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Summary

Computing motion on the basis of the time-varying image intensity is a difficult
problem for both artificial and biological vision systems. We will show how one
well-known gradient-based computer algorithm for estimating visual motion can
be implemented within the primate's visual system. This relaxation algorithm
computes the optical flow field by minimizing a variational functional of a form
commonly encountered in early vision, and is performed in two steps. In the first
stage, local motion is computed, while in the second stage spatial integration
occurs. Neurons in the second stage represent the optical flow field via a
population-coding scheme, such that the vector sum of all neurons at each location
codes for the direction and magnitude of the velocity at that location. The
resulting network maps onto the magnocellular pathway of the primate visual
system, in particular onto cells in the primary visual cortex (VI) as well as onto
cells in the middle temporal area (MT). Our algorithm mimics a number of
psychophysical phenomena and illusions (perception of coherent plaids, motion
capture, motion coherence) as well as electrophysiological recordings. Thus, a
single unifying principle 'the final optical flow should be as smooth as possible'
(except at isolated motion discontinuities) explains a large number of phenomena
and links single-cell behavior with perception and computational theory.

Introduction
One prominent school of thought holds that information-processing systems,

whether biological or man-made, should follow essentially similar computational
strategies when solving complex perceptual problems, in spite of their vastly
different hardware (Marr, 1982). However, it is not apparent how algorithms
developed for machine vision or robotics can be mapped in a plausible manner
onto nervous structures, given their known anatomical and physiological con-
straints. In this chapter, we show how one well-known computer algorithm for
estimating visual motion can be implemented within the early visual system of
primates.

The measurement of movement can be divided into multiple stages and may be
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performed in different ways in different biological systems. In the primate visual
system, motion appears to be measured on the basis of two different systems,
termed short-range and long-range processes (Braddick, 1974, 1980). The short-
range process analyzes continuous motion, or motion presented discretely but with
small spatial and temporal displacement from one moment to the next (apparent
motion; in the human fovea both presentations must be within 15min of arc and
with 60-100ms of each other). The long-range system processes larger spatial
displacements and temporal intervals. A second, conceptually more important,
distinction is that the short-range process uses the image intensity, or some filtered
version of image intensity (e.g. filtered via a Laplacian-of-Gaussian or a
difference-of-Gaussian operator), to compute motion, while the long-range
process uses more high-level 'token-like' motion primitives, such as lines, corners,
triangles etc. (Ullman, 1981). Among short-range motion processes, the two most
popular classes of algorithms are the gradient method on the one hand (Limb &
Murphy, 1975; Fennema & Thompson, 1979; Marr & Ullman, 1981; Hildreth,
1984; Yuille & Grzywacz, 1988) and the correlation, second-order or spatio-
temporal energy methods on the other hand (Hassenstein & Reichardt, 1956;
Poggio & Reichardt, 1973; van Santen & Sperling, 1984; Adelson & Bergen, 1985;
Watson & Ahumada, 1985). Gradient methods exploit the relationship between
the spatial and the temporal intensity gradient at a given point to estimate local
motion, while the second class of algorithms multiplies a filtered version of the
image intensity with a slightly delayed version of the filtered intensity from a
neighboring point (a mathematical operation similar to correlation; hence their
name (for a review, see Hildreth & Koch, 1987).

Computational theory

The problem in computing the optical flow field consists of labeling every point
in a visual image with a vector, indicating at what speed and in what direction this
point moves (for reviews on motion see Ullman, 1981; Nakayama, 1985; Horn,
1986; Hildreth & Koch, 1987). One limiting factor in any system's ability to
accomplish this is the fact that the optical flow, computed from the changing image
brightness, can differ from the underlying two-dimensional velocity field. This
vector field, a purely geometrical concept, is obtained by projecting the three-
dimensional velocity field associated with moving objects onto the two-dimen-
sional image plane. A perfectly featureless rotating sphere will not induce any
optical flow field, even though the underlying velocity field differs from zero
almost everywhere. Conversely, if the sphere does not rotate but a light source,
such as the sun, moves across the scene the computed optical flow will be different
from zero even though the velocity field is not (Horn, 1986). In general, if the
objects in the scene are strongly textured, the optical flow field should be a good
approximation to the underlying velocity field (Verri & Poggio, 1987).

The basic tenet underlying Horn & Schunck's (1981) analysis of the problem of
computing the optical flow field from the time-varying image intensity I(x,y,i%
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falling onto a retina or a phototransistor array is that the total derivative of the
image intensity between two image frames separated by the interval dr is zero:
dl(x,y,t)/dt = 0. In other words, the image intensity seen from the point-of-view of
an observer located in the image plane and moving with the image, does not
change. This conservation law is strictly only satisfied for translation of a rigid
Lambertian body in planes parallel to the image plan (for a detailed error analysis
see Kearney et al. 1987). This law will be violated to some extent for other types of
movements, such as motion in depth or rotation around an axis. The question is to
what extent this rule will be violated and whether the system built using this
hypothesis will suffer from a severe 'visual illusion'.

Using the chain rule of differentiation, dl/dt = 0 can be reformulated as
Ixx+Iyy+I[ = VI- V+It = 0, where x' = dx/dt and y = dy/dt are the x and y
components of velocity V, and Ix = 91/dx, Iy = 31/dy and /, = 91/dt are the spatial
and temporal image gradients which can be measured from the image (vectors are
printed in boldface). Formulating the problem in this manner leads to a single
equation in two unknowns x',y. Measuring at n different locations does not help in
general, since we are then faced with n linear equations in In unknowns. This type
of problem is termed ill-posed (Hadamard, 1923). One way to make these
problems well-behaved in a precise, mathematical sense, is to impose additional
constraints in order to be able to compute unambiguously the optical flow field.
The fact that we are unable to measure both components of the velocity vector is
also known as the 'aperture' problem. Any system with a finite viewing aperture
and the rule dl/dt = 0 can only measure the component of motion - 7 , / | V/| along
the spatial gradient V7 = (Ix,Iy). The motion component perpendicular to the local
gradient remains invisible. In addition to the aperture problem, the initial motion
data is usually noisy and may be sparse. That is, at those locations where the local
visual contrast is weak or zero, no initial optical flow data exist (the featureless
rotating sphere would be perceived as stationary), thereby complicating the task of
recovering the optical flow field in a robust manner.

To solve this problem Horn & Schunck (1981) first introduced a 'smoothness
constraint'. The underlying rationale for this constraint is that nearby points on
moving objects tend to have similar three-dimensional velocities; thus, the
projected velocity field should reflect this fact. Their algorithm finds the optical
flow field which is as compatible as possible with the measured motion com-
ponents, and also varies smoothly everywhere in the image. This flow field is
determined by minimizing a cost functional L:

The term in the first square bracket is nothing but the expansion of d//df (see
Jabove) and thus represents local motion, measured along the intensity gradient. In



118 C. K O C H , H . T. W A N G AND B. MATHUR

an ideal world free of noise, dl/dt should be zero; we here impose the condition
that it should be as small as possible to account for unavoidable noise in the motion
measurement stage. The terms in the second bracket represent a measure of the
smoothness of the flow field, the parameter A controlling the compromise between
the smoothness of the desired solution and its closeness to the data. The
contribution of this term to L will be zero for a spatially constant flow field -
induced by rigid motion in the plane — since all spatial derivatives will be zero. The
smoothness constraint also stabilizes the solution against the unavoidable noise in
the intensity measurements.

Since L is quadratic in x and y and therefore has a unique minimum, the final
solution minimizing L will represent a trade-off between faithfulness in the data
and smoothness, depending on a parameter A. The Horn & Schunck (1981)
algorithm derives motion at every point in the image by taking into account motion
in the surrounding area. It can be shown that it finds the qualitatively correct
optical flow field for real images (for a mathematical analysis in terms of the theory
of dynamic systems see Verri & Poggio, 1987). Such as area-based optical flow
method is in marked contrast to the edge-based algorithm of Hildreth (1984); she
proposes to solve the aperture problem by computing the optical flow along edges
(in her case zero-crossings of the filtered image) using a variational functional very
similar to that of equation 1.

The use of general constraints (as compared to very specific constraints of the
type 'a red blob at desk-top height is a telephone', popular in early computer
vision algorithms) is very common to solve the ill-posed problems of early vision
(Poggio et al. 1985). Thus, continuity and uniqueness are exploited in the Marr &
Poggio (1977) cooperative stereo algorithm, smoothness is used in surface
interpolation (Grimson, 1981) and rigidity is used for reconstructing a three-
dimensional figure from motion (structure-from-motion; Ullman, 1979).

Before we continue, it is important to emphasize that the optical flow is
computed in two, conceptually separate, stages. In the first stage, an initial
estimate of the local motion, based on spatial and temporal image intensities, is
computed. Horn & Schunck's method of doing this (using dl/dt = 0) belongs to a
broad class of motion algorithms, collectively known as gradient algorithms (Limb
& Murphy, 1975; Fermema & Thompson, 1979; Marr & Ullman, 1981; Hildreth,
1984; Yuille & Grzywacz, 1988). A new variant of the gradient method, using
dVl/dt = 0 to compute local motion, leads to uniqueness of the optical flow, since
this constraint is equivalent to two linear independent (in general) equations in
two unknowns (Uras et al. 1988). Thus, in this formulation, computing optical flow
is not an ill-posed but an ill-conditioned problem. Alternatively, a correlation or
second-order model could be used at this stage for estimating local motion
(Hassenstein & Reichardt, 1956; Poggio & Reichardt, 1973; van Santen &
Sperling, 1984; Adelson & Bergen, 1985; Watson & Ahumada, 1985; Reichardt et
al. 1988). However, for both principal (e.g. non-uniqueness of initial motion
estimate) and practical (e.g. robustness to noise) reasons, all these methods
require a second, independent stage where smoothing occurs.
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However, while the optical flow generally varies smoothly from location to
location, it can change quite abruptly across discontinuities. Thus, the flow field
associated with a flying bird varies smoothly across the animal but drops to zero
'outside' the bird (since the background is stationary). In these cases of motion
discontinuities - usually encountered when objects move across each other -
smoothing should be prevented (see below and Hutchinson et al. 1988).

The cost functional used to compute motion (equation 1) is a quadratic
variational functional of a type common in early vision (Poggio et al. 1985), and
can be solved using simple electrical networks (Poggio & Koch, 1985). The key
idea is that the power dissipated in a linear electrical network is quadratic in the
currents or voltages; thus, if the values of the resistances are chosen appropriately,
the functional L to be minimized corresponds to power dissipation and the steady-
state voltage distribution in the network corresponds to the minimum of L in
equation 1. Data are introduced by injecting currents into the nodes of the
network. Once the network settles into its steady state - dictated by Kirchhoff s &
Ohm's laws - the solution can simply be read off by measuring the voltages at
every node. Efforts are now under way (see, in particular, Luo et al. 1988) to build
such resistive networks for various early vision algorithms in the form of
miniaturized circuits using analog, subthreshold CMOS VLSI technology of the
type pioneered by Mead (1989).

Implementation in a neuronal network
We will now describe a possible neuronal implementation of this computer

vision algorithm. Specifically, we wih1 show that a reformulated variational
functional equivalent to equation 1 can be evaluated within the known anatomical
and physiological constraints of the primate visual system and that this formalism
can explain a number of psychophysical and physiological phenomena.

Neurons in the visual cortex of mammals represent the direction of motion in a
very different manner from resistive networks, using many neurons per location
such that each neuron codes for motion in one particular direction (Fig. 1). In this
representation, the velocity vector V(i,j) [where (/',/) are the image plane
coordinates of the center of the cell's receptive field] is not coded explicitly but is
computed across a population of n such cells, each of which codes for motion in a
different direction (given by the unit vector ©k), such that:

v(i,j) = I v(t,j,k)ek. (2)

Thus, the cells V(i,j,k) have spatially overlapping receptive fields but with
different preferred direction of motion k. This population-coding scheme implies,
of course, that all neurons corresponding to location ij represent a single, unique
value of velocity, an assumption which breaks down during the perception of two
|timuli moving over each other (see the section on motion transparency). This
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Fig. 1. Computing motion in neuronal networks. (A) Simple scheme of our model.
The image / is projected onto the rectangular 64 by 64 retina and sent to the first
processing stage via the 5 and T channels. Subsequently, a set of n = 16 ON-OFF
orientation- and direction-selective (U) cells code local motion in n different
directions. Neurons with overlapping receptive field positions ij but different
preferred directions 8 k (indicated by arrows in the upper right-hand side of each
plane) are arranged here in n parallel planes. The ON subfield of one such U cell is
shown in Fig. 8A. The output of both E and U cells is relayed to a second set of 64 by 64
V cells where the final optical flow is computed. The final optical flow is represented in
this stage, on the basis of a population coding V(l j ) = Z£_1 V(ij,k)Sv, with n = 16.
Each cell V(ij,k) in this second stage receives input from cells E and U at location ij as
well as from neighboring V neurons at different spatial locations. (B) Block model of a
possible neuronal implementation. The T and 5 streams originate in the retina and
enter the primary visual cortex in layer 4C<* and 4C£. The output of VI projects from
layer 4B to the middle temporal area (MT). We assume that the ON-OFF orientation-
and direction-selective neurons E and U are located in VI, and the final optical flow is
assumed to be represented by the V units in area MT.

distributed and coarse population-coding scheme is similar to the coding believed
to be used in the system controlling eye movements in the mammalian superior
colliculus (Lee etal. 1988). Detecting the most active neuron at each location
(winner-take-all scheme), as in Bulthoff etal. (1989), is not required. To mimic
neuronal responses more accurately, the output of all our model neurons is half-
wave rectified; in other words, f(x) = x if J C > 0 and 0 if x<0. Thus, when thd|
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inhibitory inputs exceed the excitatory ones, the neuron is silent. We then require
at least n = 4 neurons to represent all possible directions of movement. Note that
in this representation the individual components V(i,j,k) are not the projections of
the velocity field V(i j ) onto the direction ©k (except for n = 4).

Let us now consider a two-stage model for extracting the optical flow field based
on cortical physiology (Fig. 1). Following Marr & Ullman (1981), we assume that
in a pre-processing stage the intensity distribution /(/,/) is projected onto the image
plane and relayed to the first cortical processing stage via two sets of cells:

(i,j) (3)

and

n i J > , ( )

at
where G is the two-dimensional Gaussian filter (with a2 = 4 pixels; Marr &
Hildreth, 1980; Marr & Ullman, 1981). The V2G filter is very similar to the
difference-of-Gaussian or Mexican hat-shaped receptive fields of retinal ganglion
cells (Enroth-Cugell & Robson, 1966). This stage then models the filtering
performed by retinal ganglion cells. S and T cells, however, only represent a first-
order approximation of the visual transformations occurring in the retina and the
lateral geniculate nucleus, because retinal ganglion cells always show some
transient behavior - different from equation 3 - and do not respond instan-
taneously, as would be expected from equation 4. However, little would be gained
at this early stage in our understanding of cortical processing by using much more
sophisticated cellular models (for such a detailed dynamic description of cat retinal
X cells see Victor, 1987).

In the first processing stage, the local motion information (the velocity
component along the local spatial gradient) is measured using n ON-OFF
orientation- and direction-selective cells U{i,j,k), each with preferred direction
indicated by the unit vector 0 k (here the V neurons and the U neurons have the
same number of directions and the same preferred directions for the sake of
simplicity, even though it is not necessary):

™*- (5)

where e is a constant and V^ the spatial derivative along the direction 0 k . This
derivative is approximated by projecting the convolved image S(i,j) onto a
'simple'-type cortical receptive field, consisting of a 1 by 7 pixel positive (ON)
subfield next to a 1 by 7 pixel negative (OFF) subfield. Because of the Gaussian
convolution in the S cells, the resulting receptive field has an ON subfield of 3 by
9pixels next to an OFF subfield of the same size (Fig. 8A shows such a subfield).
Such receptive fields are common in the primary visual cortex of cats and primates
(Hubel & Wiesel, 1962). We assume that at each location n such receptive fields,
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each with preferred axis given byQk(ke {l...n}) exist. The cell U{i,j,k) responds
optimally if a bar or grating oriented at right angles to Ok moves in direction Gk.

Our definition of U differs from the standard gradient model U = — T/VkS, by
including a gain control term, e, such that t/does not diverge if the visual contrast
of the stimulus decreases to zero; thus, U-* — TVkS as | V^̂ S| —>• 0. Under these
conditions of small stimulus contrast, our model can be considered a second-order
model, similar to the correlation or spatio-temporal energy models (Hassenstein &
Reichardt, 1956; Poggio & Reichardt, 1973; Adelson & Bergen, 1985) and the
output of the U cell is proportional to the product of a transient cell (T) and a
sustained simple cell with an odd-symmetric receptive field (VkS); thus, the
response of U is proportional to the magnitude of velocity. For large values of
stimulus contrast, i.e. \VkS\ > e, U-* — T/VkS. Thus, our model of local motion
detection appears to contain aspects of both gradient and second-order methods,
depending on the exact experimental conditions (for a further discussion of this
issue, see Koch etal. 1989).

Finally, as an input to our second stage, we also require a set of ON-OFF,
orientation-selective but not direction-selective neurons:

) \ . (6)

The absolute value operation (| • |) ensures that these neurons only respond to the
amplitude of the spatial gradient, but not to its sign.

We have now progressed from registering and convolving the image in the retina
to computing and representing local motion information within the first stage of
our network. In the second processing stage, we determine the final optical flow
field by computing the activity of a second set of cells, V. The state of these
neurons - coding for the final (global) optical flow field - is evaluated by
minimizing a reformulated version of the functional in equation 1. The first term
expresses the fact that the final velocity field should be compatible with the initial
data, i.e. with the local velocity component measured along the spatial gradient
('velocity constraint line'). In other words, the velocity at location (i,j),
V(i,j) = 22 = i V(i,j,k)&k should be compatible with the local motion term U:

U= I [ I V(iJ,k') cos (*' -k)- U(iJ,k) V ET(iJ,k), (7)

where cos (k'—k) represents the cosine of the angle between 0 k ' and 0 k , and
E(i,j,k) is the output of an orientation-selective neuron raised to the mth power.
This term ensures that the local motion components U(i,j,k) only have an
influence when there is an appropriately oriented local pattern; in other words, E™
prevents velocity terms incompatible with the measured data from contributing
significantly to Lo. Thus, we require that the neurons E(i,j,k) do not respond
significantly to directions differing from Ok. If they do, L$ will increasingly contain
contributions from other, undesirable, data terms. A large exponent m is
advantageous on computational grounds, since it will lead to a better selection of
the velocity constraint line. For our model neurons (with a half-width tuning oij|
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approximately 60°), m = 2 gave satisfactory responses. Equation 7 directly
corresponds to the first term in the variational functional of Horn & Schunck
(1981), equation 1.

The second, smoothing, term in equation 1 can be reformulated in a straightfor-
ward manner by replacing the partial derivatives of x and y by their components in
terms of V(i,j,k) [for instance, the x component of the vector V(i,j) is given by
Z* V(i,j,k)cosSk]. This leads to:

x cos(A:' - k)V{i,j,k'). (8)

We are now searching for the neuronal activity level V(i,j,k) that minimizes the
functional LQ + kL\. Similar to the original Horn & Schunck's functional, equation
1, the reformulated variational functional is quadratic in V(i,j,k), so we can find
this state by evolving V(i,j,k) on the basis of the steepest descent rule:

aV(ij,k)_ djLp + XLr)

k)

The contribution from the Lo term to the right-hand side of this equation has the
form:

cos(k-k')Em(i,j,k') \U(i,j,k')- £ cos(k'- k")V(i,j,k") , (10),j,k")] ,
J

while the contribution from the Lj term has the form:

A I cos(fc - k')[V(i - l,j,k') + V(i + l,j,k') + V(i,j - 1,/c') + V(iJ
k'

,k')} . (11)

The terms in equations 10 and 11 are all linear in either UOT V. This enables us to
view them as the linear synaptic contributions of the U and V neurons towards the
activity of neuron V(iJ,k). The left-hand term of equation 9 can be interpreted as a
capacitative term, governing the dynamics of our model neurons. In other words,
in evaluating the new activity state of neuron V{i,j,k), we evaluate equations 10
and 11 by summing all the contributions from V and U of the same location i,j as
well as neighbouring V neurons and subsequently using a simple numerical
integration routine to compute the new state at time t+At. The appropriate
network carrying out these operations is shown schematically in Fig. 1A.

This neuronal implementation converges to the solution of the Horn & Schunck
algorithm as long as the correct constraint line is chosen in equation 7, that is as
long as the Em term is selective enough to suppress velocity terms incompatible
with the measured data. In the next two sections, we will illustrate the behavior of
this algorithm by replicating a number of perceptual and electrophysiological
^experiments.



124 C. KOCH, H. T. WANG AND B. MATHUR

Correspondence to cortical anatomy and physiology
The neuronal network we propose to compute optical flow (Fig. 1) maps

directly onto the primate visual system. Two major visual pathways, the parvo-
and the magnocellular, originate in the retina and are perpetuated into higher
visual cortical areas. Magnocellular cells appear to be the ones specialized to
process motion information (for reviews, see Livingstone & Hubel, 1988; DeYoe
& van Essen, 1988), since they respond faster and more transiently and are more
sensitive to low-contrast stimuli than parvocellular cells. Parvocellular neurons, in
contrast, are selective for form and color.

We do not identify our S and T channels with either the parvo- or the magno-
pathway since this is not crucial to our model. Furthermore, reversibly blocking
either the magno- or the parvocellular input to cells in the primary cortex leads to a
degradation but not to the abolition of orientation- and direction-selectivity
(Malpelli et al. 1981). Different from our model, cortical cells therefore appear to
compute the local estimate of motion in either of the two pathways. Our current
model does require that one set of cells signals edge information while a second
population is sensitive to temporal changes in intensity (motion or flicker). We
approximate the spatial receptive field of our retinal neurons using the Laplacian-
of-Gaussian operator and the temporal properties of our transient pathway by the
first derivative. Thus, the response of our U neurons increases linearly with
increasing velocity of the stimulus. This is, of course, an oversimplification and
more realistic filter functions should be used (see above).

Both the parvo- and the magnocellular pathways project into layer 4C of the
primary visual cortex. Here the two pathways diverge, magnocellular neurons
projecting to layer 4B (Lund et al. 1976). Cells in this layer are orientation- as well
as direction-selective (Dow, 1974). Layer 4B cells project heavily to a small but
well-defined visual area in the superior temporal sulcus called the middle temporal
area (MT; Allman & Kass, 1971; Baker et al. 1981; Maunsell & van Essen, 1983a).
All cells in MT are direction-selective and tuned for the speed of the stimulus; the
majority of cells are also orientation-selective. Moreover, irreversible chemical
lesions in MT cause striking elevations in psychophysically measured motion
thresholds, but have no effect on contrast thresholds (Newsome & Pare, 1988).
These findings all support the thesis that area MT is at least partially responsible
for mediating motion perception. We assume that the orientation- and direction-
selective E and U cells corresponding to the first stage of our motion algorithms
are located in layers 4B or 4C in the primary visual cortex or possibly in the input
layers of area MT, while the V cells are located in the deeper layers of area MT.
Inspection of the tuning curve of a V model cell in response to a moving bar reveals
its similarity with the superimposed experimentally measured tuning curve of a
typical MT cell of the owl monkey (Fig. 2).

The structure of our network is indicated schematically in Fig. 1A. The
strengths of synapses between the U and the V neurons and among the V neurons
are directly given by the appropriate coefficients in equations 10 and 11. Equation
10 contains the contribution from U and E neurons in the primary visual cortex
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180°

270°
MT neuron

Fig. 2. Polar plot of the median neuron (solid line) in the medial temporal cortex (MT)
of the owl monkey in response to a field of random dots moving in different directions
(Baker et al. 1981). The tuning curve of one of our model V cells in response to a
moving bar is superimposed (dashed line). The distance from the center of the plot is
the average response in spikes per second. Both the cell and its model counterpart are
direction-selective, since motion towards the upper right quadrant evokes a maximal
response whereas motion towards the lower left quadrant evokes no response. Figure
courtesy of J. Allman and S. Petersen.

well as from MT neurons V at the same location i,j but with differently oriented
receptive fields k'. No spatial convergence or divergence occurs between our U
and V modules, although this could be included. The first part of equation 10 gives
the synaptic strength of the Uto V projection [cos{k-k')Em{i,j,k')U{i,j,k')\. if the
preferred direction of motion of the presynaptic input U(i,j,k') differs by no more
than ±90° from the preferred direction of the postsynaptic neuron V(i,j,k), the
U—> V projection will depolarize the postsynaptic membrane. Otherwise, it will
act in a hyperpolarizing manner, since the cos(k—k') term will be negative. Notice
that our theory predicts neurons from all cortical orientation columns k' (which
could be located in either VI or in the superficial layers of MT) projecting onto the
Vcells, a proposal which could be addressed using anatomical labeling techniques.

The synaptic interaction contains a multiplicative nonlinearity (U-E7"). This
veto term can be implemented using a number of different biophysical mechan-
isms, for instance 'silent' or 'shunting' inhibition (Koch etal. 1982). The
smoothness term Lx results in synaptic connections among the V neurons, both
among cells with overlapping receptive fields (same value of i,j) and among cells

Jtvith adjacent receptive fields (e.g. i—l,j). The synaptic strength of these
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connections acts in either a de- or a hyperpolarizing manner, depending on the
sign of cos(k—k') as well as on their relative locations (see equation 11).

We will next discuss an elegant psychophysical experiment, strongly supporting
a two-stage model of motion computation (Adelson & Movshon, 1982; Welch,
1989). Moreover, since MT cells in primates, but not cells in VI, appear to mimic
the behavioral response of humans to the psychophysical stimulus, such exper-
iments can be used as probes to dissect the different stages in the processing of
perceptual information.

If two identical sine or square gratings are moved at an angle past each other,
human observers perceive the resulting pattern as a coherent plaid, moving in a
direction different from the motion of the two individual gratings. The direction of
the resultant plaid pattern ('pattern velocity') is given by the 'velocity space
combination rule' and can be computed from knowledge of the local 'component
velocities' of the two gratings (Adelson & Movshon, 1982; Hildreth, 1984). One
such experiment is illustrated in Fig. 3. A vertical square grating is moved
horizontally at right angles over a second horizontal square grating of the same
contrast and moving at the same speed vertically. The resulting plaid pattern is
seen to move coherently to the lower right-hand corner (Adelson & Movshon,
1982), as does the output of our algorithm. Note that the smoothest optical flow
field compatible with the two local motion components (one from each grating) is
identical to the solution of the velocity space combination rule. In fact, for rigid
planar motion, as occurs in these experiments, this rule as well as the smoothness
constraint lead to identical solutions, even when the velocities of the gratings differ
(illustrated in Fig. 4A,B). Notice that the velocity of the coherent pattern is not
simply the vector sum of the component velocity (which would predict motion
towards the lower right-hand corner in the case illustrated in Fig. 4A,B).

If the contrast of both gratings is different, the component velocities are
weighted according to their relative contrast. As long as the contrasts of the two
gratings differ by no more than approximately one order of magnitude, observers
still report coherent motion, but with the final pattern velocity biased towards the
direction of motion of the grating with the higher contrast (Stone et al. 1988). Since
our model incoporates such a contrast-dependent weighting factor (in the form of
equation 5), it qualitatively agrees with the psychophysical data (Fig. 4C,D).

Movshon et al. (1985) repeated Adelson & Movshon's plaid experiments while
recording from neurons in the striate and extrastriate macaque cortex (see also
Albright, 1984). All neurons in VI and about 60 % of cells in MT only responded
to the motion of the two individual gratings (component selectivity; Movshon et al.
1985), similar to our U(i,j,k) cell population, while about 30 % of all recorded MT
cells responded to the motion of the coherently moving plaid pattern (pattern
selectivity), mimicking human perception. As illustrated in Fig. 3, our V cells
behave in this manner and can be identified with this subpopulation.

An interesting distinction arises between direction-selective cells in VI and
those in MT. While the optimal orientation in VI cells is always perpendicular to
their optimal direction, this is only true for about 60% of MT cells (type I cells\
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Fig. 3. Mimicking perception and single-cell behavior. (A) Two superimposed square
gratings, oriented orthogonal to each other, and moving at the same speed in the
direction perpendicular to their orientation. The amplitude of the composite is the sum
of the amplitude of the individual bars. (B) Response of a patch of 8 by 8 direction-
selective simple cells U (outlined in A) to this stimulus. The outputs of all n = 16 cells
are plotted in a radial coordinate system at each location as long as the response is
significantly different from zero; the lengths are proportional to the magnitudes.
(C) The output of the V cells using the same needle diagram representation after 2-5
time constants. (D) The resulting optical flow field, extracted from C via population
coding, corresponding to a plaid moving coherently towards the lower right-hand
corner, is similar to the perception of human observers (Adelson & Movshon, 1982) as
well as to the response of a subset of MT neurons in the macaque (Movshon et al.
1985).

Albright, 1984; Rodman & Albright, 1989). 30% of MT cells respond strongly to
flashed bars oriented parallel to their preferred direction of motion (type II cells).
These cells also respond best to the pattern motion in the Movshon et al. (1985)
^ experiments. Based on this identification, our model predicts that type II
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Fig. 4. Additional coherent plaid experiments. (A) Two gratings moving towards the
lower right (one at —26° and one at —64°), the first moving at twice the speed of the
second. The final optical flow, coded via the V cells, of a 12 by 12 pixel patch (outlined
in A) is shown in B, corresponding to a coherent plaid moving horizontally towards the
right. The final optical flow is within 5% of the correct flow field. (C) Similar to the
experiment illustrated in Fig. 3, except that the contrast of the horizontally oriented
grating only has 75 % of the contrast of the vertically oriented gTating. The final optical
flow (D) is biased towards the direction of motion of the vertical grating, in agreement
with psychophysical experiments (Stone etal. 1988; compare with Fig. 3D).

cells should respond to an extended bar (or grating) moving parallel to its edge.
Even though, in this case, no motion information is available if only the classical
receptive field of the MT cell is considered, motion information from the trailing
and leading edges will propagate along the entire bar. Thus, neurons whose
receptive fields are located away from the edges will eventually (i.e. after several
tens of milliseconds) signal motion in the correct direction, even though the
direction of motion is parallel to the local orientation. This neurophysiological
prediction is illustrated in Fig. 8A,B.

Cells in area MT respond well not only to motion of a bar or gTating but also to a
moving random dot pattern (Albright, 1984; Allman etal. 1985), a stimuli!^
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Fig. 5. Figure-ground response. (A) The first frame of two random-dot stimuli. The
area outlined was moved 1 pixel to the left. (B) The final population-coded velocity
field, signals the presence of a blob, moving towards the left. The outline of the
displaced area is superimposed onto the final optical flow.

containing no edges or intensity discontinuities. Our algorithm responds well to
random-dot motion, as long as the spatial displacement between two consecutive
frames is not too large (Fig. 5).

The 'smooth' optical flow algorithms we are discussing only derive the exact
velocity field if a rigid, Lambertian object moves parallel to the image plane. If an
object rotates or moves in depth, the derived optical flow only approximates the
underlying velocity field (Verri & Poggio, 1987). Is this constraint reflected in VI
and MT cells? No cells selective for true motion in depth have been reported in
primate VI or MT. Cells in MT do encode information about position in depth,
i.e. whether an object is near or far, but not about motion in depth, i.e. whether an
object is approaching or receding (Maunsell & van Essen, 19836). The absence of
cells responding to motion in depth in the primate (but not in the cat; see Cynader
& Regan, 1982) supports the thesis that area MT is involved in extracting optical
flow using a smoothness constraint, an approach which breaks down for three-
dimensional motion. Cells selective for expanding or contracting patterns, caused
by motion in depth, or to rotations of patterns within the frontoparallel plane,
were first reported by Saito et al. (1986) in a cortical area surrounding MT, termed
the medial superior temporal area (MST). We illustrate the response of our
network to a looming stimuli in Fig. 6. As emphasized previously, our algorithm
computes the qualitatively correct flow field even in this case when the principal
constraint underlying our analysis, dl/dt = 0, is violated. Since MST receives
heavy fiber projections from MT (Maunsell & van Essen, 1983c), it is likely that
motion in depth is extracted on the basis of the two-dimensional optical flow
^omputed in the previous stage.
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Fig. 6. Motion in depth. (A,B) Two images, featuring an approaching circular
structure, expanding by 1 pixel in every direction. (C) Even though this type of motion
violates the constraint underlying our algorithm, the network finds the qualitatively
correct solution.

Psychophysics

We now consider the response of the model to a number of stimuli which
generate strong psychophysical percepts. We have already discussed the plaid
experiments (previous section), in which our smoothness constraint leads to the
correct, perceived interpretation of coherent motion.

In 'motion capture' (Ramachandran & Anstis, 1983a), the motion of randomly
moving dots can be influenced by the motion of a superimposed low-spatial-
frequency grating such that the dots move coherently with the larger contour, that
is they are 'captured'. As the spatial frequency of the grating increases, the capture
effect becomes weaker (Ramachandran & Inada, 1985). As first demonstrated by
Biilthoff et al. (1989), algorithms that exploit local uniformity or smoothness of the
optical flow can explain, at least qualitatively, this optical illusion, since the
smoothness constraint tends to average out the motion of the random dots in favor
of the motion of the neighboring contours (see also Yuille & Grzywacz, 1988). The
response of our network - slightly modified to be able to perceive the ^
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Fig. 7. Psychophysical illusions. In motion coherence, random dot figures (A) are
shown. However, all dots have a common motion component; in this case, all dots
move 1 pixel towards the top, but have a random horizontal displacement component
(±2, ±1 and Opixels). (B) The final velocity field only shows the motion component
common to all dots. Humans observe the same phenomena (Williams & Sekuler,
1984). (C) In motion capture, the motion of a low-spatial-frequency grating super-
imposed onto a random-dot display 'captures' the motion of the random dots. (D) The
entire display seems to move towards the right. Human observers suffer from the same
optical illusion (Ramachandran & Anstis, 1983a).

frequency grating - is illustrated in Fig. 7C,D. However, in order to explain the
non-intuitive finding that the capture effect becomes weaker for high-frequency
gratings, a version of our algorithm which works at multiple spatial scales is
required.

Yuille & Grzywacz (1988) have shown how the related phenomenon of 'motion
coherence' (in which a cloud of 'randomly' moving dots is perceived to move in the
direction defined by the mean of the motion distribution; Williams & Sekuler,
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1984) can be accounted for using a specific smoothness constraint. Our algorithm
also reproduces this visual illusion quite well (Fig. 7A,B)- In fact, it is surprising
how often the Gestalt psychologists use the words 'smooth' and 'simple' when
describing the perceptual organization of objects (for instance in the formulation
of the key law of Pragnanz; Kofka, 1935; Kohler, 1969). Thus, one could argue
that these psychologists intuitively captured some of the constraints used in today's
computer vision algorithms.

Smoothing, that is that the flow field at one location influences motion at a
different location, will not occur instantaneously. The differential equation
implemented by our network (equations 9-11) can be considered to be a spatial
discretized version of a parabolic differential equation, a family of partial
differential equations whose members include the diffusion and the heat equation.
We thus expect the time it takes to travel a certain distance to be proportional to
the square of this distance. There exists some psychophysical support for this
notion. Neighboring flashed dots can impair the speed discrimination of a pair of
briefly flashed dots in an apparent motion experiment (Bowne & McKee, 1989).
This 'motion interference' is time-selective, such that the optimal time of
occurrence for the stimuli to interfere with the task increases with increasing
distance between the two.

Our algorithm is able to mimic another illusion of the Gestalt psychologists: y
motion (Lindemann, 1922; Kofka, 1931). A figure which is exposed for a short
time appears with a motion of expansion and disappears with a motion of
contraction, independent of the sign of contrast. Our algorithm responds in a
similar manner to a flashed disk (Wang etal. 1989). A similar phenomenon has
previously been reported for both fly and man (Blilthoff & Gotz, 1979). This
illusion arises from the initial velocity measurement stage and does not rely on the
smoothness constraint.

Our model so far does not take into account temporal integration of velocity
information over more than two frames [all simulations were always carried out
with only two frames: I{x,y,t) and I(x,y,t + At)]. This is an obvious oversimplifica-
tion. From careful psychophysical measurements we know that optimal velocity
discrimination requires about 80-100 ms (McKee & Welch, 1985). Furthermore, a
number of experiments argue for a 'temporal recruitment' (P. J. Snowden & O. J.
Braddick, personal communication) or 'motion inertia' (Ramachandran & Anstis,
1983ft) effect, such that the previously perceived velocity or direction of velocity
influences the currently perceived velocity. Such a phenomenon could be
reproduced by including into the variational functional of equation 1 a term which
smooths over time, such as dV/dl.

Motion transparency

An interesting visual phenomenon is 'motion transparency', in which two
objects appear to move past or over each other; i.e. at least one object appears to
be transparent. For instance, if the two gratings in the Adelson & Movshon (1982]|
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experiment (Fig. 3) differ by an order of magnitude in visual contrast, i.e. one
grating having a strong and the other a weak contrast, or if the two gratings differ
significantly in spatial frequency, they tend not to be perceived as moving
coherently. Perceptually, observers report seeing two gratings sliding past or over
each other. The significant fact is that in these cases, more than one unique
velocity is associated with a location in visual space.

Welch & Bourne (1989) propose that motion transparency could be decided at
the level of the striate cortex by neurons that compare the local contrast and
temporal frequency content of the moving stimuli. If either of these two quantities
differ substantially - probably caused by two distinct objects - a decision not to
cohere would be made. We could then assume within our framework that this
decision - occurring somewhere prior to our smoothing stage - prevents
smoothing from occurring by blocking the appropriate connections among the V
cells with spatially distinct receptive fields. This could be accomplished by setting
the synaptic connection strength to zero either via conventional synaptic inhibition
or via the release of a neurotransmitter or neuropeptide acting over relatively
large cortical areas. The notion that motion transparency prevents smoothing
among the V cells presupposes that the perceptual apparatus now has access to the
individual motion components V(i,j,k), instead of to the vector sum V(i,j) of
equation 2; only this assumption can explain the perception of two or more
velocity vectors at any one location. Simple electrophysiological experiments
could provide proof for or against our conjecture. For instance, it would be very
intriguing to know how the pattern-selective cells of Movshon et al. (1985) in area
MT respond to the two moving gratings of Adelson & Movshon (1982; see Figs 3
and 4). We know that if the gratings cohere, the cells respond to the motion of the
plaid. How would these cells respond, however, if the two gratings do not cohere
and motion transparency is perceived by the human observer?

Motion discontinuities
The major drawback of this and all other motion algorithms is the degree of

smoothness required, smearing out any discontinuities in the flow field, such as
those arising along occluding objects or along a figure-ground boundary. A
powerful idea to deal with this problem was proposed by Geman & Geman (1984;
see also Blake & Zisserman, 1987), who introduced the concept of binary line
processes which explicitly code for the presence of discontinuities. We adopted the
same approach for discontinuities in the optical flow by introducing binary
horizontal (lh) and vertical (/*") line processes representing discontinuities in the
optical flow (as first proposed in Koch et al. 1986). If the spatial gradient of the
optical flow between two neighboring points is larger than some threshold,
the flow field is 'broken' and the appropriate motion discontinuity at that location
is switched on (/= 1), and no smoothing is carried out. If little spatial variation
exists, the discontinuity is switched off (/ = 0). This approach can be justified
Hgorously using Bayesian estimation and Markov random fields (Geman &
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Geman, 1984). In our deterministic approximation to their stochastic search
technique, a modified version of the variational functional in equation 1 must be
minimized (Hutchinson et al. 1988). This functional is, different from before, non-
quadratic or non-convex, that is it can have many local minima. Domain-
independent constraints about motion discontinuities, such as that they occur in
general along extended contours and that they usually coincide with intensity
discontinuities (edges), are incorporated into this approach (Geman & Geman,
1984; Poggio et al. 1988). As before, some of these constraints may be violated
under laboratory conditions (such as when a homogeneous black figure moves
over an equally homogeneous black background and the motion discontinuities
between the figure and the ground do not coincide with the edges, since there are
no edges) and the algorithm computes an optical flow field different from the
underlying two-dimensional velocity field (in this case, the computed optical flow
field is zero everywhere). However, for most natural scenes, these motion
discontinuities lead to a dramatically improved performance of the motion
algorithm (see Hutchinson et al. 1988).

We have not yet implemented motion discontinuities into the neuronal model. It
is known, however, that the visual system uses motion to segment different parts
of the scene. Several authors have studied the conditions under which disconti-
nuities (in either speed or direction) in motion fields can be detected (Baker &
Braddick, 1982; van Doom & Koenderink, 1983; Hildreth, 1984). Van Doom &
Koenderink (1983) concluded that perception of motion boundaries requires that
the magnitude of the velocity difference be larger than some critical value, a
finding in agreement with the notion of processes that explicitly code for motion
boundaries. Recently, Nakayama & Silverman (1988) studied the spatial interac-
tion of motion among moving and stationary waveforms. A number of their results
could be re-interpreted in terms of our motion discontinuities.

What about the possible cellular correlate of line processes? Allman et al. (1985)
first described cells in area MT in the owl monkey whose 'true' receptive field
extended well beyond the classical receptive field, as mapped with bar or spot
stimuli (see Tanaka et al. 1986, for such cells in macaque MT). About 40-50 % of
all MT cells have an antagonistic direction-selective surround, such that the
response of the cell to motion of a random dot display or an edge within the center
of the receptive field can be modified by moving a stimulus within the surrounding
region that is 50-100 times the area of the center. The response depends on the
difference in speed and direction of motion between the center and the surround,
and is maximal if the surround moves at the same speed as the stimulus in the
center but in the opposite direction. In brief, these cells become activated if a
motion discontinuity exists within their receptive field. In cats, similar cells appear
at the level of areas 17 and 18 (Orban & Gulyas, 1988). These authors have
speculated as to the existence of two separate cortical systems, one for detecting
and computing continuous variables, such as depth or motion, and one for
detecting and handling boundaries. Thus, tantalizing hints exist as to the possible
neuronal basis of motion discontinuities.
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Fig. 8. Robustness of the neuronal network. A dark bar (outlined in all images) is
moved parallel to its orientation towards the right. (A) Owing to the aperture
problem, those U neurons whose receptive field only 'see' the straight elongated edges
of the bar - and not a corner - will fail to respond to this moving stimulus, since it
remains invisible on the basis of purely local information. The ON subfield of the
receptive field of a vertically oriented U cell is superimposed for comparison. (B) It is
only after information has been integrated, following the smoothing process inherent
in the second stage of our algorithm, that the V neurons respond to this motion. Type
II cells of Albright (1984) in MT should respond to this stimulus whereas cells in VI do
not. (C) Subsequently, we randomly 'lesion' 25 % of all V neurons, that is, their output
is always set to 0. The resulting distribution of V cells is obviously perturbed.
(D) However, given the redundancy build into the V cells (at each location n = 16
neurons signal the direction of motion), the final population-coded velocity field only
differs on average by 3 % from the flow field computed with no 'damaged' neurons.

Conclusion

The principal contribution of this article is to show how a well-known algorithm
for computing optical flow, based on minimizing a quadratic functional via a
Relaxation scheme, can be mapped onto the visual system of primates. The
Pbderlying neuronal network uses a population-coding scheme and is very robust
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in the face of hardware errors such as missing connections (Fig. 8). While the
details of our algorithm are bound to be incorrect, it does explain qualitatively a
number of perceptual phenomena and illusions, as well as electrophysiological
experiments, on the basis of a single unifying principle: the final optical flow
should be as smooth as possible. We are much less satisfied with our formulation of
the initial, local stage of motion computation, because the detailed properties of
direction-selective cortical cells in cat and primates do not agree with those of our
U cells. The challenge here is to bring the biophysics of such motion-detecting cell
into agreement with the well-explored phenomenological theories of psychophy-
sics and computational vision (Grzywacz & Koch, 1988; Suarez & Koch, 1989).

The performance of our motion algorithm implemented via resistive grids
(Hutchinson et al. 1988) is substantially improved following the introduction of
processes which explicitly label for the existence of motion discontinuities, across
which no smoothing should occur. It would be surprising if the nervous system has
not made use of such an idea.
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