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INTRODUCTION
Geometric similarity has hitherto been mainly a descriptive term,
denoting similar form among different-sized organisms, but with
no functional connotation. Here, we explore functional relationships
with locomotion in animals.

When geometric similarity, or isometry, prevails among animals
of different sizes their form and proportions are similar. Weight
increases as the cube of the length dimension, l3, while cross-
sectional areas increase as its square, l2, so in structural support
members the material stress (force per unit area), caused by the body
weight, increases in direct proportion to the length dimension
(l3/l2)l, and proportional to the 1/3 power of the body mass, both
for pure axial loads and for transverse bending and torsional loads.
On this account, large body sizes would be expected to set up
compensatory selection on the proportions of supporting structures,
making them disproportionately thicker as required to maintain
similar, size-independent safety factors against breakage. Still,
empirical data show that most comparable animals of ‘similar kind’
scale in accordance with the geometric similarity rule, except for
bovids and a few other taxa of large mammals, which tend to have
relatively stouter skeletal elements the larger they are (Alexander

et al., 1979; Alexander, 1983a; Biewener, 1983; Biewener, 1990;
Christiansen, 1999; Economos, 1983; Garcia and daSilva, 2004;
McMahon, 1975a). The departure from geometric similarity has been
variously reported among mammals larger than 20kg (Economos,
1983), larger than 50–100kg (Christiansen, 1999) or larger than
100kg (Bertram and Biewener, 1990).

During locomotion in terrestrial mammals, bending and torsional
loads cause much larger material stress and deformation of structural
support elements than do axial loads (Alexander, 1985a; Biewener,
1983; Biewener, 1991; Rubin and Lanyon, 1982; Rubin and Lanyon,
1984). This must be even more so for bird and bat wings (Figs1
and 3), as evidenced by their musculo-skeletal geometry, mechanics
and aerodynamics (Pennycuick, 1967; Pennycuick, 2008). It has also
been confirmed experimentally in birds as well as in bats (Biewener
and Dial, 1995; Swartz et al., 1992). So strength against bending
and torsion must have been of first priority in the adaptation of
structural support elements of terrestrial quadrupeds, birds and bats.

Most previous scaling theory has assumed that the strength and
dimensions of supporting structures are adapted to loads proportional
to the body weight, such as during cruising locomotion. But muscle
forces during maximal locomotor performance must cause much
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SUMMARY
When geometric similarity, or isometry, prevails among animals of different sizes their form and proportions are similar. Weight
increases as the cube of the length dimension, while cross-sectional areas increase as its square, so in load-bearing structural
elements the stress, caused by the body weight, increases in direct proportion to the length dimension, both for pure axial loads
and for transverse bending and torsional loads. On this account, large body sizes would be expected to set up compensatory
selection on the proportions of supporting structures, making them disproportionately thicker as required to maintain similar,
size-independent safety factors against breakage. Most previous scaling theories have assumed that the strength of support
elements has evolved with respect to loads due to the body weight. But then, from the arguments above, a scaling principle
different from the geometric similarity rule would be required in order for safety factors to remain similar among different-sized
animals. Still, most comparable animals of ‘similar kind’ scale in accordance with the geometric similarity rule. Here, we instead
argue that muscle forces cause much larger loads on structural support elements during maximum performance events (such as
during prey capture or escape from predators) than do loads dictated by the body weight (such as during cruising locomotion),
and that structural strength therefore might evolve with respect to maximal muscle forces rather than to the body weight. We
explore how the transverse and longitudinal lengths of structural support elements must scale to one another, and to muscle
transverse length, in order to satisfy each of the following, functionally based, similarity principles for support elements placed in
bending, or in torsion, by maximal muscle forces during locomotion: (1) similarity in axial stress, or (2) in torsional shear stress,
and (3) similarity in bent shape, or (4) in twisted shape. A dimensional relationship that satisfies all four conditions actually turns
out to be the geometric similarity rule. These functional attributes may therefore help to explain the prevalence of geometric
similarity among animals. Conformance of different-sized species with the geometric similarity principle has not been directly
selected for as such, of course, but may have arisen as a by-product of adaptation in morphological proportions, following upon
selection, in each separate species-lineage, for adequate and similar safety factors against breakage, and similar optimal distorted
shapes, of structural support elements placed in bending, or in torsion, by maximal muscle forces.
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greater loads on supporting structures than do loads due to gravity.
Supporting structures may therefore be more adapted to maximal
muscle forces, and scale with respect to them rather than to the body
weight. For that reason the scaling developed here emphasises loads
caused by maximal muscle forces, such as during extreme
manoeuvres.

Here, we derive four functionally based size-scaling principles
for the relationships between muscle transverse length and the
longitudinal and transverse lengths of structural support elements
placed in bending, or in torsion, by maximal muscle forces during
locomotion: (1) similarity in axial stress, or (2) in torsional shear
stress, and (3) similarity in bent shape, or (4) in twisted shape. We
explore how dimensions of muscles and load-bearing elements must
scale to one another in order to fulfil these criteria. A dimensional
relationship that satisfies all four conditions turns out to be the
geometric similarity rule. These functional attributes may therefore
explain the prevalence of geometric similarity among animals. The
conflict between data and earlier scaling theory, based on body-
weight-dictated loads, might be resolved by instead shifting focus
to maximal muscle forces.

Morphology
Lever arm ratio

Fig.1 shows a structural support element free to rotate about a joint
at its left end. It is exposed to a muscle force Fm acting on moment
arm Lm and to an opposing external reaction force Fext acting on
moment arm L. The external force Fext that acts on the element from
the environment arises in reaction to the out-force Fout, and is equal
to it but opposite in direction. At moment equilibrium:

Lm Fm  LFext. (1)

In Fig.1, Lbend is the bending moment arm of force Fext, taken
with respect to some characteristic lengthwise position along the
beam, i.e. at the same proportion of distance L from the line of
action of force Fext in different-sized animals. In Figs1, 2 and 3 that
position is chosen to be where the bending moment on the beam is
largest, which is at the line of action of the muscle force Fm in Figs1
and 3 but at the fulcrum in Fig.2.

In those cases when the muscle moment arm Lm is a constant
proportion of moment arm L of the external reaction force, Lbend is
also proportional to L (Fig.1), and the external force is directly
proportional to the muscle force, regardless of animal size:

Fext � Fm. (2)

In bird wings the lever arm ratio Lm/L is constant regardless of
body size (Janson, 1996). Therefore, the aerodynamic force acting
on a particular feather at a characteristic spanwise position in the
wing is also the same weight-independent proportion of the muscle
force in different-sized birds (Fig.3). This makes scaling
straightforward. But in terrestrial mammals (Fig.2) the lever arm
ratio Lm/Lbend increases with increasing body size (Biewener, 1983;
Biewener, 1989; Biewener, 1990; Biewener, 2005), which
complicates scaling, as will be explained below.

Terrestrial mammals
Among terrestrial mammals the increase in stress in leg muscles
and skeletal elements, which the foregoing argument suggests would
follow from larger body weights of geometrically similar animals,
is nearly eliminated by compensatory, size-related changes of limb
posture and lever arm ratios (Alexander, 2003; Biewener, 1983;
Biewener, 1989; Biewener, 1990; Biewener, 2005). Small mammals
have a crouched locomotion posture with rather flexed limb joints

but the posture becomes increasingly more upright in larger
mammals so that limb elements become more nearly aligned with
the ground reaction force (Fig.2). Very big terrestrial animals, like
elephants, walk on rather straight legs, sometimes termed columnar
legs, with the limb segments supposedly taking up a nearly columnar
posture, a so-called graviportal adaptation (Hildebrand, 1985;
Hildebrand and Hurley, 1985) – although locomotion in elephants
does involve more limb flexion than traditionally thought (Ren et
al., 2008; Hutchinson, 2009).

The straighter and more upright leg posture, following upon more
open joint angles among larger mammals, aligns the leg more nearly
with the ground reaction force and changes the direction of the
muscle forces relative to the limb elements that they act upon. An
effect of this is that with increasing body size there is a systematic
increase in the ratio between the muscle moment arm and the
moment arm of the ground reaction force, acting about leg joints.
Larger mammals therefore gain larger ‘effective mechanical
advantages’ (EMA) (Biewener, 1989; Biewener, 1990), also known
as the ‘lever gear ratio’ (Grimmer et al., 2008; Williams et al., 2009).
Biewener (Biewener, 1990) calculated EMA for 10 species ranging
in size from a mouse to a horse, and later added another four species,
including two bipeds – kangaroo rat and man [fig.3 in Biewener
(Biewener, 2005)]. EMA was measured during the middle third of
the ground contact phase at the trot–gallop transition speed and
averaged across all joints of forelimb and hindlimb, except the
forelimbs of the two bipeds in the large sample. The speed of
locomotion, and thus the type of gait, has negligible effect on the
lever arm ratio. The EMA scales with body mass as Mb

0.26 in the
sample of 10 species (Biewener, 1990) and as Mb

0.25 in the sample
of 14 species [fig.3 in Biewener (Biewener, 2005)]. It thereby
violates one aspect of the geometric similarity rule, which requires
that EMA is constant, and thus �Mb

0.
The lever arm ratio of mammal legs increases with increasing

body weight because the muscle moment arm Lm increases more
than expected from geometric similarity, as Mb

0.44 instead of Mb
0.33

(Biewener, 1990), whereas the moment arm Lbend of the ground
reaction force increases less, as Mb

0.19 instead of Mb
0.33 (Fig.2) (from

EMALm/Lbend�Mb
0.25, so Lbend�Mb

0.44/Mb
0.25�Mb

0.19). The moment
arm of the muscle force thus scales more nearly as expected under
geometric similarity (as 0.44 vs 0.33) than does the moment arm
of the ground reaction force (as 0.19 vs 0.33). These various
exponents – 0.25, 0.44 and 0.19 – have different effects on the
scaling of bone and muscle stress depending on whether scaling is
done with respect to body-weight-related locomotor forces or to
maximal muscle forces, as will be explained below.

Birds
We know of no reports about any size-related variation in wing
joint angles or in the ratio between muscle and out-force moment
arms in birds and bats similar to the size-related changes in limb
posture and lever arm ratio among terrestrial mammals. Here, we
review results from a study of bird wings (Janson, 1996), showing
that the ratio Lm/L between the moment arms of the pectoral muscle
and the resultant aerodynamic force on the wing is nearly constant
among different-sized birds (Fig.1).

In order to enable a comparison between the lengths of the muscle
moment arm and the moment arm of the external force, acting on
the wing, the aerodynamic forces – distributed among all wing
elements of area – must be added into a resultant force. And it may
be thought of as acting at a hypothetical centre of pressure of the
wing, located at such a spanwise position that the whole force exerts
the same moment about the shoulder joint, as do the distributed
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aerodynamic forces. When calculating the moment arm of the
resultant aerodynamic force, the relative air velocity was assumed
to be the same over the entire wingspan, as it is during gliding flight.
And the profile lift coefficient was also taken to be the same along
the entire wingspan. From this follows that the aerodynamic force
on each element of area is proportional to the element’s area. Areas
can therefore be used as proxies, representing forces.

The entire wing, outstretched as during gliding flight, was
divided up into 10–32 narrow chordwise strips, parallel to the axis
of rotation of the wing–root joint and perpendicular to the leading
edge of the wing (Fig.3). The area of each strip was measured and
multiplied by its distance from the shoulder joint, measured in the
spanwise direction, parallel to the wing’s leading edge. These
products, representing the moment contributions from strips at
different distances from the wing root, were then summed over the
entire wing to obtain its first moment of area. The total area of the
wing, representing the resultant aerodynamic force, multiplied by
the sought-after distance L of the spanwise centre of pressure from
the shoulder joint (Fig.1), is equal to the sum, across all wing strips,
of the product of strip area multiplied by its moment arm, i.e. the
wing’s first moment of area with respect to the wing–root joint
(Pennycuick, 1967; Pennycuick, 2008).

The moment arm of the pectoral muscle and the moment arm of
the resultant aerodynamic force of the wing, as well as their ratio
Lm/L, were measured on 35 specimens of 21 bird species, ranging
in size from a 10g flycatcher, Ficedula hypoleuca, to a 1450g
Gooshawk, Accipiter gentilis. The moment arm of the pectoral
muscle scales as Mb

0.46 (R20.93) and that of the resultant
aerodynamic force as Mb

0.40 (R20.86), so the ratio between them
scales with body mass as Mb

0.06 (Janson, 1996). We think this
exponent is near enough to zero to let the lever arm ratio be treated
as constant among different-sized birds. Then the external reaction
force Fext is proportional to the muscle force Fm (proportionality
2); a relationship that applies to the wing and flight feathers of birds
whereas there are no such data available for bat wings.

Loads
Peak and maximal muscle forces

During locomotion the bending and torsional loads on structural
support elements are determined by the muscle forces that are
actually generated. A distinction must be made between the maximal
force that a muscle can exert and the peak force, which is the largest,
but not necessarily – and most often not – the maximal-possible
muscle force generated during a locomotion cycle. It must be
emphasised that, except for accidental impact forces, the largest
bending and torsional forces that support elements can ever be
exposed to during locomotion have upper limits set by maximal
muscle forces.

For swimming and flying it is obvious that the fluid-dynamic
reaction forces from water and air cannot exceed what the muscles
can muster. For terrestrial locomotion similar limitations prevail.
Limb joints are usually held somewhat flexed at touchdown,
enabling flexural yield, and at least the forelegs are elastically
suspended via the shoulder girdle. Both means of shock absorption
prevent exceedingly large impact forces from arising.

Humans running across uneven ground adjust leg stiffness at
touchdown to control the ground reaction force by varying muscle-
controlled flexural yield of leg joints [Grimmer et al. who defined
leg stiffness as the ratio between peak ground reaction force and
maximum leg compression due to joint flexion during ground contact
(Grimmer et al., 2008)]. At touchdown, tendons and ligaments
produce resistance under elastic tensile yield, and muscles generate

force while being forcibly stretched (doing negative work), whereas
elastic elements spring back and extensor muscles shorten against
external resistance in the power phase, extending the leg (doing
positive work), prior to take-off.

The impulse at touchdown (the integral of the transient impact
reaction force with respect to the time for the brake) causes a loss
of momentum (body mass multiplied by velocity), which is regained
by means of an equally large impulse during the pushing phase
before take-off. In running animals, and humans, the braking phase
after touchdown has a shorter duration than the pushing phase before
take-off. Therefore, the muscle force developed during the brake
must be larger than that exerted during the longer-lasting push
(Cavagna and Legramandi, 2009). This landing–takeoff asymmetry
is consistent with the capacity of muscles to produce greater force
while being forcibly stretched than when shortening.

The maximal force that muscles can exert for the control of joint
flexion and girdle yield during the brake, after touchdown, thus gives
the largest possible out-force. And this, in turn, sets an upper limit
to the ground reaction force.

Were it not for muscle-controlled joint flexural yield and girdle
suspension, ground impact forces would be determined directly and
exclusively by the body weight (gravity and inertia), with no
moderation by muscles. But with muscles in control, it is not a
question of whether muscle forces or impact forces from the ground
at touchdown are the most significant ones. Instead they are
interrelated; it is the maximal muscle forces that determine, and set
the upper limits to, the reaction forces from the ground. So safety
factors against breakage may be expected to evolve with respect to
maximal muscle forces, not only for swimming and flying but also
for terrestrial locomotion.

We also distinguish between two alternative load domains,
dependent on the mode of locomotion. The loads, produced by
muscles, can either be (1) dictated by the body weight, or (2) they
can be due to maximal muscle forces.

Cruising locomotion: body-weight-dictated loads
Cruising locomotion refers to steady locomotion at moderate and
energy-efficient speed below the maximum (top) speed, and with
no manoeuvres. It is what Biewener called ‘the preferred speed’, at
which mammals operate with lower muscle and bone stresses than
at top locomotor speed (Biewener, 2005). Cruising speed in flying
animals may be ‘the minimum power speed’, which requires the
least energy per unit time, or ‘the maximum range speed’, which
requires the least energy per unit distance flown, enabling the animal
to fly the longest distance for a given amount of energy, a likely
choice for migration, even though there are other options depending
on what will be achieved (Pennycuick, 1969; Pennycuick, 2008;
Norberg, 1981; Hedenström and Alerstam, 1995).

During steady cruising locomotion the magnitude of the peak
external force Fext that needs to be elicited from the ground, water
or air is determined by the body weight and the mode of locomotion,
with its associated duty factor, and the muscles have to exert a force
Fm as required, given the lengths of the respective moment arms
(Eqn1). So even though the body weight determines the external
reaction force, it is controlled and kept within limits by muscles.
Because animals usually have spare muscle capacity in excess of
what is required for cruising locomotion, the peak muscle force
during a cruising locomotion cycle is less than the maximal force
that the muscle can exert. Therefore, for each type of cruising
locomotion the required peak external reaction force Fext, occurring
during a locomotor cycle, is dictated by some gait-characteristic
and size-independent multiple of the animal’s body weight, and it
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is not limited by muscle capacity. The external force, multiplied by
its moment arm, sets the value of the moment that the muscles have
to set up by matching its force Fm to the muscle moment arm as
required. Because the bending moment is dictated by the body
weight, adaptations to loads that occur during cruising locomotion
should cause dimensions and strength of structural support elements
to scale with respect to the body weight.

Except for bone loads due to gravitational and inertial forces that
act on the body during cruising locomotion, there are also loads due
to the weight and inertia of legs or wings that are being cyclically
accelerated. And these forces act on different moment arms than
does the external reaction force. Even though moments due to the
weight and inertia of leg segments are much smaller than the
dominant body-weight-dictated moments, set by the ground reaction
force and its moment arm (Biewener, 2005), muscles must
nonetheless exert extra forces for accelerating the limbs during
cruising locomotion.

In birds the lever arm ratio Lm/L is constant as required by
geometric similarity (Fig.1) (Janson, 1996), so during cruising
locomotion the external reaction force is directly proportional to
the muscle force, and the muscles must exert a force Fm, equal to
FextL/Lm (Eqn1), which is proportional to the body mass Mb

because Fext is, so Fext�Fm�Mb. During cruising locomotion, and
if geometric similarity prevails, the bending moment FextL(FmLm)
would scale as MbMb

1/3�Mb
1.33 and muscle stress as Mb

1/3 [from
Fm/(muscle fibre cross-sectional area)�Mb/Mb

2/3�Mb
1/3]. 

In terrestrial mammals, the lever arm ratio Lm/Lbend scales as Mb
0.25,

thus violating geometric similarity (Fig.2) (Biewener, 2005). During
cruising locomotion the external bending moment FextLbend dictates
the moment FmLm that muscles have to set up by matching its force
Fm to the muscle moment arm Lm as required. The required muscle
force Fm (FextLbend/Lm) scales as Mb/Mb

0.25�Mb
0.75, as opposed to

Mb
1.0 under geometric similarity, and the bending moment scales as

Mb
1.19 (from FextLbend�MbMb

0.19 or from FmLm�Mb
0.75Mb

0.44) as
opposed to Mb

1.33 under geometric similarity (from
FextLbend�MbMb

1/3). Muscle fibre cross-sectional area scales as Mb
0.81

in terrestrial mammals (and as Mb
0.77 in Bovidae) [table2-1 in

Alexander (Alexander, 1985a)], so muscle stress scales as Mb
–0.06

(from Mb
0.75/Mb

0.81) (Biewener, 1990; Alexander, 2003) (and as Mb
–0.02

in Bovidae). During cruising locomotion in terrestrial mammals the
ground reaction force is proportional to the body weight but muscle
stress is nearly independent of body size, scaling as Mb

–0.06 rather
than as Mb

0.33 under geometric similarity.

Maximal performance events: maximal muscle-force-dictated
loads

Under certain circumstances, however, supporting structures may
instead be subjected to maximal muscle forces. This may occur
during events like a maximal jump, a fast start, top-speed locomotion
and the tightest possible turn. Such behaviours are likely to occur
during predator pursuit of prey and for capturing and bringing down
prey, during escape manoeuvres of prey (Biewener, 2005), during
fights over territory and mating opportunities, and during courtship
display.

During tight manoeuvres the body need not only be balanced
against gravity over a locomotion cycle but additional forces are
required for linear and angular accelerations of the body and of limbs
relative to the trunk. In such cases peak forces are larger than during
cruising locomotion. To bear this out, consider a cheetah in a turning
pursuit sprint at speeds of up to 104kmh–1 (Sharp, 1997), a falcon
pulling out of an attack dive at speeds of up to 140kmh–1 (Alerstam,
1987) or a hummingbird (Calypte anna) pulling out of a 97kmh–1

courtship display dive, experiencing 9g centripetal acceleration
(Clark, 2009), which, incidentally, equals the breaking load of the
pigeon humerus in both bending and torsional mode (Pennycuick,
1967; Pennycuick, 2008).

The success rate of predator attacks is generally rather low, and
to cite one large study of raptors it was about 5–10% in Accipiter
hawks and Falco falcons (Rudebeck, 1950; Rudebeck, 1951).
There should thus be ample opportunities for selection to act on
safety factors in relation to maximal muscle forces – for maximal
locomotor performance – among predators and prey alike.

So here it is the other way around – when the muscle force Fm

reaches its maximum attainable value, it becomes the independent
variable. The maximal muscle force, multiplied by its moment arm
about the joint, thus determines the moment of the reaction force
Fext from the ground, water or air, and the body weight does not
determine Fext (Fig.1). And the value of the external reaction force

R. Å. Norberg and B. S. Wetterholm Aldrin
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Fout

Longitudinal axis of
unloaded beam 

Lbend 

Fig.1. Free-body diagram showing forces, in solid arrows, acting on a
structural support element with the fulcrum at its left end. The layout shows
a third class lever with the muscle force and external reaction force acting
on the same side of the fulcrum. This is representative for skeletal
elements of bird and bat wings, the shaft of flight feathers and the veins,
acting like spars, in wings of some insects, like dragonflies (in downstroke).
Regarding flight feathers, muscle force is transferred to them by means of
the postpatagial tendon, running spanwise across and on top of the feather
calami (bases), generating a force couple in the structures (follicles)
embedding the feather base, holding the feather down on the wing plane
(Pennycuick, 2008). Locomotion may cause either of two alternative loads
that must be distinguished. (1) In steady cruising locomotion the magnitude
of the out-force, Fout (hollow arrow) is dictated by the body weight because
it sets the value of the external force Fext that needs to be elicited from the
ground, water or air in reaction to Fout. Therefore, for each given type of
cruising locomotion the loads on support elements are the same size-
independent multiple of the animal’s body weight. (2) When maximal
muscle forces are exerted, such as during maximal locomotor performance,
the out-force moment FoutL is instead determined by the maximal muscle
moment FmLm, so then the reaction force Fext is not dictated by the body
weight any longer. Lbend in Figs1, 2, and 3 is the moment arm of the
external reaction force Fext with respect to the cross-section where the
bending moment is largest and where failure is most likely to occur. Fext

acts on moment arm Lbend and bends the support element through
distance d.
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Fext itself is not fixed; it will vary reciprocally with the length of
its moment arm as required to match the muscle moment (Eqn1).
What matters is only that the muscle exerts its maximal force, so
the locomotion mode and duty factor make no difference.
Adaptations to bending and twisting moments that occur under
maximal muscle forces should cause dimensions and strength of
structural support elements to scale with respect to muscle fibre
cross-sectional area instead of to the body weight.

When locomotor muscles exert their maximum force, which is
what we emphasise here, the distinction between gravitational and
inertial loads from the body and from the legs is of no concern for
the loading of skeletal elements. This is because when a maximal
muscle force acts on its muscle moment arm, it dictates the out-
force moment, no matter what the length is of the moment arm that
the external reaction force acts on, and no matter what the force is
used for, i.e. regardless of how it may be split into components for
support against gravity and for accelerating the body and the legs
or wings. So when maximal muscle forces are exerted, they do not
match any body-weight-dictated needs, and the out-force can only
be as large as the muscle moment permits, given the length of the
out-force moment arm. Therefore, so long as maximal muscle forces
are exerted, scaling is not affected by how the out-force is used.

In birds the lever arm ratio Lm/L is constant (Janson, 1996), so
the external reaction force is directly proportional to the muscle force
(Fext�Fm) during cruising locomotion as well as when maximal
muscle forces are exerted. If geometric similarity prevails, the
maximal muscle force Fm and the corresponding external reaction
force Fext would both scale as Mb

2/3 instead of as Mb
1.0 for the body-

weight-dictated non-maximal muscle force, and the corresponding
reaction force, in cruising locomotion. And the maximal bending
moment during maximum performance events would scale as Mb

1.0

(from FmLm�Mb
2/3Mb

1/3) instead of as Mb
1.33 for the non-maximal,

bending moment at cruising speed (from FextLm�MbMb
1/3). When

maximal muscle force is developed, muscle stress is independent
of body size and scales as Mb

0.
We found earlier that during cruising locomotion in mammals

the ground reaction force is dictated by the body weight and duty
factor. The lever arm ratio Lm/Lbend is weight-dependent and scales
as Mb

0.25 (Biewener, 1990). It determines the muscle force Fm

required, which scales as Mb
0.75 (from Fm�FextLbend/Lm�Mb/Mb

0.25).
The moment FextLbend acting about limb joints scales as
MbMb

0.19�Mb
1.19, which is rather different from Mb

1.33 under geometric
similarity.

Not so when maximal muscle forces are developed. Regardless
of how the moment arm Lbend of the external reaction force Fext

may change with animal size, the product FextLbend is dictated by
the maximal muscle moment FmLm. Muscle fibre cross-sectional
area scales as Mb

0.81 in terrestrial mammals [table2-1 in Alexander
(Alexander, 1985a)], so the muscle moment FmLm (and thus also
the external moment FextLbend) scales as Mb

0.81Mb
0.44�Mb

1.25 instead
of as Mb

2/3Mb
1/3�Mb

1.0 under geometric similarity and maximal
muscle force. When maximal muscle force is exerted, muscle stress
is independent of body size, �Mb

0, just as it almost is, �Mb
–0.06

(Biewener, 1990; Alexander, 2003), during cruising locomotion in
terrestrial mammals. And under maximal muscle forces the ground
reaction force (Fext�FmLm/Lbend) is almost proportional to body
mass, scaling as Mb

0.81Mb
0.25�Mb

1.06, very close to Mb
1.00 that holds

for cruising locomotion.
As it thus turns out, the moment acting about limb joints in

terrestrial mammals scales with body mass in nearly the same way
regardless of whether loads are dictated by the body weight, giving
Mb

1.19 (in contrast to Mb
1.33 for geometric similarity), or by maximal

muscle forces, giving Mb
1.25 (in contrast to Mb

1.0 for geometric
similarity). The ground reaction force in mammals scales as Mb

1.00

during cruising locomotion and as Mb
1.06 under maximal muscle

forces (in contrast to Mb
1.00 and Mb

0.67, respectively, for geometric
similarity). But for a given body mass, moments and ground reaction
forces are always larger under maximal muscle forces than during
cruising locomotion. The scaling similarities between moments
(Mb

1.19 and Mb
1.25 as opposed to Mb

1.33 and Mb
1.0 for geometric

similarity) and between ground reaction forces (Mb
1.00 and Mb

1.06 as
opposed to Mb

1.00 and Mb
0.67 for geometric similarity) are due to the

departure from geometric similarity in the ways that muscle fibre
cross-sectional area and leg lever-arm ratio scale with body mass
in terrestrial mammals. An effect of this is that bone axial stress
due to bending will scale with body mass in almost identical ways
regardless of whether loads are caused by non-maximal muscle
forces, dictated by the body weight during cruising locomotion, or
by maximal muscle forces during maximal locomotor performance,
as will be shown below.

Duty factors
During steady locomotion the upward supporting force from the
environment, as averaged over the time of an entire locomotion
cycle, must equal the weight of the animal. The duty factor of a
terrestrial animal is the fraction of the duration of a stride during
which a foot is in ground contact and provides support against
gravity. As mammals run faster they successively shift gait with
ever decreasing duty factors. For flying animals the duty factor is
the fraction of the time of a locomotion cycle during which lift is

Moment about the joint; FmLm = FextLbend. Centre of rotation 
Moment arm ratio = effective mechanical advantage (EMA)
= Lm/Lbend.

Fm

Lm

Fext

 

 

L

 

Lbend

Fm

Lm

Fext

Lbend

Fig.2. Schematic diagram showing a first class lever with the muscle force
and the external reaction force acting on either side of the fulcrum, formed
by the ankle joint (or, analogously, by the elbow joint) of a small (left) and a
large (right) mammal. It illustrates different ratios Lm/Lbend between the
moment arms of the muscle and of the external reaction force, explored
and elaborated by Biewener (see references below). The difference follows
from a progressive shift from crouched to more upright locomotion postures
in increasingly large mammals, whereby the limb elements become more
nearly aligned with the ground reaction force Fext, here taken to be vertical
midway through the stride [following Biewener (Biewener, 1983)]. The
diagrams are drawn to different scales and based on figs1 and 8 in
Biewener (Biewener, 1983), fig.1 in Biewener (Biewener, 1989), fig.3 in
Biewener (Biewener, 1990) and fig.2 in Biewener (Biewener, 2005). Lm,
length of muscle moment arm; Lbend, length of bending moment arm; Fext,
external reaction force.
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elicited and provides weight support and thrust. Birds use different
flight modes, such as continuous flapping, flap-gliding, hovering,
etc. The reaction force from the environment varies in inverse
proportion to the duty factor. So different gaits in terrestrial
locomotion, and different flight modes, do elicit different peak loads
during the support phase.

During cruising locomotion the body weight and duty factor
dictate the ground, or air, reaction force in running and flying and
thus sets the value of the muscle force that is required at different
locomotion modes and cruising speeds. Alexander et al. found that
the duty factor of freely running African ungulates scales with body
mass as Mb

0.14 (Alexander et al., 1977). From treadmill studies of
other mammals, Biewener (Biewener, 1983) got no change with
size (Mb

–0.006 at the trot–gallop transition speed, and from Mb
–0.04 to

Mb
–0.02 at top galloping speed), nor did McMahon (McMahon, 1977),

whereas Bennett (Bennett, 1987) got an opposite trend for kangaroos,
Mb

–0.10. Because the reaction force from the environment varies in
inverse proportion to the duty factor, the duty factor, when it varies
with animal size, also affects the scaling of skeletal dimensions
required to maintain a constant safety factor against breakage. This
is when the body weight dictates the load, such as during cruising
locomotion under less than maximal muscle forces.

But when maximal muscle forces are developed, which is what
we emphasise here, they dictate the out-force moment. Then the
ground reaction force can only be as large as the muscle moment
permits, given the length of the out-force moment arm, and there is
no matching of the out-force to the weight of the animal or to the
mode of locomotion or to the duty factor. So under maximal muscle
forces, the scaling of strength and dimensions, required to maintain
a constant safety factor against breakage of support elements, would
not be influenced by the mode of locomotion or the duty factor. When
muscles exert maximal force the duty factor cannot be any lower, the
animal cannot run any faster or make any more extreme manoeuvre,
and the duty factor cannot affect the muscle force any longer.

Scaling premises
To recapitulate, during cruising locomotion the reaction force that
needs to be elicited from the environment is dictated by the body
weight, and for any given locomotion mode and duty factor is the
same multiple of the body weight regardless of animal size. So the
body-weight-dependent external reaction force determines the loads
on support elements, and muscles produce the moment required.
But for maximal locomotor performance, the muscles exert maximal
force and the ground reaction force will be as it may, and is
unaffected by the body weight, the mode of locomotion and duty
factor. Then the muscles alone dictate the loads on support elements.

Most previous scaling theory has assumed that peak external
forces during locomotion are proportional to the body weight (e.g.
Biewener, 1983; Biewener, 1989; Biewener, 2005; Alexander,
2003), such as during cruising locomotion, as outlined above. By
contrast, we emphasise maximal muscle forces – but also treat body-
weight-dependent loads – in the derivations below of the scaling of
proportions, required to maintain equal stress, and equal distorted
shape, of structural support elements among different-sized animals.

Similarity criteria
We will consider four criteria of performance similarity (scaling
rules) of structural load-bearing elements placed in bending, or in
torsion, by maximal muscle forces among different-sized animals:
(1) bending, or (2) twisting to similar axial stress or torsional shear
stress, respectively, and (3) bending, or (4) twisting to similar
distorted shapes. During animal locomotion, structural support

elements are often subjected simultaneously to both bending and
twisting (Fig.3) but we treat each component separately here.

We want to find how dimensional relationships (proportions)
might need to change with increasing size for the respective
similarity criterion to be fulfilled. To this end, two length scales are
distinguished – one longitudinal and one transverse – and we explore
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C.P.

Longitudinal axis
of humerus

d

Potential
breaking line

Longitudinal axis through
base of feather shaft

Fext

Lbend Ltwist

Fext

Lbend

Ltwist

Fig.3. Geometry of the wing and a primary wing feather of a bird in flight
as examples of structures subjected to combined bending and torsional
torques during locomotion. A streamwise strip element of the wing carries
distributed aerodynamic pressure that is represented here by a resultant
force Fext, located at the strip’s centre of pressure (C.P.). It acts on moment
arms Lbend and Ltwist, tending to bend and twist the humerus of the upper
arm, and similarly for the shaft of the isolated primary flight feather
(bottom). The moment arms Lbend and Ltwist are functions of longitudinal
lengths L of support structures. The total aerodynamic moment of the wing
can be found by adding the sub-moments of all streamwise strips across
the entire wing (using the distance of each strip from the shoulder joint, like
L in Fig.1). The potential breaking line of the humerus is where the
bending moment is largest, which is outward of the wing joint where the
pectoralis muscle inserts, as also shown experimentally by Pennycuick
(Pennycuick, 1967; Pennycuick, 2008). The breaking point of the isolated
primary feather (bottom) is taken to be just distal to its attachment in the
wing where the spanwise, postpatagial tendon exerts pressure, holding the
feather down on the wing plane (Pennycuick, 2008). The feather shaft
curves backwards relative to the longitudinal, major axis through its base,
and the front web is usually so narrow that the C.P., which is located near
the quarter-chord point, falls behind the shaft in a local chordwise strip
across the feather. Therefore, the dynamic air pressure not only bends up
the feather through distance d but also twists it in the nose-down sense,
rotating it about the local shaft axis within each streamwise strip element,
and also rotating it with respect to the major longitudinal axis through the
base of the shaft. The aeroelastic bending and twisting behaviour of wings
and feathers is essential for their aerodynamic efficiency (Norberg, 1972;
Norberg, 1985; Norberg, 1994).
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how they must scale to one another in structural support elements,
and to muscle transverse length, under each similarity criterion.

Assumptions
As discussed above, there are different determinants of the moment
about a joint depending on the kind of locomotion. During cruising
locomotion the body weight and locomotion mode determine the
required external reaction force, which, multiplied by its moment
arm, determines the magnitude of the moment that muscles have to
set up. The way the external moment arm scales with body mass
therefore affects the scaling of the moment about the joint. By
contrast, during maximal locomotor performance the maximal
muscle force, multiplied by its moment arm, determines the moment
about the joint, and the external reaction force will be as it may,
dependent on its moment arm. Then the way the muscle moment
arm scales with body mass affects the scaling of the moment about
the joint. This distinction is essential in mammals, among which
the moment arms of the muscle and of the external reaction force
scale differently with body mass (Biewener, 1990) whereas different-
sized birds have a constant moment arm ratio (Janson, 1996).

The elastic modulus E is a characteristic of the material, defined
as its stress/strain ratio when exposed to a force. The mechanical
strength of bone of birds and mammals and the elastic modulus
of feather keratin are nearly independent of body size and
taxonomy (except that failure stress of the humerus is lower in
bats than in birds), so breaking stress and stiffness of the
respective material are treated here as constant among different-
sized animals of similar kind (Alexander, 1981; Biewener, 1982;
Bonser and Purslow, 1995; Kirkpatrick, 1994; Maloiy et al.,
1979). We make the following additional assumptions: the cross-
sectional shape of structural support elements is the same
regardless of animal size; the maximal stress in muscles is
independent of animal size, so the maximal muscle force is
proportional to muscle fibre cross-sectional area (Hill, 1950;
Alexander, 1985b; Biewener, 1989); and all deformation occurs
within the linear, fully elastic, range of action of the material.

The last assumption needs some comment. During the most
strenuous activities animals operate near the safety factor limit of
their structural support elements but not near the breaking limit.
The safety factors against breakage are 2–4 in mammal leg bones
during strenuous activities (Rubin and Lanyon, 1984; Biewener,
1989; Biewener, 1990). Pennycuick examined the strength of the
pigeon wing skeleton and estimated safety factors in bending and
torsion during hovering (a flight mode so demanding that pigeons
can keep it up for a few wing-beats only); he got between 5 and 6
for the humerus and between 4 and 5 for the radio-ulna (Pennycuick,
1967). Based on in vivo shear strain recordings in flying pigeons,
Biewener and Dial reported a safety factor of 3.5 for the humerus
loaded in bending and 1.9 in torsion (Biewener and Dial, 1995).
Kirkpatrick estimated a mean safety factor of 2.2 for wing bones
from 14 bird and bat species (Kirkpatrick, 1994), and Swartz et al.
got safety factors about 3.9 for both bending and shear in
megachiropteran wing bones (Swartz et al., 1992). So when
structural support elements approach their safety factor limit they
are likely to remain in their linear range of elastic response because
the loads are only 1/6–1/2 of the breaking load.

Dimensional relationships for axial stress similarity of
support elements placed in bending by maximal muscle

forces
First, we explore how the transverse and longitudinal length
dimensions of support elements must scale to one another, and to

muscle transverse length, in order to maintain equal axial stress in
corresponding structural support elements placed in bending under
maximal muscle forces. For slender beams, shear stress due to bending
is negligible compared with axial stress, so it is ignored here.

The material axial stress  at a transverse distance y from the
neutral surface of a beam is:

(Nash, 1977; Alexander, 1983b; Niklas, 1992). M is bending
moment, caused by a maximal muscle force, proportional to muscle
cross-sectional area, and so to muscle transverse length squared,
tm2, acting on its moment arm Lm (Figs1 and 2). And I is the second
moment of area, which is a mathematical property of the geometry
(size and shape) of the element’s cross-section, obtained by
multiplying each cross-sectional element area (like zy in Fig.4) by
the square of its distance from the neutral axis with respect to
bending (like y in Fig.4), and adding over the entire cross-section,
so I is proportional to the fourth power of the transverse linear
dimension ts of the support element.

When the spatial relationships of corresponding support elements
are similar among different-sized animals, axial stress scales with
longitudinal and transverse lengths as:

Proportionality 4, and many of those following, look to have
unbalanced dimensions on left and right sides but this is because
we let area represent force because force is proportional to area in
those cases.

From proportionality 4, axial stress due to bending under maximal
muscle forces will be the same at the same relative, characteristic,
cross-sectional position in corresponding support elements among
different-sized animals when:

ts3 � tm2 l. (5)

The moment due to bending under maximal muscle forces
increases as tm2 l with increasing animal size. In order to maintain
the same axial stress in structural support elements, and thus the
same safety factor against breakage, their transverse dimension, such
as the diameter, must increase as ts3.

For a more intuitive derivation, consider a cross-section at the
same relative position in corresponding, structural support elements
among different-sized animals. Further consider a narrow cross-
sectional element of area, z1 wide and y1 thick, parallel with the
neutral axis and located distance y1 from it (Fig.4). The cross-section
is acted upon by an external, reaction, bending moment FextLbend,
set up by, and equal to, a moment FmLm caused by a maximal muscle
force Fm (Fig.1). When the element area z1y1 is the same proportion
of the cross-sectional area and is located at the same relative cross-
sectional position in different-sized animals, and when the moment
caused by all forces acting over the cross-section is in equilibrium
with the bending moment, the axial force faxial,1, set up on that
particular element of area, scales as:

Axial stress in the strip area z1y1 therefore scales as:

which gives the condition for constant axial stress in proportionality 5.

σ =
yM

I
(3)

σ
tstm2 l

ts4
tm2 l

ts3
. (4)� �

Fext Lbend

y1

tm2 l

ts
.  (6)faxial,1 � �

σ =
faxial,1

z1δ y1

tm2 l

ts ts ts
, (7)�
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When the lever arm ratio Lm/L is constant, as it is in birds, the
length dimension l may refer to the length of the muscle moment
arm Lm as well as to Lbend or the external moment arm L; all three
of which are linear functions of the longitudinal lengths of support
elements in bird wings (Figs1 and 3). But when the lever arm ratio
varies with animal size, as it does in terrestrial mammals, l must
instead refer exclusively to the length Lm of the muscle moment
arm, given that muscles exert maximum force (Fig.2).

Geometric similarity requires that ts�tm�l�Mb
1/3, and this fulfils

the condition set out in proportionality 5, even though there are other
conceivable solutions. In the special case of geometric similarity,
maximal muscle forces thus generate identical axial stress at
corresponding positions in structural support elements placed in
bending, regardless of animal size (�Mb

0; from proportionality7).
When instead the body weight dictates the external reaction force

that must be elicited, as during cruising locomotion, the body mass
Mb and the external moment arm determine the moment M and
proportionalities 4 and 5 change to:

and

ts3 � Mbl, (9)

where l may refer to the moment arm of the muscle as well as of the
external force, given that the lever arm ratio Lm/L is constant, as in
birds. When the lever arm ratio Lm/Lbend varies with animal size, as
it does in mammals, l must refer to the length of the external moment
arm Lbend (Fig.2). Proportionality 9 specifies the conditions required
to give the same stress among different-sized animals under loads
proportional to the body mass (rather than to maximal muscle forces
as in proportionality 5). In order to satisfy proportionality 9 the scaling
relationships between the constituent variables must obviously be
different from those required for proportionality 5; and proportionality
9 can be seen not to be compatible with geometric similarity, under
which stress would increase as Mb

0.33 with increasing body mass (from
proportionality 8).

If body mass Mb is taken to be proportional to generalised
transverse and longitudinal body dimensions as Mb�lt2,
proportionality 9 gives t�l2, which is the necessary condition for
axial stress similarity under self-load or under loads proportional
to the weight. This is the classic rule for stress similarity under self-
load (McMahon, 1975b; McMahon, 1984). When it is applied to
different-sized animals, their overall body proportions are taken to
be as required for stress similarity, so that body volume, and hence
body weight, are proportional to lt2, and so to ll2�2l5, and to
t1/2t2t5/2 (McMahon, 1975b; McMahon, 1984). Body-weight-
dictated loads occur under static, resting conditions and during steady
cruising locomotion but not during extreme manoeuvres when
maximal muscle forces are exerted and determine the load.

The geometric similarity relationship t�l, obtained here for stress
similarity under maximal muscle forces, thus contrasts with the
classic rule for stress similarity under self-load, which requires that
t�l2 in order to give similar stress in different-sized structures placed
in bending under loads proportional to the body weight.

Strain is the change in length, due to a force, divided by the initial
length. When the elastic modulus E of support elements is the same
among different-sized animals, identical axial stress due to bending
gives rise to identical axial elastic strain, because strainstress/E. So
stress similarity and elastic-strain similarity are two characteristics of
the same design principle (Alexander, 2003). This must not be
confused with ‘elastic similarity’ in the sense used by McMahon

σ
Mbl

ts3
 (8)�

(McMahon, 1975a; McMahon, 1984) and McMahon and Kronauer
(McMahon and Kronauer, 1976), which is different. It means that
different-sized structures bend in a geometrically similar way under
their own weight, or under loads proportional to the weight (but not
under maximal muscle forces), and requires that their transverse
dimension scales with the longitudinal dimension as t�l3/2 (derived
below under ‘Dimensional relationships for bent-shape similarity of
support elements placed in bending by maximal muscle forces’).

Test against empirical data
When testing theory against empirical data, here and elsewhere in
the paper, it must be noticed that confidence limits are usually rather
wide for scaling functions fitted to empirical data. Because of this
uncertainty, small differences between scaling exponents are likely
to be within the error limits, and so may not be real.

In order to test whether ts, tm and l actually scale to one another
in such ways as to satisfy proportionality 5, one would ideally use
direct, empirical, scaling relationships between ts, tm and l, where
l is the functional length of the moment arm, which in terrestrial
mammals differs in a size-dependent way from the actual physical
length of the respective skeletal element because of progressively
more upright leg postures in increasingly large mammals (Biewener,
2005). Unfortunately, such direct scaling data are not available, so
we are left to use indirect relationships based on how the respective
length dimension scales with body mass.

Proportionality 5 is satisfied when ts, tm and l maintain isometry
among themselves, i.e. when they vary linearly to one another. But
this does not require that they are also isometric with respect to the
body mass, only that they scale to body mass with the same
exponent. This possibility will now be examined.

Birds
Based on a study of 18 raptor species, Florén (Florén, 2006) showed
that humerus length (l in proportionality 5) scales with body mass
as Mb

0.41 (R20.925), humerus diameter (ts in proportionality 5) as
Mb

0.39 (R20.970), ulna length as Mb
0.41 (R20.901) and ulna diameter
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Neutral axis 
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z 
Neutral surface 

Midline 

Cross-sectional element of area, zδy

δy Fext

faxial

Lbend

Fig.4. Geometry of a structural support element, fixed at the left end and
similar to that in Fig.1 but exaggerated in width for clarity. It is placed in
bending by an external force Fext, acting on moment arm Lbend with respect
to the internal cross-section shown, located at the same characteristic
lengthwise position in different-sized animals. The neutral axis is the line
where the neutral, zero-stress surface cuts the cross-section. The bending
moment FextLbend causes the beam material, immediately to the left of the
internal cross-section shown, to exert an axial compressive force faxial on a
cross-sectional strip element of area, with height y and width z, located at
a transverse distance y above the neutral surface. Bones and feathers are
hollow but the beam is drawn solid to avoid undue complexity, and the
force vectors are not drawn to the same scale.
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as Mb
0.35 (R20.945). These exponents are somewhat larger than 0.33

for geometric similarity with respect to body mass but are quite
similar, so length and diameter of wing skeletal elements are nearly
isometric to one another. There seems to be no scaling data on flight
muscle fibre cross-sectional area for birds but the mass of the pectoral
muscle (wing depressor) scales as Mb

0.99 and thus shows perfect
isometry with respect to body mass (Rayner, 1988). If muscle shapes
are similar among different-sized birds, then flight muscle fibre cross-
sectional area (tm2 in proportionality 5) would scale to body mass as
Mb

2/3 (and tm as Mb
1/3). Tentative muscle data thus indicate that the

pectoral muscle cross-sectional diameter (tm) is isometric with
respect to body mass but deviates somewhat from isometry with
respect to the length (l) and diameter (ts) of wing skeletal elements.

Using these data, but Mb
0.46 for the muscle moment arm Lm

(Janson, 1996), stress in the bird humerus, placed in bending by
maximal muscle forces, would scale as Mb

0.67Mb
0.46/Mb

0.39�3Mb
–0.04

(from proportionality 4) and humerus safety factor as Mb
0.04, whereas

stress in the bird ulna would scale as Mb
0.67Mb

0.46/Mb
0.35�3Mb

0.08 and
its safety factor as Mb

–0.08. Conversely, given the observed scaling
of bone diameter and muscle moment arm, muscle cross-sectional
diameter (tm) would need to scale as Mb

(0.39�3–0.46)/2Mb
0.36, rather

than as Mb
0.33 (tentatively deduced above), in order to satisfy

proportionality 5 and give stress similarity in the humerus, whereas
muscle cross-sectional diameter would need to scale as
Mb

(0.35�3–0.46)/2Mb
0.30 for stress similarity in the ulna. So dimensions

of the wing musculo-skeletal system in this bird sample conform
fairly well with the requirements set out in proportionality 5 for
stress similarity under maximal muscle forces.

Under body-weight-dictated loads (cruising flight) the body
weight and the moment arm L in Fig.1 determine the moment that
muscles must set up. The moment arm L of the wing’s resultant
aerodynamic force scales as Mb

0.40 (Janson, 1996), so humerus stress
would scale as MbMb

0.40/Mb
0.39�3Mb

0.23 (from proportionality 8) and
safety factor as Mb

–0.23, whereas ulna stress would scale as
MbMb

0.40/Mb
0.35�3Mb

0.35 and safety factor as Mb
–0.35. In order to

achieve equal stress in the humerus under body loads in different-
sized birds, humerus diameter would need to scale as Mb

1.40/3Mb
0.47

(from proportionality 9) rather than as Mb
0.39 (observed; see above)

but then humerus stress under maximal muscle forces would scale
as Mb

0.67+0.46/Mb
0.47�3Mb

–0.28 (from proportionality 4). So skeletal
stress is much more similar among different-sized birds under
maximal muscle forces (Mb

–0.04 and Mb
0.08 for humerus and ulna)

than under body-weight-dictated loads (Mb
0.23 and Mb

0.35). This
suggests that adaptation of the wings’ musculo-skeletal system has
occurred with respect to maximal muscle forces rather than to body-
weight-dictated loads. The skeletal data are from raptors, which have
a high frequency of occurrence of maximal performance events for
prey capture. They may therefore be expected to be especially
adapted to withstand large aerodynamic loads.

Worcester measured wing primary feathers from 13 bird species
of mixed taxonomy and found that feather length scales with body
mass as Mb

0.30 and feather shaft diameter as Mb
0.37 (Worcester, 1996).

With these data, axial stress in the feather shaft due to bending would
scale as Mb

0.67+0.30/Mb
0.37�3Mb

–0.14 under maximal muscle forces
(from proportionality 4), and as Mb

1+0.30/Mb
0.37�3Mb

0.19 under loads
proportional to the body weight (from proportionality 8). So stress
tends to be more similar under maximal muscle forces than under
body loads also in primary feather shafts among different-sized birds,
even though such small differences in absolute value between scaling
exponents, based on empirical data, here and elsewhere, may be
fortuitous because of the wide confidence limits of empirical
scaling exponents.

Terrestrial mammals
During maximal locomotor performance the maximal muscle force
and its moment arm dictate the moment about the joint. Muscle
fibre cross-sectional diameter tm scales as Mb

0.40 (from Mb
0.81 for t2m)

[table2-1 in Alexander (Alexander, 1985a)], muscle moment arm
scales as Mb

0.44 (Biewener, 2005), and long bone diameter ts scales
as Mb

0.36 (Alexander et al., 1979). These scaling exponents differ
somewhat from 0.33, required for geometric similarity with respect
to body mass, but they are fairly similar, so ts, tm and l are not far
from being isometric to one another, as would be required for the
geometric-similarity solution of proportionality 5. Given the
observed relationships (see above), bone stress due to bending
under maximal muscle forces would nonetheless increase with
increasing body size and scale as Mb

0.81Mb
0.44/Mb

0.36�3�Mb
0.17 (from

proportionality 4).
Under body-weight-dictated loads the body weight and the

moment arm of the ground reaction force dictate the moment.
The moment arm of the ground reaction force scales as Mb

0.19 and
thus departs considerably from the observed scaling exponents
0.40 and 0.36 for cross-sectional diameter of muscle and bone (see
above). Bone stress would then scale as MbMb

0.19/Mb
0.36�3�Mb

0.11

(from proportionality 8). Alexander (Alexander, 2003) got bone
stress �Mb

0.10 because he used EMA=Lm/Lbend�Mb
0.26 from Biewener

(Biewener, 1989) whereas we use �Mb
0.25 from Biewener (Biewener,

2005), and this causes the moment arm of the ground reaction force
to scale as Mb

0.19 here instead of as Mb
0.18. So even though the

moment arm of the muscle force scales more nearly as expected
under isometry (as Mb

0.44 vs Mb
0.33) than does the moment arm of

the ground reaction force (as Mb
0.19 vs Mb

0.33), bone axial stress
due to bending increases somewhat faster with increasing body
mass under maximal muscle forces (as Mb

0.17) than under body-
weight-dictated loads (as Mb

0.11). In order to achieve equal bone
stress among different-sized mammals under body loads, bone
diameter would need to scale as Mb

(1+0.19)/3Mb
0.40 (from

proportionality 9), rather than as Mb
0.36 (observed; see above), and

then stress under maximal muscle forces would scale as
Mb

0.81+0.44/Mb
0.40�3Mb

0.05 (from proportionality 4).
Geometric similarity would generate perfect bone stress

similarity – stress �Mb
0 (from proportionality 4) – under maximal

muscle forces whereas stress would scale as Mb
0.33 under body-

weight-dictated loads (from proportionality 8). Because of the ways,
in which moment arm lengths (�Mb

0.19 and Mb
0.44) and muscle fibre

cross-sectional area (�Mb
0.81) deviate from isometry in terrestrial

mammals, the scaling exponents for bone stress (�Mb
0.17 and Mb

0.11)
become remarkably similar regardless of whether the bending
moment is determined by maximal muscle forces, or by the body
weight – and their respective moment arms. Both exponents are
intermediate between those that would be caused by maximal
muscle forces (Mb

0), and by body-weight-dictated loads (Mb
0.33),

respectively, under perfect geometric similarity. So bone stress due
to maximal muscle forces increases moderately fast with increasing
body size, rather than remaining constant as it would under
geometric similarity; �Mb

0.17 vs Mb
0 (from proportionality 4).

However, bone stress due to body-weight-dictated loads increases
much more slowly with increasing body size than it would under
geometric similarity; �Mb

0.11 vs Mb
0.33 (from proportionality 8). The

similar rates of increase in bone stress, caused by maximal muscle
forces and by the body weight, respectively (�Mb

0.17 and Mb
0.11),

mean that safety factors for both kinds of load decrease in parallel,
at similar moderate rates (�Mb

–0.17 and Mb
–0.11), as body size

increases. The ratio between the safety factors for each of the two
kinds of load scales as Mb

0.06 and is thus nearly the same in different-
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sized mammals. But bone stress due to maximal muscle forces is
always larger, so animals operate with lower safety factors during
maximal locomotor events than during cruising locomotion. The
former mode might therefore be expected to have a larger impact
on the selection of dimensions of the musculo-skeletal system. But
among animals in general, cruising locomotion occurs much more
frequently. For that reason, and because of the risk for material
fatigue that the high incidence of cruising locomotion may incur,
cruising locomotion may select for larger safety factors against
breakage than do maximal performance events. This might help to
explain why the mammalian musculo-skeletal dimensions change
(scale) with animal size in such a way as to make bone stress
increase in parallel, at about the same moderate rates, with
increasing body weight for both kinds of load.

Based on strain gauge measurements, Rubin and Lanyon reported
that peak axial force (not stress) in the tibia during high-speed
running of five vertebrates, in sizes from turkey to elephant, scales
as Mb

0.69 (Rubin and Lanyon, 1984). This is close to the empirical
scaling Mb

0.72 for bone cross-sectional area in mammals [from Mb
0.36

for bone diameter in Alexander et al. (Alexander et al., 1979)], so
bone axial stress would scale as Mb

0.69/Mb
0.72�Mb

–0.03. Bone stress
would thus be similar during vigorous locomotion in different-sized
species in this mixed sample of birds and mammals, entailing similar
safety factors against breakage because the breaking stress of bone
is nearly independent of animal size and taxonomy (Alexander,
1981; Biewener, 1982; Bonser and Purslow, 1995; Kirkpatrick,
1994; Maloiy et al., 1979).

A similar approach
Kokshenev (Kokshenev, 2003) and Kokshenev et al. (Kokshenev
et al., 2003) reconsidered McMahon’s elastic similarity scaling
principle. Originally, McMahon (McMahon, 1975a; McMahon,
1975b) showed that the transverse and longitudinal dimensions of
different-sized structures under self-load must scale to one another
as t�l3/2, and to the structure’s mass as t�Mb

3/8 and l�Mb
1/4, in order

for the structure to be elastically stable and resist buckling under
the force of gravity. This is fine for structures like trees and other
plants, as well as for their branches and twigs, when the dominant
forces acting on them are due to gravity (McMahon and Kronauer,
1976; Norberg, 1988a; Norberg, 1988b). But Kokshenev
(Kokshenev, 2003) argued, like we do in this paper, that skeletal
elements of terrestrial mammals are adapted to maximal muscle
forces during maximal effort locomotion, not to forces proportional
to the gravitational force on the body (its weight), as during cruising
locomotion, which has usually been assumed.

Kokshenev therefore modified McMahon’s elastic similarity
principle in two respects (Kokshenev, 2003). First, he derived the
scaling required for structural support members to maintain elastic
stability against buckling under near-axial compressive forces
caused by maximal muscle forces. Because structural failure of
animal skeletal elements is much more likely to occur under
bending forces than under near-axial compressive forces, we do not
consider this scaling rule any further here.

His second derivation concerns the scaling required to maintain
equal safety factors against breakage of support elements placed in
bending under maximal muscle forces, which is the loading mode
most likely to cause animal support structures to break. So muscle-
induced bending loads probably drive evolutionary adaptation of
the geometry of muscles and skeletal elements, as we emphasise
here. We will therefore review this scaling rule of Kokshenev, and
show that it accords with the stress-similarity rule that we have given
in proportionality 5.

Kokshenev (Kokshenev, 2003) did not show how bone and
muscle dimensions must scale directly to one another, as we do
(proportionality 5), but he did so indirectly by referring to their
scaling relationships with respect to the body mass. Kokshenev
(Kokshenev, 2003) and Kokshenev et al. (Kokshenev et al., 2003)
presented the scaling principle, which gives stress similarity under
bending by maximal muscle forces, as 3d–la. Here d, l and a are
scaling exponents in power functions relating bone diameter, bone
length and muscle cross-sectional area to the body mass Mb.
Working backwards, we therefore get Mb

3d/Mb
l�Mb

a or Mb
3d�Mb

aMb
l.

If we refer instead directly to bone transverse length, bone
longitudinal length and muscle transverse length – not to muscle
cross-sectional area – and shift to the notation that we use, this
scaling rule can be rewritten as ts3�tm2 l, where the l here refers
directly to bone longitudinal length, not to the exponent relating
bone length to body mass as in Kokshenev’s notation. The
relationships between bone and muscle transverse lengths (ts, tm)
and bone longitudinal length (l), implicit in Kokshenev’s scaling
rule for similar stress in corresponding support elements among
different-sized animals, are thus identical to those given in our
proportionality 5.

Dimensional relationships for shear stress similarity of
support elements placed in torsion by maximal muscle forces
There is no information available, neither for birds nor for mammals,
about how the ratio between the twisting moment arms of the muscle,
and of the external reaction force, may vary with body size. If the
twisting lever arm ratio is constant, the external twisting force Fext

is proportional to the muscle force Fm. The following scaling is
based on that. Therefore, l may refer to either moment arm
regardless of whether maximal muscle forces or the body weight
determines the load. If, instead, the twisting lever arm ratio varies
with animal size, l must refer to the length of the moment arm that
determines the twisting moment.

When a shaft-like structural support element with a roughly
circular cross-section is placed in torsion, the material shear stress
 at a distance r from the central axis of the shaft is:

where T is the twisting moment, and J is the polar second
moment of area, a mathematical property of the geometry (size
and shape) of the cross-section, obtained by multiplying each ring-
shaped, concentric, cross-sectional element of area (like 2rr in
Fig.5) by the square of its distance from the central axis (like r
in Fig.5) and adding over the entire cross-section, so J is
proportional to the fourth power of the transverse linear dimension
(Nash, 1977).

The following treatment is analogous to the foregoing one for
stress similarity in bending under maximal muscle forces and leads
up to the same proportionalities 5 and 9. When the twisting moment
is caused by a maximal muscle force it is proportional to muscle
cross-sectional area multiplied by the force moment arm, Ltwist,
which is a linear function of the longitudinal lengths of structural
support elements (Figs3 and 5). When the spatial relationships of
corresponding support elements are similar among different-sized
animals, shear stress scales as:

Therefore, shear stress due to torsion will be the same at
corresponding cross-sectional positions among different-sized

,
  
τ =

rT

J
 (10)

 

τ
tstm2 l

ts4
tm2 l

ts3
. (11)� �
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animals, entailing similar safety factors against breakage due to
shear, when:

ts3 � tm2 l , (12)

which is as for axial stress in proportionality 5. The twisting moment
due to maximal muscle forces increases as tm2 l with increasing animal
size. In order to maintain the same shear stress in structural support
elements, and thus the same safety factor against breakage, their
transverse dimension, such as the diameter, must increase as ts3.

For a more intuitive derivation, consider a cross-section at the
same relative position in corresponding structural support elements
among different-sized animals. Further consider a thin, cross-
sectional ring of area 2r1r1 at radial distance r1 from the geometric
axis (Fig.5). An external force Fext, arising in reaction to a maximal
muscle force, acts on a twist moment arm Ltwist with respect to the
geometric axis. When the ring-element area 2r1r1 is the same
proportion of the cross-section and is located at the same relative
cross-sectional position r1 in different-sized animals, and when the
reaction twisting moment, caused by all forces acting over the cross-
section, is in equilibrium with the external twisting moment, the
tangential, torsional shear force fshear,1 set up on that particular
element area scales as:

Torsional shear stress in the characteristic cross-sectional ring-
element area 2r1r1 therefore scales as:

which gives the condition set out in proportionalities 5 and 12.
Geometric similarity requires that ts�tm�l�Mb

1/3, and this fulfils
the conditions in proportionalities 5 and 12, even though there are
other conceivable solutions. In the special case when geometric
similarity prevails, maximal muscle forces thus generate identical
shear stress at corresponding positions in structural support elements
subjected to twisting, regardless of animal size (�Mb

0; from
proportionality 14).

When instead the body weight dictates the external reaction force
that must be elicited, as during cruising locomotion, the body mass
Mb determines the twisting moment T, and proportionalities 14 and
12 change to:

and:

ts3 � Mbl , (16)

where proportionality 15 is analogous to proportionality 8, and
proportionality 16 is as for axial stress similarity (proportionality
9). Proportionality 16 gives the conditions under which shear stress
would be the same in different-sized animals under loads
proportional to the body weight. In order to satisfy proportionality
16, the scaling relationships between the constituent variables must
obviously be different from those required in proportionality 12;
and proportionality 16 is not compatible with geometric similarity,
under which shear stress would increase as Mb

0.33 with increasing
body mass (from proportionality 15).

Taking body mass Mb to be proportional to generalised
transverse and longitudinal body dimensions as Mb�t2l,
proportionality 16 gives t�l2, which is the condition for shear
stress similarity in torsion under self-load, and the same as for

fshear,1
Fext Ltwist

r1

tm2 l

ts
. (13)� �

τ =
fshear,1

2π 1δ rr 1

tm2 l

ts ts ts
, (14)�

Mbl

ts3
τ   (15)�

axial stress similarity in bending under self-load. This contrasts
with the relationship t�l obtained here for shear stress similarity
in torsion, due to maximal muscle forces, for the special case
when geometric similarity prevails.

Dimensional relationships for bent-shape similarity of support
elements placed in bending by maximal muscle forces

Fluid-elastic distortion of lifting and propulsive surfaces, like fins,
wings and feathers, influences their function, as reviewed under a
separate heading below. Flight feathers of birds, in particular the
primaries that form the hand-wing, do bend and twist considerably
during flight. The following scaling for similarity in bent shape (this
section) and twisted shape (next section) is done with bird flight
feathers in mind. The ratio between the bending moment arms of
the pectoral muscle and of the wing’s resultant aerodynamic force
is constant among different-sized birds (Janson, 1996), so therefore
any position-characteristic aerodynamic force is directly proportional
to the muscle force – a condition we use in the following scaling.

When a slender beam is placed in bending, and given that the
bending moment arm is at least 20 times longer than the beam
diameter and 10 times the deflection distance, then, from beam
theory, a bending force Fext, acting on moment arm Lbend, causes
the beam to deflect through distance d, as:

where E is the modulus of elasticity, I is the second moment of area
of the cross-section of the beam and EI is its flexural stiffness (Figs1
and 3) (e.g. Wainwright et al., 1976; Nash, 1977; Alexander, 1983b;
Niklas, 1992).

  
d =

Fext Lbend
3

3EI
,  (17)

r 

Torsion
axis

Generator before twisting 

Generator after twisting 

δr Fext
fshear

Ltwist

Ltorque

θ

Fig.5. Geometry of a structural support element with a circular cross-
section placed in torsion by an external force Fext that is applied at an axial
distance Ltorque from the fixed end to the left, and at a transverse distance
Ltwist off the central axis of the shaft. The twisting moment FextLtwist causes
the shaft material, immediately to the left of the internal cross-section
shown, to exert a tangential, torsional shear force fshear on a cross-
sectional, ring-shaped element of area, with radial thickness r, located at a
radial (transverse) distance r from the central axis. The force vectors are
not drawn to the same scale. The lower figure shows the angle  through
which the distal end of the shaft twists relative to the fixed end to the left
when subjected to a torque.
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The moment arm Lbend is a linear function of longitudinal lengths
of structural support elements (Figs1 and 3). When Fext is set up
in reaction to a maximal muscle force, the deflection distance d
scales as:

If corresponding support elements of different sizes bend to
similar shapes, the ratio between the deflection distance d and the
length of the bending moment arm Lbend is constant. From Eqn17
and proportionality 18 relative bending, or bent shape, scales as:

so equal bent shape under maximal muscle forces requires that:

ts4 � tm2 l2. (20)

Geometric similarity requires that ts�tm�l�Mb
1/3, and this fulfils

the condition set out in proportionality 20, even though there are
other conceivable solutions. In the special case when geometric
similarity prevails among different-sized animals, corresponding
support elements placed in bending by moments, caused by maximal
muscle forces, thus take the same bent shape regardless of animal
size (d/Lbend�Mb

0; from proportionality 19).
If instead the body weight dictates the external reaction force,

proportionalities 19 and 20 change to:

and:

ts4 � Mbl2. (22)

Proportionality 22 gives the conditions under which different-
sized feathers would bend to the same shape under loads proportional
to the body weight. It is not compatible with geometric similarity,
which would cause feather relative bending d/Lbend to increase as
Mb

0.33 with increasing body mass (from proportionality 21).
If body mass Mb is taken to be proportional to generalised

transverse and longitudinal body dimensions as ts2l, proportionality
22 gives t�l3/2, which is the necessary condition for similar bent
shapes of different-sized structures, like cantilever beams, placed
in bending under their own weight or under loads proportional to
the weight. This is the classic rule of elastic similarity under self-
load (McMahon, 1975b; McMahon, 1984; McMahon and Kronauer,
1976). When it is applied to different-sized animals, their overall
body proportions are taken to be as required for elastic similarity,
so that body volume, and hence body weight, are proportional to
l�t2, and so to (l�l3/2�2)l4 and to (t2/3�t2)t8/3 (McMahon, 1975b;
McMahon, 1984; McMahon and Kronauer, 1976). Body-weight-
dictated loads occur under static, resting conditions and during steady
cruising locomotion.

The geometric similarity relationship t�l, obtained here for bent-
shape similarity under maximal muscle forces, thus contrasts with
the classic rule of elastic similarity under self-load, which requires
that t�l3/2 in order to give similar bent shapes among different-sized
structures placed in bending under loads proportional to the weight
(McMahon, 1975b). Empirical data can be tested against
proportionalities 19–22 to find out which kind of load that causes
the most similar bent shapes among different-sized animals. This
may indicate whether bending stiffness is adapted more nearly to
loads determined by maximal muscle forces or by the body weight.

d
tm2 l3

ts4
. (18)�

3

  

d

Lbend

=
Fext Lbend

Lbend 3EI

tm2 l2

ts4
,  (19)�

Mbl

ts4
d

Lbend

2

,  (21)�

Worcester measured wing primary feathers from 13 bird species
of mixed taxonomy and found that feather length scales with body
mass as Mb

0.30 and feather shaft diameter as Mb
0.37 (Worcester, 1996).

With these data, feather relative bending due to maximal muscle
forces would decrease with increasing body weight as Mb

–0.21

(Mb
0.67+0.30�2–0.37�4; from proportionality 19) but increase as Mb

0.12

under loads proportional to the body weight (Mb
1.00+0.30�2–0.37�4;

from proportionality 21). Wing primary feathers would thus bend
to more similar shapes among different-sized birds under loads
proportional to the body weight than under maximal muscle forces.

Dimensional relationships for twisted-shape similarity of
support elements placed in torsion by maximal muscle forces
There is no information about how the ratio between the twisting
moment arms of the pectoral muscle and of the wing’s resultant
aerodynamic force may vary with bird size (Figs3 and 5). In the lack
of such data, and because the ratio between the bending moment arms
is nearly constant among different-sized birds (Janson, 1996), the ratio
between the twisting moment arms is treated as constant here.

In a shaft-like support element that is subjected to a constant
twisting moment T along a length Ltorque, the angle  through which
one end of the shaft twists relative to the other is:

(Fig.5) (Nash, 1977). When Fext is caused by a maximal muscle
force, T is proportional to muscle cross-sectional area, and so to
muscle transverse length squared multiplied by the twisting moment
arm Ltwist, which is a linear function of the longitudinal lengths of
structural support elements (Figs3 and 5). The polar second moment
of area, J, is proportional to the fourth power of the transverse length,
and the shear modulus of elasticity, G, is shear stress over shear
strain, here taken to be the same among different-sized animals.
When the spatial relationships of corresponding support elements
are similar among different-sized animals, the angle of twist scales
as:

Therefore, the angle of twist is identical in corresponding
structural support elements in different-sized animals when:

ts4 � tm2 l2 , (25)

which is as for bent-shape similarity in proportionality 20.
In the special case when geometric similarity prevails among

different-sized animals, corresponding support elements placed in
torsion by maximal muscle forces thus take the same twisted shape
() regardless of animal size (�Mb

0; from proportionality 24).
If instead the body weight dictates the external reaction force,

proportionalities 24 and 25 change to:

and:

ts4 � Mbl2 (27)

which is identical to proportionality 22.
Proportionality 27 shows the requirements for equal twisted shape

under loads proportional to the body weight and is as for bent-shape
similarity. This function is not compatible with geometric similarity,
which would cause twist angle to increase as Mb

0.33 (from
proportionality 26).

θ
tm2 ll

ts4
 .  (24)�

θ
ts4

 , (26)�
Mbl2

θ =
TLtorque

GJ
 (23)
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Effects of fluid-induced distortion of lifting and propulsive
surfaces

Similarity in bent shape, or in twisted shape, may not be important
with most skeletal elements because they deform rather little. The
tibiofibula in the frog hindlimb bends only 2–3deg in jumping,
which is among the largest leg bone deformations reported hitherto
(Calow and Alexander, 1973). Optimum stiffness for leg bones was
modelled by Alexander et al. (Alexander et al., 1990), based on the
premise that thin bones bend more so their muscles must shorten
more and therefore need longer fibres and so must be heavier. Their
optimisation criterion for bone thickness was minimisation of the
combined mass of bone plus muscle. Here we take a different
perspective and consider functional effects of fluid-induced changes
in the shapes of lifting and propulsive surfaces.

The skin membrane of the bat hand-wing is supported, spread
and tightened by very thin finger bones. The outer phalanges of the
third digit, which alone form the distal part of the wing’s leading
edge, bend and twist especially much under the pull from the flight
membrane [figs6–10 in Norberg (Norberg, 1976) and figs9.3a–e
and fig.11.15 in Norberg (Norberg, 1990)]. An effect of this
flexibility is that transient forces from the wing membrane are
smoothed out, reducing the risk of digit breakage and membrane
rupture. In addition, because the distal part of the third digit bends
strongly backwards, and also bends dorso-ventrally and twists, the
wingtip pitches down in the down-stroke, up in the up-stroke,
matching its angle of attack (below stall angle) to the steep incidence
of the airflow due to the wing’s flapping velocity. This is similar,
in effect, to the nose-down twisting of the separated outer parts of
the anterior-most primary feathers in bird wings in down-stroke
(Fig.3) (Norberg, 1985).

Fish fin rays deflect and bend under hydrodynamic loads, and
the resulting fin deformation strongly improves propulsion efficiency
(Zhu and Shoele, 2008). The aero-elastic bending and twisting
behaviour of flight feathers in bird wings (Fig.3) and tails give
profound aerodynamic benefits (Norberg, 1985; Norberg, 1994).
Insect wings are stiffened by veins, which act like spars. They bend
and twist under aerodynamic and inertial loads in flight, and the
resulting wing distortions enhance aerodynamic efficiency (Norberg,
1972; Ishihara et al., 2009; Miller and Peskin, 2009; Mountcastle
and Daniel, 2009; Young et al., 2009).

Load-induced distortion of flexible, lifting and propulsive surfaces
alters their hydrodynamic or aerodynamic characteristics, often to
the effect that locomotor performance is improved, as reviewed
above. Therefore, there must be strong selection on their fluid-elastic
properties, which determine their behaviour in interaction with water
or air. Some shapes obviously improve function more than others,
so distorted shape may be expected to be similar among different-
sized animals. Judging by photographs and films, the bending and
twisting of fish fins, bird flight feathers and insect wings seem to
be roughly similar in different-sized animals within each category.

Conclusion
The rationale for doing scaling analyses of locomotor organs is this.
Relationships between linear dimensions, areas and volumes are prone
to change with increasing body size, for pure geometrical reasons.
Such scale effects influence function. If there is a fit between empirical
data and a particular scaling relationship between different dimensions,
as predicted from mechanical principles to enable similar functions
in different-sized animals, then some insight has been gained about
what functional demands and constraints that govern selection.
Scaling analysis is therefore a powerful method for detecting what
functions that drive the evolution of structure and form.

Geometric similarity has hitherto been mainly a descriptive term,
denoting similar form among different-sized animals, but with no
functional connotation. Here we have explored possible functional
relationships with locomotion. We distinguished between the
transverse ts and longitudinal l length dimensions of structural support
elements and scaled them to one another and to the muscle cross-
sectional, transverse, length dimension tm as required by each of four
similarity principles. And this led to the identification of geometric
similarity as a scaling principle that gives: (1) constant axial stress,
(2) constant torsional shear stress, as well as (3) constant bent shape,
and (4) constant twisted shape of corresponding structural support
elements placed in bending, or in torsion, respectively, under maximal
muscle forces. These functional attributes may therefore help to
explain the prevalence of geometric similarity among animals.

The point that maximal muscle forces give rise to stress similarity
among geometrically similar animals of different sizes is apparent
from the following very simple argument. In geometrically similar
systems of different size, the ratio of the stresses in two components
– in this case a muscle and a bone – will be independent of size. If
the maximum stress the muscle can exert is the same for all sizes
of animal, the resulting bone stress will also be the same for all
sizes. No other scaling rule, pertaining to muscles and bones alike,
would have this effect, as is obvious from the conditions for stress
similarity set out in proportionalities 5 and 12.

The dimensional requirements for stress similarity in bending and
in torsion are identical (proportionalities 5 and 12) and those
for distorted-shape similarity in bending and in torsion are also
identical to each other (proportionalities 20 and 25), leaving two
different similarity functions. Geometric similarity is compatible
with both but there are other conceivable scaling relationships
between ts, tm and l that would satisfy one or the other of
proportionalities 5 ( proportionality 12) and 20 ( proportionality
25). Geometric similarity is the only principle, however, that
muscles and bones can share in order to satisfy both functions. To
see this, let ts�la and tm�lb, and insert this in proportionalities 5
( proportionality 12) and 20 ( proportionality 25):

l3a � l2bl (28)

l4a � l2bl2. (29)

From proportionality 28 we get 3a2b+1 and proportionality 29
gives 4a2b+2. Solving for a, and equating the results, we get
(2b+1)/3(2b+2)/4, which gives b1. When inserted in
proportionality 28 or proportionality 29 it gives a1. So the
geometric similarity relationship ts�tm�l satisfies proportionality 5
( proportionality 12) as well as proportionality 20 ( proportionality
25), and no other scaling rule would have this dual effect. Therefore,
when geometric similarity prevails, bending (or twisting) of a
structural support element by maximal muscle forces causes the
same axial stress (or torsional shear stress) and the same bent shape
(or twisted shape) in different-sized animals.

Whether safety factors against breakage, and optimal extents of
distortion, of structural support elements evolve more nearly with
respect to loads dictated by the body weight (during cruising
locomotion), or by maximal muscle forces (during maximal
performance events), will depend on the natural frequency of
occurrence of the respective load. And this, in turn, dictates the size
scaling function, such that stress in support elements, and their
distorted shape, remain more similar among different-sized animals
under one or the other of the two kinds of load.

In geometrically similar animals of different sizes, loads dictated
by the body weight would cause bone stress to increase as Mb

0.33 (from
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proportionality 8) whereas maximal muscle forces would generate
perfect bone stress similarity, �Mb

0 (from proportionality 4). Stress
generated by maximal muscle forces is always larger, so the ratio
between bone stresses generated by maximal muscle forces and by
the body weight decreases as Mb

–0.33 with increasing body size.
Dimensions of the musculo-skeletal system of bird wings are fairly

close to isometric. Based on available data, stress in the bird humerus,
placed in bending under body-weight-dictated loads (cruising flight),
would scale as Mb

0.23 (from proportionality 8), and safety factors as
Mb

–0.23, whereas stress due to bending under maximal muscle forces
would scale as Mb

–0.04 (from proportionality 4), and safety factors as
Mb

0.04, which is close to predictions for geometric similarity and
maximal muscle forces (Mb

0). So skeletal stress is much more similar
among different-sized birds under maximal muscle forces than under
body-weight-dictated loads. This suggests that adaptation of the wing
musculo-skeletal system in birds has evolved with respect to maximal
muscle forces rather than to body-weight-dictated loads. The skeletal
data above are from raptors, which have a high frequency of
occurrence of maximal performance events for prey capture, so they
may be especially adapted to withstand large aerodynamic loads.

Based on available data for bird primary wing feathers, axial stress
in the feather shaft due to bending would scale as Mb

0.19 under loads
proportional to the body weight (from proportionality 8), and as
Mb

–0.14 under maximal muscle forces (from proportionality 4). So
stress tends to be more similar under maximal muscle forces than
under body loads also in primary feather shafts among different-
sized birds, even though such small differences in absolute value
between scaling exponents, based on empirical data, here and
elsewhere, may be fortuitous because of the wide confidence limits
of empirical scaling exponents.

In terrestrial mammals, skeletal dimensions are geometrically
similar except among very large species. But leg muscles and
moment arms depart from geometric similarity. Leg muscle fiber
cross-sectional area scales as Mb

0.81, rather than as Mb
0.67 under

isometry [table2-1 in Alexander (Alexander, 1985a)]. And because
of increasingly more upright leg postures in larger mammals, the
moment arm of the muscle force scales as Mb

0.44 and the moment
arm of the ground reaction force scales as Mb

0.19, rather than as Mb
0.33

for both under isometry (Biewener, 2005). An intriguing result of
this departure from geometric similarity is that the scaling exponents
for bone stress become remarkably similar regardless of whether
the bending moment is determined by maximal muscle forces (stress
�Mb

0.17), or by the body weight (stress �Mb
0.11) – and their respective

moment arms. Both exponents are intermediate between those that
would be caused by maximal muscle forces (stress �Mb

0) and by
body-weight-dictated loads (stress �Mb

0.33) under perfect geometric
similarity. So bone stress due to maximal muscle forces increases
moderately fast with increasing body size, rather than remaining
constant as it would under geometric similarity [as Mb

0.17 vs Mb
0 (from

proportionality 4)]. However, bone stress due to body-weight-
dictated loads increases much more slowly with increasing body
size than it would under geometric similarity [as Mb

0.11 vs Mb
0.33 (from

proportionality 8)].
The dimensions of the musculo-skeletal system in terrestrial

mammals thus change (scale) with animal size in such a way as to
cause a compromise that minimises departure from stress similarity
for both kinds of load. The ratio between bone stresses caused by
maximal muscle forces, and by the body weight, respectively, scales
as Mb

0.17/Mb
0.11Mb

0.06, and is thus almost identical among mammals
of different sizes. The safety factor ratio varies in inverse proportion
to stress and scales as Mb

–0.06. If selection favours a certain ratio
between safety factors with respect to, respectively, maximal muscle

forces and body-weight-dependent loads, this could explain the similar
scaling of stress – due to each of the two kinds of load – across
different-sized mammals. Even though maximal muscle forces cause
larger bone stress for any given body size, body-weight-dependent
loads are much commoner, so this, together with the associated higher
risk of bone-material fatigue that they may incur, might select for
larger safety factors for body-weight-dependent loads. This might help
to explain why the mammalian musculo-skeletal dimensions change
(scale) with animal size in such a way as to make bone stress increase
in parallel, at about the same moderate rates (as Mb

0.17 and Mb
0.11),

with increasing body weight for both kinds of load.
Based on available data on bird feather dimensions, shaft relative

bending would scale as Mb
–0.21 under maximal muscle forces (from

proportionality 19), and as Mb
0.12 under loads proportional to the

body weight (from proportionality 21). Wing primary feathers would
thus bend to somewhat more similar shapes among different-sized
birds when loads are proportional to the body weight than when
caused by maximal muscle forces but the latter load causes more
bending for any given body size.

Selection acts to maximise individual fitness. This may occur
indirectly via selection for optimisation of morphology and function.
Adherence of different-sized animals to some particular scaling rule
has not been directly selected for as such, of course, but may have
arisen from adaptation in morphological proportions, occurring
independently in each separate species-lineage. Conformance of
different-sized species with the geometric similarity principle may
thus have arisen as a by-product of selection for adequate and similar,
size-independent, safety factors against breakage, and similar
optimal, size-independent, distorted shapes of structural support
elements placed in bending, or in torsion, by maximal muscle forces,
as emphasised in this paper.

LIST OF SYMBOLS AND ABBREVIATIONS
C.P. centre of aerodynamic pressure on a streamwise strip element

of area of a wing or feather
d deflection distance of a support element placed in bending
E modulus of elasticity; the ratio stress/strain
EI flexural stiffness
EMA effective mechanical advantages
Fext external force set up in reaction to the out-force generated
Fm muscle force
Fout out-force
faxial internal axial force set up on a cross-sectional element of area

zy in reaction to an external bending moment
fshear internal tangential torsional shear force set up on a ring-shaped

cross-sectional element of area 2rr in reaction to an
external twisting moment

G shear modulus of elasticity; the ratio (shear stress)/(shear
strain)

I second moment of area of a cross-section
J polar second moment of area of a cross-section
L longitudinal length
Lbend length of bending moment arm
Lm length of muscle moment arm
Ltorque longitudinal length of a support element along which a torque

is applied
Ltwist length of twisting moment arm
l longitudinal length dimension
M moment
Mb body mass
r transverse, radial moment arm of internal, tangential shear force

fshear acting on ring-shaped, cross-sectional element of area
2rr with respect to the central, torsion axis in a cross-
section of a structural support element placed in torsion

T twisting moment
t generalised transverse length dimension
tm transverse length dimension of muscle
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ts transverse length dimension of structural support element
y transverse moment arm of internal axial force faxial acting on

cross-sectional element of area zy with respect to the
neutral axis in a cross-section of a structural support
element placed in bending

z width of a cross-sectional element of area, parallel with the
neutral surface

r width of cross-sectional ring-element of area with its centre on
the geometric axis of a supporting element

y thickness of a cross-sectional element of area, measured
perpendicular to the neutral surface

 angle of twist of a structural support element placed in torsion
 axial stress; axial force per unit cross-sectional area
 torsional shearing stress; shear force per unit cross-sectional

area
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