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Summary

Wingbeat frequencies were observed in the field for 32 morphologically diverse
bird species, representing 18 families, and ranging in mass from 20 g to nearly 5 kg.
A combination of multiple regression and dimensional analysis was used to show
that wingbeat frequency (j) may be estimated by:

/= lMim^g^b-'S-^p-1/3) ,

where m is the bird's body mass, g is the acceleration due to gravity, b is the wing
span, S is the wing area and p is the air density. The predicted wingbeat frequency
can be used to estimate the power available from a bird's flight muscles, and an
estimate of the power required to fly can be obtained for comparison from the
computer programs of Pennycuick (1989a). Field observations of airspeed are
given for 30 of the 32 species. These are combined with the observations of
wingbeat frequency to estimate wingbeat wavelength, and the ratio of wavelength
to wing span, which is closely related to the 'advance ratio' as used by Ellington
(1984).

Introduction

Hill (1950) was the first to explore the consequences of the trend (plainly
apparent to the naked eye) whereby larger animals oscillate their limbs at lower
frequencies than smaller ones of similar type. From his earlier studies of muscle
mechanics, Hill deduced that the mechanical power produced by a particular
muscle is directly proportional to the contraction frequency, as is the mass-specific
power (power output per unit mass of muscle). Each gram of muscle produces less
power in a large animal than in a small one. The trend is roughly similar to that of
basal metabolic rate versus body mass, and Hill followed the implications in some
detail for running and swimming animals. His arguments were extended to flying
animals by Pennycuick (1972, 1975), and adapted for the case of aerobic muscles,
used for prolonged cruising locomotion, by Pennycuick and Rezende (1984), with
some modifications of Hill's conclusions. For theoretical calculations that involve
matching the power required for locomotion with the power available from the
muscles, it is essential to have some way to estimate the contraction frequency in
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different animals, or at least the way in which the frequency changes, as the mass
or other characteristics of the animal are varied. There is at present no means of
doing this for flying animals.

Underlying Hill's (1950) argument is the principle that the frequency at which
muscles contract in steady locomotion is not under the animal's control, or only to
a very limited extent. There is a 'natural' frequency, imposed on the animal by the
physical characteristics of its limbs, and the forces which they have to overcome.
This in turn confines the strain rate, at which the muscles are permitted to shorten,
within a narrow range. To be efficient, locomotor muscles have to be adapted to
work at a particular frequency, which is done by adjusting the maximum strain
rate, that is the 'intrinsic speed' in Hill's terminology (Pennycuick, 1990). In the
case of walking animals, Alexander (1976, 1980) has shown that the natural
frequency is proportional to V(g//), where g is the acceleration due to gravity and
/ is the leg length. The natural frequency for cruising flight in birds, assuming that
one exists, is not so easily determined. Attempts at a dynamical analysis of
simplified versions of the problem (Pennycuick, 1975; Rayner, 1986, 1987) have
drawn attention to several physical variables which affect the result. The main
morphological variables that affect wingbeat frequency are body mass, wing span,
wing area and the moment of inertia of the wing. Allometric relationships can be
constructed to show how wing span and area depend on body mass, but such plots
(and the data in this paper) also show that both variables vary widely, indepen-
dently of each other, in different species of similar mass. Not much is known about
wing moment of inertia, but it has to be assumed provisionally that each of the
morphological variables is liable to vary independently of the others. In addition,
two 'environmental' variables, the acceleration due to gravity and the air density,
also contribute to determining the wingbeat frequency.

The main objective of this paper is to find a relationship, involving the variables
mentioned, which can be used to predict a bird's wingbeat frequency in steady
cruising flight. As this is essentially a physical problem, a first approach can be
made by applying dimensional analysis, a method widely used in classical physics.
This does not solve the present problem uniquely, but it severely limits the range
of possible solutions. The possibilities are then further narrowed down by
regression analysis of field data, consisting of frequency observations on 32
morphologically heterogeneous bird species, for which data on body mass, wing
span and wing area were also obtained. As a result of this combination of methods,
the solution finally chosen is not restricted to the variables represented in the
regression. Field observations of airspeeds were also obtained for all but two of the
study species, and these were used to extend the prediction to cover wingbeat
wavelength, that is the distance the bird moves forward in one wingbeat cycle.

Materials and methods
Study sites and species

The field data presented in this paper were collected between 1985 and 1989, a r
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Table 1. List of study species
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13
30
32
35
37
40
47
51
58
65
80
86
112
117
118
120
122
126
128
183
184
192
194
196
200
325
326
352
360
364
412
614

Fratercula arctica
Uria aalge
Alca torda
Catharacta skua
Stercorarius parasiticus
Rissa tridactyla
Larus marinus
Larus argentatus
Larus atricilla
Sterna maxima
Rynchops niger
Fulmarus glacialis
Phaethon lepturus
Sula bassanus
Anhinga anhinga
Phalacrocorax auritus
Phalacrocorax aristotelis
Pelecanus occidentalis
Fregata magnificens
Ajaia ajaja
Eudocimus albus
Ardea occidentalis
Ardea herodias
Casmerodius albus
Egretta caerulea
Cathartes aura
Coragyps atratus
Haliaeetus leucocephalus
Falco sparverius
Pandion haliaetus
Colaptes auratus
Tachycineta bicolor

Names and species numbers from

Linnaeus
Pontoppidan
Linnaeus
Briinnich
Linnaeus
Linnaeus
Linnaeus
Pontoppidan
Linnaeus
Boddaert
Linnaeus
Linnaeus
Daudin
Linnaeus
Linnaeus
Lesson
Linnaeus
Linnaeus
Mathews
Linnaeus
Linnaeus
Audubon
Linnaeus
Linnaeus
Linnaeus
Linnaeus
Bechstein
Linnaeus
Linnaeus
Linnaeus
Linnaeus
Vieillot

Eisenmann et al. (1983).

Puffin
Common guillemot
Razorbill
Great skua
Arctic skua
Kittiwake
Great black-backed gull
Herring gull
Laughing gull
Royal tern
Black skimmer
Fulmar
White-tailed tropicbird
Northern gannet
Anhinga
Double-crested cormorant
Shag
Brown pelican
Magnificent frigatebird
Roseate spoonbill
White ibis
Great white heron
Great blue heron
Great egret
Little blue heron
Turkey vulture
Black vulture
Bald eagle
American kestrel
Osprey
Northern flicker
Tree swallow

various sites in South Florida, at Assateague Island, Virginia, and on Fair Isle and
Foula in Shetland. Observations are also included on the magnificent frigatebird
from Panama (Pennycuick, 1983), and on the white-tailed tropicbird from Puerto
Rico. Table 1 is a list of the species included in subsequent tables and graphs. The
scientific names follow the North American checklist of Eisenmann et al. (1983).
This is also the source of the species numbers, except for the shag, for which a
deviation was needed as it does not occur in North America. All species have been
included for which flapping frequencies in level flight were observed, and for
which wing measurements were available.

Body and wing measurements

Measurements of wing span and area were made by me or by associates who
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were familiar with the standard methods for making these measurements
(Pennycuick, 1989a). Sample means were used where available, but no species was
excluded on the grounds that only one specimen had been measured. Whereas
wing span and area can be measured equally well on living birds, or on dead ones
that may be emaciated or partially dismembered, means from healthy birds are
needed for body mass. The values used for the body masses of American birds
were the sample means listed by Dunning (1984). Those for the Shetland birds
were species means supplied by Dr R. W. Furness (personal communication). In
the case of sexually dimorphic species, the mean of reported male and female
masses was used.

Airspeeds

Airspeed observations were obtained by ornithodolite, on land or on a boat, as
described by Pennycuick (1983,1987a, 19896). In a variant of these methods, used
in open, level habitat, the anemometer pole was mounted on a vehicle, which also
supplied electrical power for the ornithodolite. Only observations classified as
level cruising flight, flapping or flap-gliding, were included in the samples.

Wingbeat frequencies

These also refer only to birds in level, cruising flight. In a bird that flaps its wings
continuously, wingbeat frequency is determined by counting a whole number (N)
of wingbeat cycles, and measuring the time (t) taken. The wingbeat frequency (f) is
then defined asf=N/t. In birds that flap intermittently, N and t are measured on a
series of uninterrupted wingbeats. t includes only the time spent actually flapping,
not that of periods of gliding or ballistic flight. In species with low wingbeat
frequencies, wingbeats can be counted directly, and timed with a stopwatch.
However, all the observations presented here were obtained from video record-
ings. In the early part of the study a Panasonic PK-452S video camera and PV-8000
portable VHS video recorder were used. From autumn 1987, improved image
quality was obtained from a Panasonic PV-320 VHS camcorder, with an electronic
'high-speed shutter', capable of yielding sharp images of flapping wings. The
original field tapes were played back through a genlock device connected to a
Commodore Amiga computer, running a BASIC program which printed a six-
digit number on the screen, and incremented this number at the beginning of each
new video frame. The composite image was re-recorded on the PV-8000 recorder.
The loss of image quality caused by copying was more than offset by the
convenience of having each frame of the tape individually numbered. The frame-
numbered tape was played back on the PV-8000 recorder in frame advance mode,
and frequencies were determined by counting the number of frames for a whole
number of wingbeats. The frame rate of the original field recording (nominally
30 Hz under the American NTSC standard) was found by recording a watch to be
29.98 Hz for both the PV-8000 and the PV-320 recorders.

An identifiable point in the wingbeat cycle was needed to define the beginning
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and end of a series of wingbeats. The most satisfactory reference point proved to
be the moment at which the wing develops its full lift at the beginning of the
downstroke. Three events occur more or less simultaneously at this point in the
cycle, and one or more of them can be seen from any angle of view. When viewed
from ahead, the wing suddenly appears much thinner, as it rotates at the shoulder
joint to present an edge-on view. This is the first indication that can be used on a
distant bird coming towards the camera. When the image is better defined, the
upward bend caused by the lift force can be seen as the wing comes under load.
This can also be seen from behind. When viewed from the side, or from below, the
wing appears flexed at the wrist throughout the upstroke, then abruptly straightens
to its full extent as the load is applied for the downstroke. At a frame frequency of
30Hz, the wings of most species appeared to 'snap' to the fully extended position,
between one frame and the next. The tape was single-stepped until this was seen,
and the frame number was noted for the start of an observation. Then, the tape
was run at slow speed, counting wingbeats, and finally single-stepped to locate the
wing-extension snap defining the end of the observation. The number of
wingbeats, starting and finishing frame numbers, species number and some other
details were then entered as a record in a database under Microfiche Filer Plus
(Software Visions Inc.), a database management program for the Amiga. Filer
Plus automatically calculated the wingbeat frequency and included it in the record.
Subsequently, all the records for a particular species and type of flight could be
selected, and Filer Plus carried out the summations needed for the statistics in
Table 3.

Long sequences of continuous flapping flight were broken into consecutive
observations, usually of 20 wingbeats each. Flap-gliding birds would often flap for
fewer than 20 wingbeats, and the observation then had to terminate when the bird
stopped flapping. Five wingbeats was generally taken as the minimum for an
observation, but this had to be lowered to three for black vultures, as they seldom
flap for more than four wingbeats at a time. In the case of the northern flicker, the
only species in the sample to show fully developed bounding flight, it was
necessary to accept samples of only two wingbeats, with a consequent increased
risk of bias in the frequency estimates. The mean wingbeat frequency for a species,
as listed in Table 3, was found by dividing the total number of wingbeats observed
by the total number of frames counted, and multiplying by 30. Because the
number of wingbeats in an observation was variable, it was felt inappropriate to
work out the standard deviation of wingbeat frequency simply by comparing the
frequency estimates for different observations. Short observations would then
have been given the same weight as long ones. Instead, an observation lasting N
wingbeats was deemed to contribute N measurements of wingbeat period, each
equal to the mean period (p). The standard deviation (sp) for the wingbeat period
was calculated for the set of observations. The estimate for the standard deviation
of the frequency (sy) was found from the mean and standard deviation of the
beriod as follows:
f sf=sp/(p

2-sp
2). (1)
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Table 2. Air densities for different data subsets

Data subset

Florida until January 1987
Florida after January 1987
Shetland 1986
Assateague Island 1989

Mean density
(kgm-3)

1.20
1.22
1.21
1.22

S.D.
(kgm-3)

0.03
0.03
0.01
0.02

This amounts to halving the interval between the frequency corresponding to a
period p—sp and that corresponding to p+sp. This method of working out the
standard deviation reflects frequency variations between observations, but neg-
lects the variation from wingbeat to wingbeat within an observation. In several
species, successive observations in the same sequence of continuous flapping flight
often gave identical or almost identical frequency estimates. In these species, the
standard deviation reflects mainly differences between individuals.

Air density

All observations were made within 100 m, and most within 20 m of sea level. Air
density was estimated from measurements of barometric pressure and air
temperature, recorded in the field. These density estimates were recorded in the
data files when measuring airspeeds. Means and standard deviations for four
phases of the project are shown in Table 2, and are sufficiently close together to
justify using a fixed value of 1.21 kg m~3 for the air density in the subsequent
calculations.

Results and Discussion

Table 3 shows estimates of body mass, wing span, wing area and wingbeat
frequency for 32 species, together with airspeed estimates for all but two of them,
all restricted to steady, level, flapping or flap-gliding flight. Observations were
excluded if the bird was judged to be patrolling in search of prey, or doing anything
other than flying steadily along. The letters A-F following the species identifi-
cation numbers indicate the proportion of observations (both frequency and
airspeed) in which the bird was scored as flap-gliding (or bounding) rather than
flapping. Some species normally flap, others normally flap-glide, while still others
proceed in either fashion. The concept of the 'natural frequency', introduced
above, applies within periods of continuous flapping. A flap-gliding bird supplies
less power from its muscles (on average) than it would if it flapped continuously.
Presumably power could also be reduced by flapping at a lower frequency and/or
amplitude, but this would reduce the strain rate at which the muscles shorten, with
an adverse effect on muscle efficiency (Pennycuick, 1990). By flap-gliding, a bird
can reduce its average power output without having to change its wingbeat
frequency, or the strain rate of its muscles. The incidence of flap-gliding could
used as an index of relative power output, when comparing different types of fligh
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Table 3. Observed airspeeds, wingbeat frequencies and wavelengths

111

Species

13
30
32
35
37
40
47
51
58
65
80
86
112
117
118
120
122
126
128
183
184
192
194
1%
200
325
326
352
360
364
412
614

A
A
A
A
B
A
B
B
C
B
A
D
A
E
D
A
A
F
E
C
E
A
A
A
A
F
F
F
E
C
F
C

Mass
(kg)

0.398
0.950
0.620
1.35
0.390
0.387
1.55
0.950
0.325
0.470
0.300
0.815
0.370
3.01
1.24
1.41
1.81
3.39
1.47
1.30
0.900
2.50
1.92
0.874
0.340
1.55
2.08
4.68
0.090
1.49
0.132
0.0201

Span
(m)

0.549
0.707
0.661
1.37
1.05
0.965
1.65
1.36
1.03
1.15
0.990
1.13
0.923
1.85
1.17
1.16
1.04
2.26
2.29
1.25
0.951
1.91
1.76
1.34
0.980
1.75
1.38
2.24
0.502
1.59
0.510
0.320

Area
(m2)

0.0369
0.0544
0.0462
0.214
0.117
0.101
0.285
0.203
0.106
0.108
0.0888
0.124
0.0847
0.262
0.173
0.179
0.158
0.450
0.408
0.226
0.160
0.493
0.419
0.222
0.134
0.442
0.327
0.756
0.0344
0.300
0.0478
0.0133

Wingbeat frequency (Hz)

Mean

9.18
8.69
9.08
3.93
3.61
3.18
2.90
3.05
2.74
3.12
3.36
4.58
4.22
3.53
5.07
5.03
5.35
3.01
2.24
3.90
4.65
2.68
2.55
2.79
3.63
2.99
4.53
2.72
5.70
3.31
9.19
8.72

S.D.

0.749
0.479
0.580
0.285
0.207
0.227
0.1%
0.129
0.221
0.284
0.117
0.183
0.749
0.161
0.260
0.138
0.208
0.109
0.050
0.166
0.201
0.135
0.114
0.154
0.219
0.078
0.179
0.035
0.428
0.149
0.843
1.40

N
(obs)

61
14
22
15
5

16
20
11
26
26
25
29
5

26
33

172
50

123
7

149
70
44
12
49
49
25
33
4

32
20
29
15

N
(wheats)

1467
356
444
332
136
249
340
178
461
450
424
478
86

390
412

3116
1122
1352

74
2566
979
794
225
894
902
199
160
65

264
360

76
102

Airspeed

Mean

17.6
19.1
16.0
14.9
13.3
13.1
13.0
9.9
9.5

10.0
9.9

13.0
—

14.9
—

14.5
15.4
10.1
9.3

11.9
12.9
11.0
9.4

10.6
8.8

10.6
10.8
11.2
9.1

10.6
12.7
11.3

S.D.

3.2
2.5
2.5
3.8
2.1
2.4
1.9
2.2
1.9
3.1
1.9
2.8
—

2.6
—

1.8
2.2
2.8
2.0
1.8
2.0
1.8
1.6
2.1
1.2
2.4
2.5
0.8
2.4
2.1
1.9
2.8

(ms-1)

N
(speed)

200
178
50
72
20
18
6
9

99
56
95

104
0

32
0

189
103
70
95

6
120

8
7

59
15
25
16
4

49
90
16

129

Wave*
length

(m)

1.92
2.20
1.76
3.79
3.68
4.12
4.48
3.25
3.47
3.21
2.95
2.84

—
4.22

—
2.88
2.88
3.36
4.15
3.05
2.77
4.10
3.69
3.80
2.42
3.55
2.38
4.12
1.60
3.20
1.38
1.30

H

3.50
3.11
2.66
2.77
3.51
4.27
2.72
2.39
3.37
2.79
2.98
2.51

—
2.28

—
2.48
2.77
1.49
1.81
2.44
2.92
2.15
2.10
2.84
2.47
2.03
1.73
1.84
3.19
2.01
2.71
4.06

Species numbers are identified in Table 1, and are followed by a code letter indicating the
percentage of observations in which the bird was flap-gliding (or bounding) rather than continuously
flapping (.4=0-5 %: B=5-25 %; C=25-50 %; D=50-75 %; £=75-95 %; F=95-100%).

Mobs), number of frequency observations; TV(wbeats), number of wingbeats counted; N(speed),
number of airspeed observations; H, ratio of wavelength to wing span.

within the same species, but is not directly related to the determination of
wingbeat frequency as such.

Dimensional analysis

The first step in the analysis is to draw up a minimum list of variables which
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Table 4. Variables used in dimensional analysis

Variable Symbol Dimensions

Body weight
Wing span
Wing area
Wing moment of inertia
Air density

mg
b
S
I

P

M L T 2

L
L2

ML2

ML"3

would have to be taken into account if a dynamical solution were to be attempted,
and to list them with their dimensions (Table 4). The six variables mentioned in the
Introduction have been reduced to five by combining body mass and the
acceleration due to gravity into a single variable (weight). The dimensional
method postulates that wingbeat frequency (j) is proportional to the product of
these variables, each raised to some unknown power, that is:

fKimg^SVpt. (2)

Restrictions on the possible values for the unknown exponents a, fl, y, 6 and e can
be established by considering the physical dimensions. The dimensions of each
variable are represented as powers of mass (M), length (L) and time (T), as
summarized in Pennycuick (1988). Both sides of proportionality 2 must have the
same dimensions (T"1) so we can write an equation for the dimensions:

T 1 = ( M L T - ^ ^ L ^ M L ^ M L - 3 ) 6 . (3)

This can be decomposed into separate equations for the unknown powers of M, L
andT:

powers ofM: 0 = a+d+e; (4a)

powers of L: 0= a+ P+2y+2d- 3e; (4b)

powers of T: —l = —2a. (4c)

The method supplies three equations, but in this application there are five
unknowns, so evidently there is no unique solution. However, equation 4c
supplies a unique value for one of the variables (a=l/2) which can then be
substituted in equations 4a and 4b:

6 + 6 = - 1 / 2 ; (5a)

P + 2y+26-3e=-l/2 . (5b)

Regression analysis of the field data will serve as a guide to the correct values of
the exponents, with the restriction that the values eventually chosen must satisfy
equations 5.

Multiple regression

For the regression analysis, wingbeat frequency (/) was taken to be the



b^O.355
b/b=-1.32
bfs= -0.0886

0.0454
0.210
0.113

a+8
P+28

Y

1/3
- 1

-1/4
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Table 5. Partial regression coefficients and their standard deviations

Estimating Assumed
Variables Coefficient S.D. exponents value

Frequency vs mass
Frequency vs span
Frequency vs area

See text for definitions of exponents.

dependent variable, and the three independent variables were body mass (m),
wing span (£>) and wing area (5). Each value was transformed into its logarithm,
and the three partial regression coefficients, together with their standard devi-
ations, were calculated by the method given in Snedecor (1946), using a BASIC
program written for the purpose. The results are presented in Table 5. b ^ is the
regression coefficient of wingbeat frequency on body mass, with the other
variables held constant at their means, and likewise for the other coefficients.
Ideally, measurements of wing moment of inertia would have been obtained for
inclusion in the regression, but these measurements are difficult to get, and it was
unfortunately not practicable to attempt this. As a practical expedient, we may
make the assumption that the moment of inertia is not independent of the other
variables, and can be predicted from the body mass and wing span, thus:

Iozmb2. (6)

It is not known to what extent this is a good assumption, and the errors likely to
arise from it will be considered below. Meanwhile, the effect is to modify
proportionality 2 by substituting mb2 instead of /, raising this to the power <5, then
collecting the exponents of m and b thus:

focm^g^b^^S^p6. (7)

Reconciliation of regression with dimensional analysis

Inspection of proportionality 7 shows that the regression coefficients represent
estimates of the original exponents in various combinations, as indicated in Table
5. They are only estimates, and cannot be accepted as they stand, because the
exponents have to be related to each other in such a way as to satisfy equations 5.
The reconciliation consists in choosing values that satisfy equations 5, and also do
not stray outside the fiducial limits obtained from the regression. There is only a
small amount of scope for arbitrary choice, and this will no doubt be narrowed
further by the addition of new data in the future. There is some merit (at least
aesthetically) in presenting the chosen values in exact fractional form, rather than
as decimals, which we do as follows: a=l/2, fi=— 2/3, y= —1/4, 5= —1/6,

If values of wing moment of inertia were known, these values could be used
directly in proportionality 2 to give the relationship:
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foe (mgyPb-Ws-^rV'p-1'3 . (8)

If, as at present, wing moment of inertia has not been measured, and has to be
estimated from body mass and wing span, then the exponents have to be combined
as in proportionality 7 to give:

The exponents for m, b and S are amended values of the regression coefficients in
Table 5, chosen to make proportionality 9 dimensionally correct. The chosen
values of a and 5 add up to 1/3, which is within the 95 % fiducial limits for the
regression estimate of b/^. Similarly, the chosen values of /? and S make
yS+2<5=-l, which is within the 95 % fiducial Limits for the regression estimate of
bfb, while y is directly estimated by bf$, and is also within the 95 % fiducial limits.
The choice of the exponents is to some extent arbitrary, and it is possible that
future expansion of the data will require the values chosen here to be amended.
However, there is only a small amount of scope for varying them, without either
violating equations 5 or going outside the fiducial limits of the regression
coefficients.

Practical frequency prediction

To change proportionality 9 into a predictive equation, an estimate is needed of
the constant of proportionality. Fig. 1 shows a double-logarithmic plot of the
observed wingbeat frequencies from Table 3 against the expression on the right-
hand side of proportionality 9. The fitted line is a reduced major axis line (Rayner,
1985). This is the same as the 'standard major axis' line of Hofman (1988), who
also supplies formulae for finding the slope, and the standard deviation of the
slope. The constant of proportionality is estimated to be 1.08, so the equation for
predicting the wingbeat frequency of an unknown bird from its mass, span and
area is:

/ = 1.08(m^g^b-'S-1 V 1 / 3 ) • (10)

The correlation coefficient from Fig. 1 is 0.947, which is significant well beyond the
1 % probability level, in spite of the modest number of data points (32). The slope
of the line is 1.04, and is not significantly different from 1 (f-test). The
dimensionless multiplier (1.08) is entirely empirical, as dimensional analysis
makes no prediction about this.

Potential for extrapolation

Fig. 1 displays a very satisfactory fit between the derived equation and the field
data, but the latter cover only a limited spectrum of bird species. If equation 10 has
the degree of generality which the method of derivation implies, it should be less
sensitive to extrapolation than a fitted line based on regression analysis alone. The
prediction is that if other observers contribute measurements on passerines, bats
and insects, and combine them with the measurements in Table 3, equation 10 wi|i
continue to give a good fit to the expanded data, subject to some reservations due
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2 3 4 5 6 7 8 9
Frequency parameter (Hz)

Fig. 1. Double-logarithmic plot of observed wingbeat frequency from Table 3 versus
'frequency parameter' (the expression on the right-hand side of proportionality 9).
Slope of standard major-axis line 1.04. Correlation coefficient 0.947 for 32 points
(significant P<«0.01). Slope not significantly different from 1 (Mest). Species numbers
as in Table 1.

to the treatment of wing moment of inertia. Since so few measurements have been
made of the moment of inertia of bird wings, it is difficult to assess how much error
is likely to arise from using proportionality 6 to incorporate it. The chance of
introducing a systematic error would no doubt be greater in a larger sample,
including animals whose wings are constructed on different mechanical principles.
One might provisionally expect that proportionality 6 would be more likely to
apply within a major taxon than between such taxa. If the sample were to be
augmented by pooling the present data with others on, say, various insects, it
would be very desirable to get some measurements of moment of inertia.

It should be noted that it is not practical to extend the present data by culling
observations of mass, wing span, wing area and wingbeat frequency from the
literature. Although vast quantities of such data can be unearthed by diligent
search, the original observers in most cases did not define with sufficient precision
how these variables were defined or measured. Examination of the numbers often
reveals that the definitions, whatever they were, differed from those used here. To
determine how far equation 10 can be extrapolated, the present data would have
k> be augmented by collecting further observations especially for the purpose,
ITsing exactly the same definitions for the variables.
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Wingbeat wavelength

The wingbeat wavelength (A) is defined as:

X=V/f, (11)

where V is the airspeed and/ is the wingbeat frequency. A is the distance flown in
one wingbeat cycle. To find how wingbeat wavelength varies in different birds, one
may note from Pennycuick (1975) that the minimum power speed (or maximum
range speed) is expected to depend on physical variables in the following way:

if it is assumed that the disc area and the equivalent flat plate area of the body are
each proportional to b2. Dividing proportionality 12 by proportionality 9 gives the
following for the wavelength:

Neither gravity nor the wing span appears in proportionality 13, because each of
these variables affects both the speed and the wingbeat frequency in the same
manner, and therefore cancels. The values of wavelength from Table 3 are plotted
against the expression on the right-hand side of proportionality 13 in Fig. 2. The
correlation coefficient is 0.788 for 30 points, which is significant at the 1 %
probability level. The slope is 0.817, which is not significantly different from 1
(Mest). It should be remembered that the wavelength estimates in Table 3 were
obtained by combining separate observations of airspeed and wingbeat frequency,
made on different birds on different occasions. Although this is not expected to
bias the estimated wavelengths, it might account for the greater scatter in Fig. 2 as
compared to Fig. 1.

Advance ratio

Ellington (1984) uses a dimensionless variable called the 'advance ratio' (/), to
represent the ratio of the airspeed due to forward motion to that due to flapping,
as 'seen' at some fixed point on the wing. J is defined as:

/=A/#, (15)

where (p is t n e 'stroke angle', that is the angle through which the wing is rotated at
the shoulder during the downstroke. Measurements cannot be given for advance
ratio as such, because stroke angle could not be measured by the methods used in
this study, but values for the ratio of wavelength to span (denoted by H) are listed
in the last column of Table 3. These numbers would be the same as Ellington's
advance ratio for a bird that beats its wings through a stroke angle of 1 radian. The
stroke angle measured for the double-crested cormorant by Pennycuick (19896)
was not far from 1 radian, and values for other species in the sample, though not
measured, are not likely to differ from this by more than a factor of 2 in
direction.
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Fig. 2. Double-logarithmic plot of observed wingbeat wavelength from Table 3 versus
'wavelength parameter' (the expression on the right-hand side of proportionality 14).
Slope of standard major-axis line 0.817. Correlation coefficients 0.788 for 30 points
(significant P<<0.01). Slope not significantly different from 1 (f-test). Species numbers
as in Table 1.

Allometry of frequency and wavelength

In geometrically similar birds, the wing span would vary with the one-third
power, and the wing area with the two-thirds power of the mass. Hence, from
proportionality 9, the wingbeat frequency would vary inversely with the one-sixth
power of the mass. From proportionality 13, the wingbeat wavelength would vary
with the one-third power of the mass, that is directly with the linear dimensions.
The wavelength: span ratio would be independent of the mass. If the stroke angle
were independent of the mass, then so also would be the advance ratio. These
allometric trends have applications to very broad questions, such as the upper limit
to the mass of flying birds, but are not much help for predicting the wingbeat
frequencies or wavelengths of individual species, because of the wide departures
from geometric similarity seen in birds of different adaptive types.

Adjustment of the flight muscles

Equation 10 permits the effect on wingbeat frequency to be predicted for
variations of wing span, wing area, gravity and air density, in addition to the body
fciass. Three of these five variables (gravity, wing span and wing area) may be
considered fixed as far as an individual bird is concerned. Gravity is usually
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perceived as constant, since only one planet is currently available to field
observers, although no such restrictions need constrain the theorist (Pennycuick,
19876). Wing span and area are usually considered to vary only in the sense of
evolutionary change, although it is possible that some birds that moult biennially
may change their wing shape and size between the breeding and migration
seasons.

The remaining two variables, body mass and air density, are liable to change by
a large amount in an individual bird in the course of one flight. For example the
mass of a long-distance migrant may decline by a factor of two as fuel is used up,
and a high-flying migrant may encounter density changes of similar magnitude.
These changes alter the 'natural' wingbeat frequency, according to equation 10.
The implication is that maximum efficiency would only be obtained by the flight
muscles if their intrinsic speed were changed to suit, an adjustment which can be
traced to the rate constants that govern the attachment and detachment fre-
quencies of myosin crossbridges (Pennycuick, 1990). The muscles of growing
animals certainly 'slow down' in this sense to match the animal's increasing size,
but it seems unlikely that such an adjustment could be made by a migrating bird on
a time scale of hours or minutes. In some circumstances, birds avoid the need to
reduce wingbeat frequency by flapping intermittently (either bounding or flap-
gliding) but this expedient is only helpful if more muscle power is available than is
required. Further insight into the way that birds adjust their wingbeat frequency in
flight (if they do) will have to await direct observation of migrants in flight, or
experiments on birds trained to fly in a hypobaric wind tunnel.

I am most grateful to all those who contributed wing measurements and helped
me in the field in many ways, especially to Fred Schaffner, Sean Kirkpatrick,
Natasha Kline, Mark Fuller, Holliday Obrecht, Paul Kerlinger, John Holbourn,
Bob Furness, John Croxall, Andrew Clarke, Nick Riddiford, Peter Potts, Peter
Howlett, Andrew Silcocks and Fiona Hunter. I am indebted to the US Fish and
Wildlife Service for permission to operate in the Chincoteague National Wildlife
Refuge, and to Scott Ward and Bill Seegar for arranging facilities there. The
project was supported by Sea and Sky Foundation.
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