure, based on hydrodynamic
considerations.

The organism's ability to expel material from the shell can be estimated from the
mean thrust generated during a closing event. The direction of the thrust force is
not important since the flow is outwards from the shell. The thrust force,
calculated as the product of the mass flux of water and the water's exit velocity
(equation 32), varies over the course of a closing event (Fig. 9). The mean thrust is
found by integration (equation 34) and the efficiency of thrust generation is the
ratio of energy inputs to energy outputs (equations 35 and 36, respectively).

The hydrodynamic modeling gives the following dependence of the mean thrust
force on shell length, closing force and shell gape (see Table 4):

Tm = (39)

Equation 39 indicates that the magnitude of the thrust force is directly pro-
portional to the magnitude of the closing force (exponent c=1.0) (i.e. a twofold
increase in the closing force results in a twofold increase in the thrust force). Also,
increasing the gape apparently permits greater thrust production during a closing
event, because more fluid is expelled from the shell during the event. If, as
discussed above, the closing moment scales as the third power of shell length, then
the thrust forces should increase as the 2.4 power of length.

The efficiency of thrust production is expressed by:

e = e-
0A6L0A4M- 0.006 oO .02 (40)

From a hydrodynamic standpoint, efficiency increases somewhat with size, but
variations in the closing force and initial gape have essentially no effect on the
efficiency of thrust production (muscle mechanical considerations might dictate
otherwise of course).
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Evolutionary implications

In articulate brachiopods, shell closure occurs first by a rapid twitch contraction
of the 'quick' adductor muscles, and then by a more prolonged and sustained
isometric contraction of the 'catch' adductor muscles. The muscles have separate
insertions on the brachial valve and are joined to a common tendon which attaches
to the pedicle valve. There is a compelling hydrodynamic argument for the origin
of this biphasic muscle system, related to the dependence of water pressure forces
on shell gape. Equation 18 for the water pressure force shows that pressure is
roughly proportional to the square of the closing velocity and inversely pro-
portional to the square of the shell gape. The inverse dependence of pressure on
the shell gape (I/O2) indicates that the pressure forces will become very large as
the two valves come very close together. There is, in effect, a very high cost of
speed at small gapes, involving large expenditures of energy for minimal returns in
shell closing speed. The evolutionary development of two muscle systems
effectively circumvents this problem of infinite water pressures as the valves
occlude. A rapid twitch contraction of the 'quick' adductors produces large
transient forces which rapidly close the shell to small gapes. A slower isometric
contraction of the 'catch' adductor then takes over to close the shell completely.
Hydrodynamic considerations may have contributed to the evolutionary origin of
this arrangement of muscles, both in brachiopods and in other taxa (e.g. bivalve
molluscs).

Conclusions

Rapid shell closure in articulate brachiopods is subject to fundamental hydro-
dynamic constraints associated with (1) rapid accelerations of fluid surrounding
the shell, and (2) flow velocities of water leaving the shell cavity. A second-order
differential equation describing the fluid reactions gives a reasonable first-order
approximation of the magnitudes of the inertial and pressure forces developed
during a closing event, as observed in shells (with tissues removed) and shell
models. The purpose of using models and empty shells is to eliminate the complex,
time-dependent forces exhibited by both contractile and non-contractile biological
tissues. The hydrodynamic model generates predictions about how variations in
shell size, initial shell gape and the closing force influence the history of shell
closure. The results provide a quantitative basis for comparative, functional and
evolutionary studies in articulate brachiopods.

Appendix

Derivation of the shape constants

Shell size and shape are expressed in terms of the shell's length and a suite of
dimensionless shape coefficients that describe characteristics such as shell width,
thickness, perimeter, etc. The principal advantage of this approach is that shape

size effects are decoupled from each other. This appendix derives analytical



308 S. C . ACKERLY

-0—

Fig. 10. Geometric parameters for deriving the shape constants. See text for expla-
nation.

expressions for the shape constants, for the idealized geometry represented by the
sector of a circle, with radius R, length R+P, and constant thickness t (see
Fig. 10). Techniques are then described for finding the coefficients of irregularly
shaped shells, using (x,y) coordinate data outlining the shell perimeter. The
principal requirement is that shape is defined with reference to an axial hinge line,
representing the actual shell hinge. Shell shapes are assumed here to be
symmetrical with respect to a line bisecting the hinge axis (=median line in
brachiopods), but the analysis is easily extended to objects with other symmetries.

Surface area (coefficient: kw)

Idealized geometry

Shell surface area A is the sum of the area increments dA (Fig. 10). The area dL4
is the product of the width w and length dA, so that:

dA = wdA. (Al)

Expressing w and dA in terms of the radius R and radial position 6 gives:

w = 2Rsin6 (A2)

and

dA = Rsinddd, (A3)

so that

dL4 = 2fl2Jsin20d<9 (A4)

or

A = R2[6t-(sin2et/2)], (A5)
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where 0t is the total arc length for the circle segment (Fig. 10). Then, defining

A = kwR2 (A6)

gives

K = [dt - (sin20t/2)]. (A7)

For 6t=ji/2 (=90°), kw=jt/2. For dt=ji (=180°), kw=n. The quantity kwL is the
'equivalent rectangular plate width'.

Irregular geometries

For an irregularly shaped shell defined by (x,y) coordinate pairs along the shell
perimeter, where the x axis bisects, and is perpendicular to, the hinge axis and the
y axis coincides with the hinge axis, the area is the numerical summation of the
area increments cL4, so that:

(A8)

where

Ax = xi + 1-xl, (A9)

and

kw = A/L1, (A10)

where L is the shell length measured in the x direction.

First moment of area (coefficient: k J

Idealized geometry

The first moment of area A\ reflects the distribution of surface area with respect
to the hinge axis, so that:

At = JACL4 , (All)

where A is the distance of the area increment cL4 from the hinge axis. Substituting
equations A4 and the relationship:

A = P + Rcosd, (A12)

where

P = Rcos(ji-8t), (A13)

into equation A l l gives:

Ax = 2R3$[cos(n- 0t)sin20 + sin2flcos0]d0, (A14)

or

Ai = {R3COS(JI - dt)[6t - (sin20t/2)]} + 2fl3sin30t/3 . (A15)

Setting

A1 = kaAR, (A16)
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where
A = kwR2, (A17)

gives
K = Ajk^R3. (A18)

For 6t=Jt/2 (=90°), ka=4/3n. For Qt=n (=180°), ka=l.

Irregular geometries

The first moment of area in terms of (x,y) coordinate pairs is:

Ax = 2[(y, + yi + Ofo + xi+1)Ax/2], (A19)

so that:
ka = AjAL2 . (A20)

First moment of perimeter (coefficient: kex)

Idealized geometry

The first moment of perimeter reflects the distribution of perimeter segments dp
with respect to the hinge, so that:

Pi = jAdp , (A21)

where

dp = Rdd. (A22)

Thus:

px = 2R2j[cos(n - 0t) + cos0]d0, (A23)

or

Pi = 2R2[0tcos(jt - dt) + sin0t]. (A24)

Defining

Pi = kppR , (A25)

where

p = kxR, (A26)

gives the expression for kp:

kp = Pi/{kxR
2), (A27)

where kp is a coefficient of the first moment of perimeter. I also define the
coefficient kex as a coefficient of the first moment of perimeter, where:

fcex = kpkt, (A28)

= Pi/R2 •

For 6t=n/2 (=90°), kex=2. For 9t=n (=180°), A:ex=2jr.
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Irregular geometries

The first moment of perimeter in terms of (x,y) coordinate pairs is:

Pl = 2 [ ( A / + A x 2 ) ^ + xi+1)], (A29)

so that:

A:ex = Pl/L
2 . (A30)

First moment of inertia (coefficient: kcm)

Idealized geometry

The first moment of inertia Mi reflects the distribution of volume with respect to
the hinge axis. For a shell of constant thickness, the coefficient of the first moment
of inertia kcm is equal to the coefficient of the first moment of area ka.

Irregular geometries

For irregular geometries, where the shell thickness varies in both the x and y
directions, numerical calculations become laborious, and empirical methods are
preferred. One technique for measuring the distribution of volume, assuming a
shell of constant density, is to suspend the shell by a wire, hinge uppermost, on a
balance, and to lower the shell by successive increments into a beaker of water,
recording the mass of the shell at each stage. The relative mass reduction at each
stage gives the relative volume of the shell for that increment, which is
standardized against the total volume.

Second moment of inertia (coefficient: Jb)

Idealized geometry

The second moment of inertia M2 reflects the distribution of volume with
respect to the hinge axis, so that:

M2 = jA2dV, (A31)

where, for constant shell thickness r,

dV= rdA. (A32)

Defining

x = ktR, (A33)

and by the relationships defined above:

M2 = 2ktR
5j[cos2(n - 0t)sin20 + cos(^r - 0t)sin20cos0 + sin20cos20]d0 (A34)
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or

M2 = ktR
5{cos\n- 6)[0- (sin20)]/4 + 2cos(JT- 0)sin30/3

+ 0/4-sin40/l6} , (A35)

where 6= 6t. Setting:

M2 = JhVR3, (A36)

gives

Jb = M2/kvlktR
5. (A37)

For dt=n/2 (so kw=n/2, for a semi-circle), 7b=0.5.

Symbol

a
at
a\
A
A,
Am

Aex

As

cp, cp*
d
dt
e
E,
Eo

F

g

/,
Jb

J\
K
''cm

^cp
kex, kp

K
kw

List of symbols
Quantity

Linear acceleration
Linear acceleration of external load
Acceleration of water leaving shell
Surface area of the shell
First moment of area
Cross-sectional area of the muscle
Exit area
Surface area
Pressure coefficient
Moment arm distance
Position of external load
Natural logarithm base=2.718
Energy inputs
Energy outputs
Force
Gravitational constant (9.8 ms~2)
Inertia of body
Inertia of liquid
Coefficient of inertia of body
Coefficient of inertia of liquid
Coefficient of first moment of area
Coefficient of center of mass
Coefficient of center of pressure
Coefficients of first moment of perimeter
Coefficient of perimeter
Coefficient of thickness
Coefficient of width
Generic coefficients

Units

ms~2

ms~2

ms~2

m2

—
cm2

m2

m2

-
m
m
-
kgm2s"2

kgm2s-2

kgms~2

-
kgm2

kgm2

-
-
—
-
-
-
-
-
—
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L
m
mb

m{

M
Mi
M2

Mb

Mf

Mg

Mp

Ms

P
Pi
P
7?
Re
t
to

'1/2

'o)max

r
T
•* m

U

" l

V

a

P
Y
d
€

A
V

n
d

P
Pb

A
T

Length
Mass
Mass of the shell
Mass of external loads
Moment force
First moment of inertia
Second moment of inertia
Gravitational moment of body
Gravitational moment of external loads
Closing forces due to gravity
Moment force due to pressure
Static closing moment force
Perimeter
First moment of perimeter
Pressure
Shell radius
Reynolds number
Time
Closing time
Time for half closure
Time of maximum velocity
Thrust force
Mean thrust force
Velocity
Mean exit velocity of liquid
Muscle contraction velocity
Volume
Volume of shell material
Width of shell increment
Angular acceleration
Fraction of the shell radius
Added mass coefficient
Error term
Efficiency
Length in a direction normal to hinge
Kinematic viscosity
Constant=3.14159
Angular position
Arc length of a circle segment
Density
Density of the shell
Density of the fluid
Shell thickness
Angular velocity

m
kg
kg
kg
Nm
-
-
Nm
Nm
Nm
Nm
gem
cm
-
Nm" 2

cm
-
s
s
s
s
kgms"2

kgms"2

ms" 1

ms" 1

ms" 1

m3

-
cm
rads~2

cm
-
-
-
cm
m2s"1

-
rad
rad
kgm-3

kgm-3

kgm-3

mm
rads"1
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