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Summary

To examine the effects of variation in body form on the mechanics of terrestrial
locomotion, we used a miniature force platform to measure the ground reaction
forces of the smallest and, relative to its mass, one of the fastest invertebrates ever
studied, the American cockroach Periplaneta americana (mass=0.83g). From
0.44-1.Oms"1, P. americana used an alternating tripod stepping pattern. Fluctu-
ations in gravitational potential energy and horizontal kinetic energy of the center
of mass were nearly in phase, characteristic of a running or bouncing gait. Aerial
phases were observed as vertical ground reaction force approached zero at speeds
above lms" 1 . At the highest speeds (1.0-1.5ms"1 or 50 body lengths per
second), P. americana switched to quadrupedal and bipedal running. Stride
frequency approached the wing beat frequencies used during flight (27 Hz). High
speeds were attained by increasing stride length, whereas stride frequency showed
little increase with speed. The mechanical power used to accelerate the center of
mass increased curvilinearly with speed. The mass-specific mechanical energy
used to move the center of mass a given distance was similar to that measured for
animals five orders of magnitude larger in mass, but was only one-hundredth of
the metabolic cost.

Introduction

Animals that vary in leg number, leg orientation, body shape and skeletal type
show similarities in the mechanics of terrestrial locomotion when the effect of
body mass is removed (Full, 1989). Surprisingly, eight-legged ghost crabs
(Blickhan and Full, 1987), six-legged Blaberus cockroaches (Full and Tu, 1990)
and two- and four-legged vertebrates (Cavagna et al. 1977; Heglund et al. 1982a,b)
can have similar patterns of ground reaction force and energy fluctuations of the
center of mass, maximum stride frequencies and mechanical power outputs.

Eight-legged sideways-moving crabs use walking and running gaits comparable
to those described in birds and mammals (Blickhan and Full, 1987). Ghost crabs
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use an inverted pendulum-like mechanism at slow speeds. At fast speeds, the crab
gallops by a series of leaps during which all eight legs leave the ground (Blickhan
and Full, 1987; Burrows and Hoyle, 1973). No aerial or flight phase is observed at
lower speeds. However, the mechanics of the center of mass are still characteristic
of running gaits. Horizontal kinetic and gravitational potential energy fluctuate in
phase and the body attains its greatest height at midstance. Full and Tu (1990) used
the same mechanical criteria to define the gait of the cockroach B. discoidalis as a
running or bouncing gait, despite the absence of an aerial phase. The absence of an
aerial phase may not necessarily exclude a gait from being a run or a trot
(McMahon, 1985; McMahon etal. 1987).

Four-, six- and eight-legged runners may have mechanically or physiologically
equivalent speeds (Full, 1989). Quadrupedal mammals attain a maximum sustain-
able stride frequency when they switch gait from a trot to a gallop (Heglund et al.
1974). Maximum sustainable stride frequency, as well as the speed at which it is
attained, scale as a regular function of body mass (Heglund and Taylor, 1988;
Heglund et al. 1974). Ghost crabs (Blickhan and Full, 1987) and cockroaches (B.
discoidalis; Full and Tu, 1990) both attain a maximum sustainable stride
frequency. Remarkably, when the effect of body mass is removed, ghost crabs,
Blaberus cockroaches, rats, dogs and horses have similar values for maximum
sustainable stride frequency as well as the speed at which it is attained (Full, 1989).

Mechanical power output of the center of mass increases with speed in two-,
four-, six- and eight-legged runners (Cavagna etal. 1977; Heglund etal. 1982a;
Full, 1989). When the effects of body mass are removed, the mechanical power
output of the center of mass is similar in ghost crabs (Blickhan and Full, 1987),
Blaberus cockroaches (Full and Tu, 1990), birds and mammals (Cavagna etal.
1977; Heglund etal. 1982a,b).

Even though the similarities in pedestrian locomotor mechanics are striking, the
small number of diverse locomotor designs tested (i.e. one insect, one crustacean,
four birds and nine mammals) prevents the quantification of differences in
mechanics due to variation in morphology and physiology. In the present study we
examine a six-legged pedestrian adapted for high-speed locomotion, the American
cockroach Periplaneta americana. McConnell and Richards (1955) reported speeds
for P. americana of 1.3ms"1, equivalent to nearly 40 body lengths per second.
Delcomyn (1971) measured stride frequencies that approach the wing beat
frequencies used during flight (25Hz). Morphological features, such as long,
narrow legs relative to body size, are consistent with this high-speed locomotor
capacity. Study of the locomotor mechanics of the American cockroach allows
comparison with our previous research on the much slower cockroach B.
discoidalis (Full and Tu, 1990). Maximum speed for B. discoidalis is less than half
that found for P. americana. Moreover, B. discoidalis is simply a more awkward
runner (i.e. more apparently wasted motion such as pitching and rolling) than the
American cockroach.

Specifically, we address three hypotheses. First, insects are confined to statically
stable walking gaits. Rejection of this hypothesis would support the conclusion o^
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Full and Tu (1990) that insects use a gait that is mechanically similar to the
bouncing gait of running ghost crabs and two- and four-legged vertebrates.
Second, P. americana have physiologically or mechanically equivalent speeds to
those used by other pedestrians, as defined by gait and stride frequency changes.
Third, the mechanical power output of P. americana is similar to that generated by
B. discoidalis and other pedestrians, despite variation in morphology (i.e.
adaptation for high-speed locomotion).

Materials and methods
Animals

Periplaneta americana (0.83±0.07g, s.D., N=8) were obtained from Carolina
Biological Supply Company. Cockroaches were housed in individual containers
with a layer of cedar shavings. Animals were given water and Purina Puppy Chow
ad libitum. All animals were kept on a local photoperiod at ambient temperatures
(24±2°C). Trials were conducted at 23-26°C.

Force measurements

We measured vertical, horizontal and lateral ground reaction forces using a
force platform (Full and Tu, 1990). A model aircraft plywood plate
(10.7 cmx6 cmx0.06 cm) was mounted on four brass beams. Semiconductor strain
gauges bonded to spring blades cut from the brass supporting beams responded to
forces acting on the plywood cover. The force platform was inserted into the floor
of a Plexiglas and cardboard track. Force signals were filtered using a Butterworth
filter at a cut-off frequency of 210 F£z (unloaded natural frequency of the
plate=400-650 Hz).

To measure lateral forces, we rotated the force platform by 90°. Strain gauges
which measured force in the horizontal direction were placed in position to
measure lateral forces. Vertical and lateral forces were measured simultaneously
for each trial.

Data acquisition

Signals from each force platform channel were amplified (Vishay, Measure-
ments Group) and collected by an analog to digital converter (C-100, Cyborg)
interfaced with a computer (IBM PC/AT). Force signals were sampled at a
frequency of 1000 samples s"1. Integration of force records was performed using
data acquisition and analysis software (Discovery, Cyborg). Energy fluctuations
were calculated using macros in linked electronic spreadsheets (Lotus 1-2-3).

Kinematic analysis

Dorsal and lateral views were filmed simultaneously using video cameras
capturing 60-300 frames s"1 (Video Logic CDR460 and 660). Video frames were
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grabbed and the coordinates of the leg positions at each frame were digitized into a
computer (IBM PC/AT) using a video analysis system (Peak Performance
Technologies Inc.). During the digitizing process, the video frame number
corresponding to the first step on the force platform was recorded. This frame was
synchronized to the forces by matching it to the first interval that showed an
increase in vertical ground reaction force. Thirty high-speed trials (i.e. >1.0 m s-1)
were videotaped specifically to clarify leg movement and position. Ground
reaction forces were not measured and these trials were not included in the
dynamics analysis.

Speed

The average speed of the animal was calculated by dividing the length of the
force plate plus the body length of the animal by the duration of the vertical force
recording. This method gives results consistent with speed determinations made
from the high-speed video recordings.

Stride period, frequency and length

Synchronization of the video and force recordings showed that, at all speeds,
maxima and minima of the vertical force recording clearly defined each stride
period (i.e. one complete cycle of protraction and retraction of a leg). Stride
frequencies were calculated from the duration of the stride or strides selected from
the trials used for energy analysis. Stride length was calculated by dividing the
average speed by stride frequency.

Velocity and displacement of the center of mass

Segments of the force recordings were selected for analysis if they contained one
or more complete strides in which the sum of the increases and decreases in speed
were within 10 % of the average speed of the animal (see Full and Tu, 1990). The
horizontal and lateral velocity of the center of mass were calculated by integrating
the horizontal and lateral force recordings, respectively. The vertical velocity of
the center of mass was calculated from integration of the vertical force recording
minus the body mass. An additional integration of the vertical velocity yielded the
vertical displacement of the center of mass. The average speed of the animal was
used as the integration constant for the horizontal velocity of the center of mass.
The integration constants for the vertical and lateral component of velocity and for
the vertical displacement of the center of mass were assumed to be zero.

Energy calculations

Calculations of the energy fluctuations of the center of mass were performed as
in Blickhan and Full (1987), Cavagna (1975), Heglund etal. (1982a) and Full and
Tu (1990). The horizontal, lateral and vertical kinetic energy changes of the center
of mass (Ek) were calculated from the velocity changes of the center of mass.
Gravitational potential energy of the center of mass (Ep) was calculated from the
vertical displacement. The power output of each individual component was
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determined by summing the positive increments over an integral number of strides
and dividing by the duration of the strides. At each sampling period (i.e. 1 ms) the
vertical, lateral and horizontal kinetic and gravitational potential energies were
summed to obtain the total energy of the center of mass (E^). The power
generated to lift and accelerate the center of mass (E^) was calculated from the
sum of the positive increments of E^ over an integral number of strides divided by
the duration of the strides.

Results
Speed, gait and ground reaction forces

P. americana moved either rapidly, in response to prodding, or slowly when left
undisturbed. They did not travel at intermediate speeds (see Kozacik, 1981).
Locomotion at low speeds (less than 0.15 ms"1) was intermittent. The cock-
roaches sustained a constant horizontal speed only when moving at speeds
between 0.44 and 1.5 ms"1.

At all speeds, P. americana ran using two alternating set(s) of one, two or three
legs. Despite variation in the number of legs contacting the ground, the pattern of
ground reaction force production during each step was consistent over the entire
speed range. During each step, the animal accelerated its center of mass upwards,
forwards and to one side. The propulsive phase of one stride corresponded to a
maximum or minimum in vertical, horizontal and lateral forces (Fig. 1A,B). As
the center of mass fell, vertical force increased and the insect decelerated its body
in the horizontal direction (Fig. 1A,E, ^ ) . Peak vertical ground reaction force was
1.5-1.9 times the weight of the cockroach. As the animal accelerated its center of
mass forwards and upwards, vertical force decreased to values less than body
weight (Fig. 1A,E, t2).

At speeds less than 1.0 ms"1, P. americana ran using an alternating tripod
stepping pattern. The right front, left middle and right hind legs all moved
simultaneously, while each moved out of phase with its contralateral pair.

Vertical force frequently decreased to less than 10 % of the animal's weight and
approached zero at speeds above 1 m s"1. P. americana attained an aerial phase at
the fastest speeds (1.0-1.5ms"1; Fig. 2). High-speed video recordings
(300 frames s"1) showed that, at these high speeds, the insect raises its body off the
substratum (from 0.5 to 1.0 cm) and increases its body's angle of attack (from 0 to
30° relative to the horizontal). In half of the high-speed runs (7V=13), cockroaches
used only four legs (i.e. middle and hind legs). In the other half of the high-speed
runs, cockroaches ran bipedally, propelling themselves exclusively with their hind
legs (Fig. 2).

At speeds less than 1.0ms"1, maximum lateral force was observed once during
each step at approximately the same time as the maximum vertical force. The
direction of the lateral force was determined by the side of the body with two legs
of the tripod in contact with the ground. A net lateral force to the left occurred
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when the body was supported and propelled by the left hind, left front and right
middle legs. Propulsion by the alternate set of legs produced a net force to the
right. Lateral force maxima varied in magnitude between one-fifth and three-
quarters of the magnitude of the fluctuations in vertical force. Lateral forces were
more variable during two- and four-legged high-speed running.
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Fig. 1. Ground reaction force, velocity, displacement and energy fluctuations of the
center of mass for one stride for Periplaneta americana weighing 0.81 g (0.0079 N)
running at 0.92ms"1. (A) Vertical force recording from the force platform. The
horizontal line represents the animal's weight; (B) horizontal force; (C) vertical and
(D) horizontal velocity calculated by integration of the force recordings; (E) vertical
displacement calculated by integration of the vertical velocity; (F) vertical kinetic
energy; (G) horizontal kinetic energy; (H) gravitational potential energy; (I) total
mechanical energy of the center of mass ( E J obtained by summing the vertical
kinetic, horizontal kinetic and gravitational potential energy recordings. See text for an
explanation of t\, t2 and t3.
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Fig. 2. Vertical ground reaction force pattern for bipedally running American cock-
roaches. Cockroaches used their hind legs to propel their body. Vertical force
decreased to zero showing that the cockroach had all six legs off the ground in an aerial
phase. Cockroaches ran with their body elevated from the ground and their head end
angled upward (angle of attack=23°).

Phase relationship between horizontal kinetic and gravitational potential energy

The oscillations in horizontal kinetic and gravitational potential energy (Fig. 1G,H)
followed periodic functions that repeated every step. For an individual step, phase
shift was defined as zero if the maximum of the gravitational potential energy
occurred in phase with the nearest maximum of horizontal kinetic energy. Phase
shift was considered negative if the horizontal kinetic energy maximum preceded
the nearest maximum of gravitational potential energy. If the horizontal kinetic
energy maximum followed the maximum of gravitational potential energy, then
the phase shift was considered positive. If the horizontal kinetic and gravi-
tational potential energy maxima were completely out of phase, then the



222 R. J. FULL AND M. S. TU

40

30-

20-

10-

O o

<? o >8 8 e
0 4 0.6 0.8 1.0 1.2

Speed (ms"1)

1.4 1.6

Fig. 3. Percentage energy recovery due to pendulum-like energy exchange as a
function of speed.

phase shift would equal ±180°. For P. americana, the magnitude of the changes in
the gravitational energy during each step was small, and the overall pattern was
often irregular because of small net displacements of the center of mass over a
stride. However, the periodicity of the potential energy fluctuations could easily
be determined. Kinetic and gravitational potential energy changes of the center of
mass tended to occur in phase. The mean phase shift (-46±9.06° S.E.) was
significantly different from that predicted for a walk (i.e. ±180°; ;=14.7;
P<0.001).

Energy recovery

The magnitude of energy recovery can be calculated by comparing the
mechanical energy generated to sustain a constant forward speed if no energy
exchange occurred with the amount of energy actually expended. Energy recovery
was calculated by:

_

where 2! A£k, 2 AEp and "LAE^ are the sums of the positive changes in the kinetic,
potential and total energy of the center of mass, respectively. If fluctuations in
potential and kinetic energy of the center of mass are equal in magnitude and out
of phase, recovery will be 100%. The fluctuations in potential and kinetic energy
of the center of mass for P. americana were nearly in phase. The mean energy
recovery was 6.7±0.88% S.E. (N=42; Fig. 3).

Stride frequency and stride length

Stride length (in units of m) increased as speed (v, ms"1) increased: stride
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Fig. 4. (A). Stride length as a function of speed for Periplaneta americana. Stride
length increased as running speed increased. (B). Stride frequency as a function of
speed. Increased running speed did not result in a large increase in stride frequency.
The closed circle shows the speed and stride frequency predicted for a 1 g animal using
the allometric equations from mammals for the trot-gallop transition (Heglund et al.
191 A). The pattern of stride length and stride frequency for P. americana is
characteristic of animals traveling at speeds above the trot-gallop transition.

length=0.033±0.0029v (S.E.) +0.011±0.003 (S.E.) (Fig. 4A). Stride frequency
(Hz) also increased significantly with speed: stride frequency=6.3±1.6v (S.E.)

+ 16.6±1.5 (S.E.) (Fig. 4B).

Mechanical energy of the center of mass

The mass-specific power used to lift and accelerate the center of mass (£„, ,
Wkg"1) increased with increasing speed (v, ms"1): £'cm=1.47±0.29v (S.E.)

—0.16±0.27 (S.E.) (Fig. 5). Mechanical power generation due to fluctuations in
horizontal kinetic energy increased as running speed increased and comprised the
largest fraction of the total mechanical power output of the center of mass (Fig. 6).
In contrast, fluctuations in the vertical and lateral kinetic and gravitational
potential energies contributed a small percentage to Ecm and both remained
constant or decreased in magnitude as running speed increased.

High-speed running by P. americana sometimes involved small net changes in
the height of the center of mass over several strides in addition to the vertical
oscillations associated with each step. Our calculation of the gravitational
potential energy changes, therefore, included a contribution of energy due to net
displacement of the center of mass. The change in energy due to these
displacements was small relative to our estimates of £„„. Recalculation of the
gravitational potential energy changes without the assumption of constant vertical
position produced energy values that change E^ by less than 10 %.
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Fig. 5. Mechanical power (£„„) used to lift and accelerate the center of mass as a
function of speed. Open circles represent data for Periplaneta americana. Filled circles
and solid line represent data obtained previously for the cockroach Blaberus discoidalis
(Full and Tu, 1990). The dashed line represents the predicted mechanical power output
of the center of mass based on data for mammalian and arthropod runners (Full, 1989;
see Fig. 7). For P. americana, E^ appears to be a curvilinear function of speed.
P. americana did not sustain locomotion at a constant horizontal speed in the range
O-CUms"1.

Discussion

Gait, ground reaction forces and energy fluctuations of the center of mass

Stepping patterns of the American cockroach have been well studied because P.
americana has served as an important model of neural control for 20 years
(Delcomyn, 1971, 1981, 1985, 1989). At speeds of 0.05-0.80ms"1 the American
cockroach uses an alternating tripod gait that has been referred to as a walk
(Delcomyn, 1971). Results of the present study confirm the use of the tripod gait at
speeds less than 1.0 m s"1. However, at all except the slowest speeds (<0.40ms~1)
we suggest the gait be called a run.

Walking gaits can be defined by the time course of the mechanical energy
changes of the center of mass. In walking gaits, the kinetic and gravitational
potential energy fluctuations of the center of mass occur out of phase, and energy
can be transferred in a manner analogous to energy exchange in a pendulum
(Cavagna et al. 1977). The gait used by P. americana did not result in effective
energy conservation by pendulum-like exchange. Kinetic and potential energy
changes of the center of mass were nearly in phase at all speeds (Fig. 1G,H), and
energy recovery averaged 6.7% (Fig. 3). Pendulum-like energy exchange is also
low in the slower cockroach Blaberus discoidalis (15.7%, Full and Tu, 1990).
Neither of these insects appears to utilize a pendulum-like walking gait at speeds
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Fig. 6. Three components of the total mechanical power (E^) of the center of mass as
a function of speed. E^ was obtained by summing the positive increments of the
kinetic and potential energy fluctuations. Fluctuations in the horizontal kinetic energy
(O) represent the greatest fraction of the power used to lift and accelerate the center of
mass. Vertical kinetic energy changes (+) and gravitational potential energy changes
(•) were relatively small and decreased in magnitude at high speeds.

that they sustain for more than a few strides. In contrast, birds, mammals and
ghost crabs adopt walking gaits during which pendulum-like energy exchange
reduces the energy used to maintain a constant speed by 31-70 % (Cavagna et al.
1977; Heglund et al. 1982a; Blickhan and Full, 1987).

P. americana, running on six legs, as well as four or two, produced patterns of
ground reaction force that were not qualitatively different from those produced by
the cockroach B. discoidalis (Full and Tu, 1990), the ghost crab (Blickhan and
Full, 1987), and running and trotting mammals (Fig. 1A,B'> Cavagna et al. 1964,
1977). Two-, four-, six- and eight-legged runners can all use alternating sets of
propulsers during regular symmetrical gaits (Full, 1989). The resulting ground
reaction forces consist of two maxima in both the vertical and horizontal ground
reaction forces during each stride. The vertical force pattern can be described by a
shape factor (q) calculated from a Fourier series (Alexander and Jayes, 1978). The
shape factor for P. americana (<jr=—0.01) and the duty factor (i.e. the fraction of a
stride duration for which a foot is on the ground, 6=0.5) correspond to a trot when
compared with bipedal and quadrupedal mammals. Results of this analysis for the
American cockroach are similar to those found for B. discoidalis (Full and Tu,
1990) and are consistent with the contention that insects use a running gait.

Running or bouncing gaits can be defined by the timing of the mechanical
energy fluctuations of the center of mass. During running and trotting gaits,
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horizontal kinetic and gravitational potential energy fluctuations of the center of
mass occur in phase (Cavagna, 1975; Cavagna etal. 1916, 1977). In a typical
running gait, fluctuations in the kinetic and gravitational potential energies occur
in phase when the maximum vertical force precedes the maximum horizontal force
by one-quarter of the step period. Patterns of energy fluctuation show that P.
americana used a running gait (Fig. 1G ,H)J similar to the bouncing gaits of two-
and four-legged vertebrates (Cavagna etal. 1977; Heglund etal. 1982a) and
eight-legged crabs (Blickhan and Full, 1987). The vertical force maxima for P.
americana always preceded the nearest maxima in horizontal force by a time
period equal to or less than one-quarter of the step period. In no case did a
maximum in vertical force occur after the nearest maximum in horizontal force, as
would be expected in a walking gait. In many trials the horizontal accelerating
force attained a maximum more nearly in phase with the vertical force maxima
(Fig. 1A,B). Preliminary studies on single leg forces in cockroaches suggest that
this phase relationship would result if the forces produced by the first leg were
significantly reduced (R. J. Full, R. Blickhan and L. Ting, in preparation; Ting
etal. 1989).

In previous studies of arthropod locomotion, ground reaction force patterns,
energy conservation and the timing of mechanical energy changes were used to
define walking and running gaits (Blickhan and Full, 1987; Full and Tu, 1990). By
all of these criteria, P. americana employed a running gait over the entire speed
range we observed. It is important to emphasize that the presence of an aerial
phase is not necessary for a gait to be classified as a run. The aerial phase of human
runners can be reduced to zero by increasing the compliance of the legs
(McMahon, 1985; McMahon etal. 1987). Blaberus discoidalis does not attain an
aerial phase, yet force patterns, energy transfer and energy fluctuations of the
center of mass indicate that the gait used by these insects is also a run (Full and Tu,
1990). The existence of aerial phases during rapid running in the American
cockroach conclusively rejects the hypotheses that insects are confined to statically
stable walking gaits.

Stride frequency and equivalent speeds

Running speed can be increased by an increase in stride frequency or stride
length. Maximum stride length will be determined by leg length and the angle
through which the limb swings. At fast speeds (i.e. >1.0ms~1), P. americana ran
with its body raised well off the ground and its anterior end elevated relative to the
posterior (Fig. 2). In this posture, the body was propelled primarily by the long
hind legs. With the hind legs functioning as the primary propulsive units, P.
americana may be able to overcome the limitations to stride length imposed by
shorter limbs by lifting both front and middle legs off the ground. Increasing the
angle of attack of the body may also allow a greater range of movement through
which the hind legs can swing. The maximum theoretical stride length (i.e. two
times limb length) for the hind limbs of P. americana is approximately 6 cm. This
value is nearly the same as the maximum observed stride length (Fig. 4A). Since
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the hind limbs are attached to a thorax which is elevated above the ground,
maximum stride length is actually less than 6 cm. Highest speeds were attained by
incorporating an aerial phase into each step during bipedal running (Fig. 2).
Remarkably similar adjustments have been described for bipedal lizards (Synder,
1962). Speed also increases with bipedalism in lizards. As in P. americana, lizards
tilt their head end upwards and increase stride length by using long hind legs.

Quadrupedal mammals typically switch from a trot to a gallop as they increase
speed. A maximum sustainable stride frequency is attained at the trot-gallop
transition speed. Greater speeds are attained by increasing stride length. Small
animals generally switch from a trot to a gallop at lower speeds and higher stride
frequencies than do larger animals. The speed at the trot-gallop transition has
been referred to as an equivalent speed among animals that differ in size and body
form. Bone strain and muscle force in mammals attain peak values during a fast
trot and are reduced during a gallop (Biewener and Taylor, 1986; Taylor, 1985).
Bone strain levels are similar among quadrupedal mammals at the trot-gallop
transition despite large differences in speed and body mass (Biewener and Taylor,
1986). Among quadrupedal mammals, the speed and stride frequency at the
trot-gallop transition varies predictably with body mass (Heglund et al. 191 A;
Heglund and Taylor, 1988). Surprisingly, our previous studies of ghost crab and
cockroach locomotion indicate that the scaling of maximum sustainable stride
frequency and the speed at which it is attained may also be a general feature of
arthropod locomotion (Blickhan and Full, 1987; Full, 1989; Full and Tu, 1990).
Ghost crabs and the cockroach B. discoidalis attain a maximum stride frequency at
the speed and stride frequency predicted for the trot-gallop transition of a
quadruped of the same mass.

The observed speeds for P. americana were well above the trot-gallop
transition speed of 0.28 ms" 1 predicted from allometry on quadrupeds (Fig. 4B).
The pattern of stride frequency and stride length for the American cockroach was
similar to that of a quadrupedal mammal operating at speeds above the
trot-gallop transition. Stride frequency increased by 30% over the entire speed
range, whereas increases in speed were attained by tripling stride length (Fig. 4).
Although the relationship of stride frequency and speed was similar, the maximum
sustainable stride frequency predicted for P. americana on the basis of data from
quadrupedal mammals (Heglund et al. 1974) is only 12 Hz. P. americana running
with maximal stride length at the predicted maximum sustainable stride frequency
could only attain speeds approaching 0.8ms"1. This speed is half the highest speed
actually observed. P. americana attained stride frequencies of more than twice the
predicted value. High-speed running by the American cockroach at speeds of
50 body lengths per second was correlated with an exceptional capacity for cycling
its legs. In contrast to galloping quadrupeds, the American cockroach attained
very high stride frequencies, as well as long stride lengths, as speed increased.

Mechanical energy of the center of mass

The mechanical power generated by P. americana to lift and accelerate its center
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of mass (Ecm) increased with speed (Fig. 5). The cockroach B. discoidalis, the
ghost crab and birds and mammals show a linear increase in Ecm with speed
(Blickhan and Full, 1987; Cavagna et al. 1977; Heglund et al. 1982a). The increase
in Ecm with speed in P. americana is better described by a curvilinear function. At
high speeds Ecm was greater than predicted for a l g animal (Full, 1989). The
additional power output generated at high speeds was almost exclusively in the
horizontal direction (Fig. 6). The elevated rates of mechanical energy generation
at high speeds along with the changes in body angle suggest that drag forces may
play a significant role in these small runners. We are currently investigating this
possibility by testing cockroaches in wind tunnels (Full and Koehl, 1989).
Bartholomew et al. (1985) have suggested that lift and possibly drag affect the
desert beetle Onymacris plana, which can run at high speeds (1.0 ms"1) and is
similar in mass to the American cockroach.

Even with the elevated power output of the center of mass at high speeds, the
amount of mechanical energy used by P. americana to move a 1 kg mass for 1 m
(1.5 J) was remarkably similar to values reported for animals that span nearly five
orders of magnitude in body mass and vary greatly in morphology (Fig. 7). It is
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metabolic and mechanical economy reaches 100-fold. No reassessment of mechanical
energy changes can result in whole-body efficiencies of 25 %. Data for mammals and
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(see Full, 1989, for references). Minimum metabolic cost of transport
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important to note that E^ is the largest fraction of the total mechanical energy
generated during locomotion, but not the only component. Total mechanical
energy includes elastic strain energy (Ee), which reduces the total, and the internal
energy (£j) used to accelerate the limbs and rock the trunk relative to the body,
which increases the total (Heglund et al. 1982b). The magnitudes of E, and Ee are
unknown for any insect. For P. americana and other insects, however, E-, is likely
to be small with respect to Ecm because of their relatively light-weight limbs (Full
and Tu, 1990). Based our on estimations, maximum E, for the American
cockroach running at 1.0ms"1 does not exceed 3 % of Ecm.

Measuring the power output used to move the center of mass in P. americana,
the smallest runner tested to date, provides an important test of a hypothesis
proposed from the scaling energetics of birds and mammals. Heglund et al.
(19826) concluded that metabolic power input cannot be predicted from mechan-
ical power output assuming a constant muscular efficiency of 20-25 %. Small birds
and mammals (i.e.<lkg) have muscular efficiencies well below 25%, whereas
large animals have values as high as 70% (Cavagna et al. 1977; Heglund et al.
19826).

Unfortunately, several processes and components make estimation of total
mechanical power output difficult. Transfer of energy within and between
segments, elastic energy storage, eccentric muscle contraction and variation in Et

as speed increases can significantly affect the slope of the mechanical power output
function shown in Fig. 7. This is especially true in larger animals (i.e. >1 kg) that
exhibit less than a 10-fold difference between metabolic and mechanical power
(Heglund et al. 19826). Estimates of mechanical power output for P. americana
show that this difference reaches 100-fold in small insects (Fig. 7). This large
difference between metabolic and mechanical power cannot be completely
explained by any reassessment of the mechanical power estimate. Maximum
mechanical power output estimates for cockroaches would have to be increased by
20- to 30-fold to attain a whole-body efficiency that approaches frequently quoted
estimates of muscle efficiency (i.e. 25 %; Full, 1990). Maximum mechanical power
output estimates for small animals (lg) combined with minimum mechanical
power output estimates for large animals (100 kg) only increase the difference in
mechanical power between large and small animals to sevenfold, not nearly the 50-
fold necessary to make whole-body efficiency independent of animal size (i.e.
parallel relationship between the functions relating the minimum metabolic cost
and mechanical energy per distance).

Whole-body efficiencies for terrestrial locomotion in the l g American cock-
roach are low (1.2%), as are efficiencies for incline running in cockroaches (4%;
Full and Tullis, 1990), bee flight (6-14 %; Casey and Ellington, 1989) and isolated
locust flight muscle (6.4%; Josephson and Stevenson, 1989). Muscles used by
insects appear to be inefficient machines (i.e. power output/power input)
compared to muscles in larger animals such as mammals. Yet, these inefficient
machines may be just as effective as the muscles of larger animals in generating
force (Full, 1990). Full et al. (1990) showed that the cost of force production
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in three insect species is remarkably similar to that found in mammals when the
rate of force production is considered. If insect muscle is operating at high stress or
force compared to strain when producing maximal mechanical power output, then
metabolic cost may be best correlated with force production. A recent study on
isolated locust flight muscle supports this hypothesis. At maximal power output,
strain is low and rate of oxygen consumption is similar to that measured during a
maximal isometric contraction (Josephson and Stevenson, 1989, and personal
communication).

Supported by NSF grant PCM87-19066, Berkeley Campus Biomedical Re-
search Support Grant (NTH 86-39) and a Berkeley Presidential Undergraduate
Fellowship to MST.
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