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INTRODUCTION
Flying insects depend on unsteady fluid dynamic effects to generate
lift in their flapping flights. The majority of the experimental
(Ellington et al., 1996; Dickinson et al., 1999; Usherwood and
Ellington, 2002; Birch and Dickinson, 2003) and numerical (Liu et
al., 1998; Wang, 2000; Sun and Tang, 2002; Rammamurti and
Sandberg, 2002; Wang et al., 2004; Luo and Sun, 2005; Miller and
Peskin, 2005) investigations have been performed with the rigid
wing models that are given combined active flapping and pitching
motions. These investigations have found that the unsteady fluid
dynamic effects are significantly affected by the kinematical
characteristics of the pitch motions such as the phase lag between
pitching and flapping (Dickinson et al., 1999). On the other hand,
many observations have reported the flexibility of the insect wings
during flapping flights with various modes of deformation. The most
significant among them is the high torsional flexibility in Diptera
which is concentrated on the narrow wing basal and short root
regions. The consequences of this are twofold: (1) it is hard to
transmit the active torsion applied by the muscle to the outer wing
and (2) the wing can twist easily to provide a passive change in the
angle of attack (Ennos, 1987) or passive pitch motion.

In general, the passive pitch motion of the wings that solves the
equation of motion balances three forces: wing inertial, elastic and
fluid forces. According to Ennos (Ennos, 1988b), the wing inertial
force accounts for much of the wing rotation at the stroke reversals
in dipteran flapping flight. Although the wing inertial force might
be dominant at the stroke reversals, where the acceleration is large,
it is not enough to explain the passive pitch motion during the parts
of the stroke other than the wing reversals. Investigation of the
passive pitch motion during the entire stroke should be performed
by taking into account all three of these forces. From the view point
of the fluid surrounding the wings, these forces exerted on the wings
act back on the fluid, producing a cycle of interaction between the

fluid and the wings, termed the fluid–structure interaction (FSI),
through the equilibrium on their interface.

The aim of this paper was to reveal the details of the passive
pitch motion due to wing torsional flexibility and its effects on lift
generation by using (a) the non-linear FSI finite element method to
analyze the precise motion of the wing passive pitching and the
surrounding fluid flow, (b) characterization of the insect flight using
a FSI similarity law, (c) the lumped torsional flexibility model as
a simplified dipteran wing and (d) the analytical wing model.

The finite element method (Ishihara and Yoshimura, 2005;
Ishihara et al., 2008) was used to solve the motion of the wing model
which undergoes active sinusoidal flapping motion and passive
pitching in the two-dimensional fluid. The numerical simulations
are guided by the FSI similarity law (D.I., M.D. and T.H., manuscript
submitted), which was used to correctly incorporate data from the
selected real insect, the crane fly Tipula obsolete (Ellington, 1984a;
Ellington, 1984b), and the robotic fly (Wang et al., 2004) into our
wing model. The lumped torsional flexibility model consists of a
plate with unit extent in the z-direction and an attached spring. The
former models the wing cross-section averaged over the wing span.
The latter models the concentrated torsional flexibility of the wing
and allows the wing to twist around its torsional axis. We also
introduced the analytical wing model, a single degree of freedom
mass–spring–dashpot system, to explain characteristics of the
passive pitching motion in the simulation.

The passive pitching motion of our wing model simulates well
the real insect’s pitching motion. The model wing keeps the high
attack angle during its translation and rotates at the stroke
reversals. The resulting pitch angle is approximately equal to that
of the selected insect, the crane fly. It is especially important that
the model wing begins to twist before it changes its flapping
direction. Such advanced pitch motion is necessary in order for
the insect flight to increase the lift force (Dickinson et al., 1999)
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and is widely observed in insect flight. The analytical wing model
explains the advanced pitch motion of the passive pitching as well
as the torsion wave observed in the dipteran wing (Ennos, 1988b).
The lift force generated by such passive pitching almost meets the
force required to support the weight of the crane fly, but it is not
quite enough. This could be attributed to the loosely attached
leading edge vortex on the wing due to the long wing chord travel
of the crane fly for the two-dimensional simulation. Indeed the
lift of the fictitious insect flight, whose Reynolds number and
stroke–wing chord ratio are much closer to those of the fruit fly
model (Wang et al., 2004), shows a 35% increase compared with
that of the crane fly flight due to the more tightly attached leading
edge vortex on the wing.

MATERIALS AND METHODS
Non-linear finite element FSI analysis

To analyze wing motion, the surrounding fluid motion and their
interaction, we used the finite element FSI analysis method
(Ishihara and Yoshimura, 2005; Ishihara et al., 2008) based on the
monolithic algorithm (Zhang and Hisada, 2001; Rugonyi and
Bathe, 2001), which simultaneously solves the following
equations.

(a) Navier–Stokes equations for the incompressible viscous fluid:

and

where ρ, vi and σij are the mass density, velocity and stress with
the superscript f indicating the fluid. The fluid is assumed to be
Newtonian. The stress σf

ij=pδij+μ(�vi/�xj+�vj/�xi) is used, where
δij is the Kronecker delta, μ is the fluid viscosity and p is the
fluid pressure. Body forces acting on the fluid are ignored for
simplicity.

(b) Equation of motion for the elastic body:

where the superscript s refers to the structural quantity. We ignore
the body forces acting on the elastic body. Let us consider the
equation of motion of a flapping insect wing. Assuming that the
insect is hovering perfectly, the net upward aerodynamic force
acting on the wing will be equal in magnitude and opposite in
direction to the gravitational force on the insect. Note that the
wing weight is 2–4% of the body weight in the crane fly
according to Ellington (Ellington, 1984a), whose data are used
in this study. Thus the gravitational force on the wing can be
ignored and the body force term is dropped in Eqn 2 describing
the wing motion. In this study, the second Piola–Kirchhoff stress
and the Green–Lagrange strain tensors are used. The latter is
defined by es

ij=1/2[�ui/�xj+�uj/�xi+(�uk/�xi)(�uk/�xj)]. We assume
that the increments of these tensors are related by Hooke’s law
and the material non-linearity observed in biomaterials is ignored.
This assumption is justified by the torsional test for the dipteran
wing by Ennos (Ennos, 1988a). The test result for the wing
without immobilization of its basal and root regions has shown
that the relationship between the applied torque and the resulting
angular displacement is approximately linear in pronation or
supination.
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(c) Geometrical compatibility and equilibrium conditions on the
fluid–structure interface:

vf
i = vs

i , (3a)

σf
ijnf

j + σs
ijns

j = 0 , (3b)

where nf
i and ns

i denote the outward unit normal vectors to the fluid
and structure, respectively.

The arbitrary Lagrangian–Eulerian (ALE) method (Hughes et al.,
1981) is used in order to take into account the deformable
fluid–structure interface. For the elastic body, the total Lagrangian
formulation is used in order to take into account the geometrical
non-linearity due to the large deformation. The finite elements used
for the fluid are the stabilized continuous linear velocity and pressure
elements (Tezduyar et al., 1992), while those for the elastic plate
are the mixed interpolation of the tensor component elements (Bathe
and Dvorkin, 1985; Noguchi and Hisada, 1993). The details of the
algorithm of the FSI method used in this study as well as its
verification for the basic FSI problems are given by Ishihara and
Yoshimura (Ishihara and Yoshimura, 2005).

We have selected the two-dimensional wing model similar to that
used by Wang and colleagues (Wang et al., 2004) as a benchmark
to test the validity of our method. Miller and Peskin (Miller and
Peskin, 2005) have used a similar wing model to demonstrate the
validity of their numerical technique. The wing is modeled by a
thin rigid elastic plate of thickness h with chord length c; in our
elastic model a large Young’s modulus is assigned to simulate the
rigid body behavior. The model is two-dimensional having a unit
extent in the z-direction (out-of-plane direction) without variation
in this direction. Following Wang et al. (Wang et al., 2004), an x-
displacement U(t) and an angular displacement around the z-
direction a(t):

are actively applied to the center of the wing, where A0, β and b
are the stroke amplitude, the amplitude of the pitching angle of attack
and the phase shift, respectively. The common frequency f of the
flapping and pitching is set to produce the Reynolds number
Re=ρfVmaxc/μ=75, where ρf is the fluid mass density, μ is the fluid
viscosity and Vmax=πfA0 is the maximum wing velocity. The details
of this test are described in the Appendix, where the time histories
of force coefficients given by our method agree well with the results
of Wang and colleagues (Wang et al., 2004).

FSI similarity law
In this study, we introduced a dynamic similarity law for the FSI
(D.I., M.D. and T.H., manuscript submitted) using the dimensional
analysis of the equations of motion of the FSI system, Eqns 1a, 2
and 3b. Let U, V, L, f and P be the characteristic displacement,
velocity, length, frequency and pressure, respectively. The similarity
law consists of six non-dimensional numbers: Re=ρfVL/μ (the
Reynolds number, the ratio between the inertial force due to the
convective acceleration and the viscous force), St=fL/V (the Strouhal
number, the ratio between the inertial force due to the Eulerian time
derivative acceleration and the inertial force due to the convective
acceleration), Rs=ρsL2f2/E (the ratio between the inertial force due
to the Lagrangian time derivative acceleration and the elastic force),
RM=ρf/ρs (the mass number, the ratio between the fluid inertial force
due to the Eulerian time derivative acceleration and the structural

(ta ) = β sin(2π ft + b) , (4b)

U (t) =
A0

2
cos 2π ft  , (4a)
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inertial force due to the Lagrangian time derivative acceleration),
RIs=fμ/E (the ratio between the fluid viscous and elastic forces) and
RIp=ρfVLf/E (the ratio between the fluid dynamic pressure and the
elastic force), where the characteristic pressure P is evaluated by
the magnitude of the dynamic pressure ρfV2. Only four of them are
independent due to the relationships RIp/RIs=Re and RM=Rs�St�RIp.
The numbers Rs, RIs and RIp are new as far as we know.

Two systems that are geometrically similar are also
dynamically similar if the non-dimensional numbers introduced
above are equal. The FSI similarity law was verified through the
numerical examples of (a) the forced vibration of an elastic
cantilever plate in the quiescent fluid (the problem analyzed in
this paper in the context of flapping flight), and (b) the flow-
induced vibration of an elastic cantilever plate situated in the wake
of a rectangular prism in the uniform flow (D.I., M.D. and T.H.,
manuscript submitted). In each example, five dynamically similar
systems with different fluid and/or reference length were analyzed
by our finite element FSI method. In order to verify the validity
of the present law, all the governing equations were cast in the
dimensional form deliberately. The dynamic similarity of these
systems was successfully verified, with the relative error of the
results being less than 1% in all cases.

In the dimensional analysis of the equations of the motion 
of the FSI system, we assumed the linear strain tensor
es

ij=1/2(�ui/�xj+�uj/�xi) and a linear relationship (Hooke’s law)
between the stress and strain tensors. We also used an alternative
approach to the dimensional analysis of the general FSI system
including, but not limited to, the linear elastic equation. We defined
the following fundamental variables of the FSI system on which
the system motion is dependent: L, U, V, P, ρs, ρf, E (Young’s
modulus) and μ. Applying the standard procedure of the dimensional
analysis to these variables, we found the same non-dimensional
numbers as before. The former analysis ensures that our law is the
general framework of the dynamic similarity law. The latter analysis
ensures that our law can be applied to the FSI system with large
deformation of the elastic body.

The numerical simulations are guided by the FSI similarity law,
which was used to correctly incorporate data from a selected real
insect, the crane fly (Ellington, 1984a; Ellington, 1984b), and a
robotic fly (Wang et al., 2004) into our wing model. It is very
interesting how these parameters vary for a variety of flying insects
and their flight performances change as each number is varied. In
the numerical experiments of this study, comparison of the leading
edge vortex behaviors between the crane fly and fictitious insect

flight deals to some extent with these questions. The leading edge
vortex becomes more tightly attached to the wing as Re and St are
decreased while RM and RIs are preserved. In future work, we will
tackle these interesting questions.

Lumped torsional flexibility model
Most of the wing torsional flexibility in Diptera is concentrated
on the narrow basal and short root regions of the wings as shown
in Fig. 1A, and allows the wing to twist around its torsional axis
in a span-wise direction as shown in Fig. 2 (Ennos, 1987; Ennos,
1988a). Based on these facts, (1) we modeled the wing two-
dimensionally by a rectangular plate, with chord length c and a
unit extent in the out-of-plane direction (z-direction), which is the
span-wise average of the varying cross-section, and (2) we
modeled the torsional flexibility of the wing as an elastic spring,
i.e. the torsional flexibility of the wing is lumped into the spring
and its torsional stiffness is characterized by the spring constant
(the lumped torsional flexibility model). The concept of the lumped
torsional flexibility model is shown in Fig. 1B. Initially, the wing
is at rest with the angular displacement or pitch angle a=0 in the
two-dimensional fluid and then the sinusoidal flapping motion in
the x-direction (Eqn 4a) is applied at its leading edge, where it is
supported by a roller. The flapping motion is approximated by the
sinusoidal function in this study because the actual kinematics of
flies and bees are similar to this simple motion (Ellington, 1984b).
We used a continuum plate model as shown in Fig. 1C. This is
because the plate spring is easily discretized by using finite
elements. This model consists of two parts: the upper narrow part
of length ls and the rest with low and high bending rigidities to
simulate the spring (s) and the rigid body (r), respectively. The
thickness and Young’s modulus of the former are hs and Es and
those for the latter are hr and infinity, respectively. The infinite
Young’s modulus is approximated by setting a value far larger
than Es. The mass density is set to a uniform value ρs over the

A B C

Plate

Spring Plate spring

Rigid plate

Continuum plate model

U(t) U(t)

Dipteran wing (crane fly) 
a

U(UU t)t

Spring model

Fig. 1. Lumped torsional flexibility models. The original insect wing (A) with
the arrows indicating the region of high torsional flexibility is drawn after
Ennos (Ennos, 1988a). The spring model (B) shows the concept of the
present lumped torsional flexibility model, and the continuum plate model
(C) shows its computational implementation using the continuum plate.
Note that the span-wise direction or the torsional axis is perpendicular to
the plane in B and C. The pitching motion is evaluated using the angular
displacement or pitch angle a, which is the slope angle of the trailing edge
of the wing as shown in C. U(t), x-displacement of the wing base.

A B

Fig. 2. Wing torsion during the downstrokes (A) and upstrokes (B) drawn
after Ennos (Ennos, 1988a). Most of the wing torsional flexibility in Diptera
is concentrated on the narrow basal and short root regions of the wings,
and allows the wing to twist around its torsional axis in a span-wise
direction.
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Fig. 3. A single degree of freedom mass–spring–dashpot system of the
wing. U(t) and u(t), x-displacement of the wing base and center,
respectively; mw, wing mass; ks, spring constant; F, force; c, chord length;
M, moment.
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entire plate. Few data concerning the wing torsional flexibility are
available. Ennos (Ennos, 1988a) has investigated the wing torsional
stiffness of some Diptera such as crane, drone and blow flies. The
Reynolds number of crane fly flight (Re≈290) is near to that of the
robotic fly flight (Re≈100) (Wang et al., 2004), while the Reynolds
numbers of the flights of drone and blow flies are over 1000. We
selected the crane fly in this study because the applicability of our
numerical method to the flapping wing has been verified in the
flow regime of low Reynolds number using the robotic fly data
(see Appendix). The high torsional flexibility region around the
wing base of the crane fly is schematically denoted by the arrows
in Fig.1A. The chord length of this region is approximately 10–30%
of the maximum chord length that occurs at mid-span. Since the
upper narrow part of the continuum plate model corresponds to the
high torsional flexibility region, we define the length ls of the
continuum plate model as 0.2c. Under this setting, we obtain the
following non-dimensional numbers in the FSI similarity law.

Dynamic numbers:

Geometric numbers:

The parameters of the continuum plate model are determined so
that the non-dimensional numbers (Eqns 5 and 6) agree with those for
the real insect. The real insect selected was the crane fly (Ellington,
1984a; Ellington, 1984b), with span length of one wing R=1.27cm,
total area of the wing pair S=0.59cm2, stroke angle ϕ=123deg., flapping
frequency f=45.5Hz and mass of the wing pair mw=0.000245g. The
total mass of the insect is m=0.0114g. The averaged chord length c is
given by S/(2R)=0.23cm. Let ρs=1.2gcm–3 be the wing mass density
(Jensen and Weis-Fogh, 1962; Wainwright et al., 1982); the averaged
thickness is then h=mw/(ρsS)=0.00069cm, which is identified as the
thickness hr of the hypothetical rigid part of the real insect. The stroke
amplitude A0 of this flapping is estimated by the arc length traveled
by the chord at the mid-span and is given by 0.5R(ϕ/180)π=1.36cm.
The value of the Young’s modulus Es is 6.1GPa (Wainwright et al.,
1982) and those for the fluid mass density ρf and viscosity μ are
ρf=0.0012gcm–3 (air) and μ=0.00018g(cms)–1 (air), respectively. The
non-dimensional numbers St, Re, RIs, RM and γr are determined to be
0.054, 290, 1.4�10–13, 1.0�10–3 and 340, respectively, using the above
properties. On the other hand, the number γs is determined based on
the expectation that it is of the same order as γr; among the numerically
tested values of γs in the region of γr=340, we have found that γs=900
maximizes the averaged lift. To test the validity of this selection of
γs=900, consider the bending of the continuum plate spring with its
upper end fixed and the moment M applied at the lower end. The slope
of the plate at its lower end, using the Euler–Bernoulli beam

  
St =

fc

Vmax
=

c

π A0
 , (5a)

Re =
ρ fVmaxc

μ
 ,  (5b)

  
γ s =

c

hs
 .  (6b)

  
γ r =

c

hr
 , (6a)

  

RM =
ρf

ρs
 ,  (5d)

RIs =
f μ
Es

 , (5c)

assumption, is given by a=Mls/(EsI), where I=hs
3/12 is the second

moment of area for the plate spring. Thus the spring constant of the
plate is given by ks=EsI/ls=Eshs

3/(12ls), which is set to the macroscopic
torsional stiffness Gw of the insect wing. Notice that the selected value
of γs=c/hs=900 gives ks=1.9gcm2(s2rad)–1, which lies in the range of
values for Gw=0.8–15.4gcm2(s2rad)–1 (Ennos, 1988a) obtained for
the crane fly.

The torsional axis of our model is located within the upper 20%
of the wing chord and that of the real insect is located near the leading
edge. We investigate the effects of the location of the rotational axis
in the Appendix, where we show that they can be neglected with
slight perturbation in the force amplitude and phase shift.

Analytical wing model
In order to explain the characteristics of the passive pitching of the
continuum plate model, we introduced a single degree of freedom
mass–spring–dashpot system of the wing (Fig.3) for the theoretical
analysis. The wing is modeled by a rigid rod of length c and its
angular displacement a(t) is assumed to be small enough that it can
be measured by the relative x-displacement δ(t)=u(t)–U(t) of the
wing center according to a(t)=δ(t)/(c/2) (assumption of linearization),
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Fig. 5. (A) Schematic view of the analysis domain, and (B) the finite element
mesh. A unit length in the z-direction is assumed.
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where U(t) and u(t) are the displacement of the wing base and center,
respectively. We assume that the wing mass is concentrated on the
wing center and, to be consistent with the scheme of linearization,
the resultant force on the wing is assumed to act on the wing center
in the x-direction.

The linearized motion of the concentrated wing mass is given by:

mwd2u / dt2 + cfdδ(t) / dt + ks�δ(t) = 0 , (7)

where the first, second and third terms represent the wing inertial
force fi=mwd2u/dt2, the fluid damping force fc=cf(du/dt–dU/dt)=
cfdδ(t)/dt and the restoring force fs=ks�[u(t)–U(t)]=ks�δ(t) due to the
spring. The coefficient ks� is the spring constant for the relative x-
displacement δ(t)=u(t)–U(t) and is obtained by linearizing the
moment and angular displacement relationship M=ksa according to
a=δ/(c/2) and M=fs(c/2), with the result fs=ks�δ, where:

ks� =  4ks / c2 . (8)

In addition, cf is the damping force coefficient due to the fluid and
the subtraction dU/dt is the fluid advection effect induced by the
wing global flapping motion.

This equation of motion is reduced to the following equation:

where F0=mwU0(2πf)2 is the amplitude of the periodic exciting force
F0 given in terms of the amplitude U0 (=A0/2) and the frequency f
of the spring base displacement U(t) given by Eqn 4a. The analytical
solution of Eqn 9 in the steady state is given by:

δ(t) = κδ0sin(2πft + b) , (10)

with:

b =
π
2

− tan−1 2ζ ( f / fn )

1 − ( f / fn )2
 ,  (11c)

mw
d2δ
dt2

+ cf
dδ
dt

+ ks�δ = F0 cos 2π ft  ,  (9)

δ0 =
F0

k
=

mw A0(2π f )2

2k
 , (11a)

κ =
1

[1 − ( f / fn )2 ]2 + [2ζ ( f / fn )]2
 , (11b)

where

and

are the natural frequency and the damping ratio, respectively.
Fig.4 shows the dependence of the phase shift b on the frequency

ratio f/fn for three representative values of the damping ratios ζ=0.5
(under damping), 1 (critical damping) and 2 (over damping).
Regardless of the value of ζ, the phase shift b is (a) positive
(advanced phase shift) for f/fn<1, (b) zero (no phase shift) for f/fn=1

  fn = ks� / mw / 2π   (12)

,ζ = cf / (2 mwks� ) (13)
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one (red line).
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and (c) negative (delayed phase shift) for f/fn>1, respectively. Note
that the amount of the advanced phase shift increases as the value
of f/fn (<1) gets smaller.

RESULTS AND DISCUSSION
Once the chord length c and the fluid material properties ρf and
μ are specified in our continuum plate model, all the other
properties, the flapping frequency f, stroke amplitude A0, plate
thicknesses hr and hs, plate material properties ρs and Es, are
determined to match the non-dimensional numbers of the FSI
similarity law Re, St, RM, RIs, γr and γs obtained from the real
insect. We used c=6.7 cm and the material properties of mineral
oil ρf=0.88 g cm–3 and μ=0.715 g (cm s)–1 in the scaled
computation, following the dynamically scaled model of
Dickinson and colleagues (Dickinson et al., 1999). Since our plate
is flexible at the upper narrow part, unlike the rigid wing model
of Dickinson and colleagues (Dickinson et al., 1999), not only
the fluid motion but also the plate motion and their interaction
are dynamically scaled to the real insect flapping flight. Fig. 5
shows the schematic view of the analysis domain and the finite
element mesh employed, in which the no-slip condition is
assumed on the outer boundary of the fluid domain and the wing
chord. A convergence test where the fluid grid is refined is
provided in the Appendix. The center of the wing is located at
the center of the fluid domain initially. We first apply the

D. Ishihara, T. Horie and M. Denda

 
 

 

A

B

Fig. 8. The frame-by-frame advance of the wing motion from 7 to 8 cycles.
The time interval between each frame is 0.01 cycles. The wing chord
moves from right to left in the downstroke 7 to 7.5 cycles (A) and left to
right in the upstroke 7.5 to 8 cycles (B). The arrows indicate the flapping
direction.

Fig. 9. Fluid velocity fields from 7 to 7.9
time cycles for the crane fly (Reynolds
number Re=290, Strouhal number
St=0.054, corresponding to A0/c=5.9,
where A0 is stroke amplitude). The time
interval between each snapshot is 0.1
cycles. The arrows point in the direction
of fluid velocity with their color indicating
the magnitude; pink and blue correspond
to Vmax=35 cm s–1 and 0, respectively.
The wing chord is represented by the
white line. Columns A and B represent
the downstroke (from 7 to 7.4 cycles)
and the upstroke (from 7.5 to 7.9 cycles),
respectively. The wing moves from right
to left during the downstroke and from
left to right during the upstroke. The
white arrows indicate the positions of the
leading edge vortices. The figures in the
left column show that the leading edge
vortex was detached from the wing at
the middle of the downstroke and then
reproduced. The figures in the right
column show that the leading edge
vortex was loosely attached to the wing.
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7FSI cause of dipteran wing pitch changes

sinusoidal flapping motion Eqn 4a in the x-direction at the leading
edge of the flexible wing to measure the induced passive pitching
in terms of the angular displacement or pitch angle a(t) of the
trailing edge of the wing. The angular displacement a(t) is
measured from the rest position of the wing as shown in Fig. 1C.
The anti-clockwise direction is positive. Note that no angular
displacement a(t) is applied actively. Next, we consider a rigid
wing model and apply both the sinusoidal flapping motion Eqn
4a and the measured angular displacement a(t) actively to
calculate the fluid forces. As shown in Fig. 6, the fluid forces
obtained in the two cases are in fine agreement. Since the ability
of our method to simulate the two-dimensional wing motion under
the combined active flapping and pitching for the rigid wing has
been verified in the Appendix, this agreement serves as a
benchmark to validate our method for the flexible wing that
induces passive pitching under active flapping.

Passive pitching motion
Figs 7 and 8 summarize the passive pitching motion of our
continuum plate model wing. Fig.7 also shows the generated lift
history. After the initial transient phase, the angular displacement
or pitch angle a oscillates regularly after around four cycles as shown

in Fig.7. The initial transient phase can be explained by the
equation of motion (Eqn 9) of the analytical wing model. The
analytical solution of Eqn 9 consists of the free and forced vibration
modes initially. However, the free vibration mode disappears due
to the damping effect after multiple strokes and the forced vibration
mode remains. Note that the analytical solution of the forced
vibration mode is given by Eqn 10. The same phenomenon occurs
in the pitching motion of the continuum plate model wing. Following
the stabilization of the wing motion, the lift coefficient also oscillates
regularly.

The passive pitching motion shown in Fig.8 seems to simulate
well the real insect’s pitching motion. The model wing keeps the
high attack angle during its translation and rotates at the stroke
reversals. In addition, our wing model gives a maximum pitch angle
of 50–60deg., which lies in the range of values for the crane fly,
45–65deg. (Ellington, 1984b). Note that the pitch angle is a non-
dimensional variable. It is especially important that the model wing
begins to twist before it changes its flapping direction as shown in
Figs7 and 8. Such advanced pitch motion is important for the insect
flight to increase the lift force by intercepting the wake of the
previous stroke (wake capture) (Dickinson et al., 1999) and is widely
observed in insect flight.

Fig. 10. Fluid velocity fields from 4 to
4.9 time cycles for the fictitious insect
(Re=200, St=0.1 corresponding to
A0/c=3.2). The time interval between
each snapshot is 0.1 cycles. The
arrows point in the direction of the fluid
velocity with their color indicating the
magnitude; pink and blue correspond to
Vmax=24 cm s–1 and 0, respectively. The
wing chord is represented by the white
line. Columns A and B represent the
downstroke (from 4 to 4.4 cycles) and
the upstroke (from 4.5 to 4.9 cycles),
respectively. The wing moves from right
to left during the downstroke and from
left to right during the upstroke.
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The advanced pitch motion observed in Figs7 and 8 can be
explained by the analytical wing model as follows. The time history
of the pitch angle a(t) takes a form similar to a sinusoidal function
with the same frequency f as flapping in the regular oscillation after
around four cycles. Thus, the time history of pitching in the steady
state is approximately expressed by Eqn 4b with the positive phase
shift b. The fact that our analytical model, excited by the sinusoidal
force in Eqn 9 and subject to damping, attains the sinusoidal
oscillation (Eqn 10) for the relative displacement δ(t)=ca(t)/2 in the
steady state provides convincing support for the presence of the
sinusoidal passive pitching a(t) in our continuum plate model. As
shown in Fig.4, regardless of the value of ζ, the phase shift b is (a)
positive (advanced phase shift) for f/fn<1, (b) zero (no phase shift)
for f/fn=1 and (c) negative (delayed phase shift) for f/fn>1,
respectively. For our model wing the spring constant ks�, given by
Eqn 8 with ks=1.9gcm2(s2rad)–1 and c=0.23cm, is equal to 144 gs–2,
while the wing mass mw=ρsc(0.2hs+0.8h)=0.000166g. Thus the
natural frequency calculated by Eqn 12 is fn=148Hz which gives the
ratio f/fn=0.31<1, where f=45.5Hz. This shows that our continuum
plate model wing satisfies the condition f/fn<1 for advanced pitching.

The analytical wing model also provides an insight into the tip to
base torsion wave observed in dipteran flight (Ennos, 1988b). As
shown in Fig.4, the value of the advanced phase shift b increases as
the value of f/fn (<1) gets smaller. Since the natural frequency fn given
by Eqn 12 increases when the wing mass mw is reduced, the phase
shift is bigger for the lighter wing mass. Consequently, when we move
from the base to the tip of the wing, the wing mass becomes lighter
(Ennos, 1989) and the phase shift becomes larger. Such a phase shift
gradient along the span-wise direction appears as the torsion wave in
the three-dimensional wing. We need to be careful, however, with
the limitations of our continuum plate model of the wing for which
the chord length is obtained as an average over the span-wise direction
and the motion represented is an average over the span. Nevertheless,
our simple analytical model provides an insight into the tip to base
torsion wave observed in dipteran flight (Ennos, 1988b).

Lift generated by wing motion including passive pitching
We found that the lift force generated by passive pitching almost
meets the required force to support the weight of the crane fly. Fig.7B
shows the time history of the lift coefficient CL (normalized by
0.5ρfcVmax

2) in the wing motion with passive pitching. Its mean value
CL,mean=0.46 gives the mean combined lift force fL,mean=6.8�10–5N
for both wings of the crane fly, which is comparable to but smaller
than the weight of the crane fly w=11�10–5N. This could be
attributed to the loosely attached leading edge vortex on the wing
due to the long wing chord travel of the crane fly for the two-
dimensional simulation. In the two-dimensional simulation with
Re=75–115 and the stroke–wing chord ratio A0/c=2.8–4.8 for the
fruit fly, the wing reverses before the leading edge vortex has time
to separate during each stroke. Thus in these cases the additional

mechanism is not required to stabilize the leading edge vortex and
the lift generated provides a good approximation of the corresponding
lift in the three-dimensional experiment (Wang et al., 2004). In our
two-dimensional simulation with Re=290 and A0/c=5.9 (St=0.054)
for the crane fly, the leading edge vortex appears to be slightly
separated from the wing as shown in Fig.9. Due to the larger wing
travel length or the larger stroke–wing chord ratio and the smaller
Strouhal number than those of Wang and colleagues (Wang et al.,
2004), the leading edge vortex separates from the wing before the
wing reverses in our two-dimensional simulation with no additional
stabilization mechanism such as the span-wise flow effect. If we
adopt a fictitious insect with Re=200 and A0/c=3.2 (St=0.1), whose
characteristics are closer to those of the model of Wang and
colleagues (Wang et al., 2004) than to those of the crane fly, the
leading edge vortex is more tightly attached to the wing as shown
in Fig.10. Consequently, the lift coefficient of the fictitious insect
is higher than that of the crane fly as shown in Fig.11 with an
approximately 35% increase in the mean lift coefficient
(CL,mean=0.62) compared with that of the crane fly. Pitching in this
case is also advanced, as in the case of the crane fly.

It is important to remember here that it is hard to transmit the
active torsion applied by the muscle to the outer wing due to the
wing torsional flexibility in Diptera (Ennos, 1987), while the wing
pitch is adequately controlled to produce the lift to enable the insect
to hover. Our wing model meets these criteria and explains the
mechanism of insect flight with passive pitching. It seems to be
natural for insects to select such a passive mechanism to minimize
the effort required to move their wings. This passive mechanism
might be useful as the design principle for developing micro-air
vehicles, i.e. engineers can avoid the need to develop the active
mechanism to drive and control the wing pitch adequately.

APPENDIX
Testing the validity of our FSI analysis method

We have selected the two-dimensional wing model similar to that
used by Wang and colleagues (Wang et al., 2004) as a benchmark

D. Ishihara, T. Horie and M. Denda
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Fig. A1. The two-dimensional wing model similar to that used by Wang and
colleagues (Wang et al., 2004) as a benchmark to test the capability of our
method. The x-displacement U(t) and an angular displacement around the
z-direction a(t) are actively applied to the wing center.
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Fig. 11. Time histories of the lift coefficient CL for the
fictitious insect (red line) and the crane fly (black
line). Note that both traces show simulations (not
experimental data), and that in the fictitious insect
case the leading edge vortex does not separate
because of the short length of translation. The
vertical lines and the attached arrows show the
range of each half-stroke for the downstroke (Down)
and upstroke (Up).
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to test the capability of our method. The wing is modeled by a thin
rigid elastic plate of thickness h with chord length c; in our elastic
model a large Young’s modulus is assigned to simulate the rigid
body behavior. The model is two-dimensional having the unit extent
in the z-direction (out-of-plane direction) without variation in
this direction. Following Wang et al. (Wang et al., 2004), an
x-displacement U(t) and an angular displacement around the
z-direction a(t):

are actively applied to the center of the wing as shown in Fig.A1,
where A0=2.8c, β=π/4 and b=0 are the stroke amplitude, the

(ta ) = β sin(2π ft + b) , (A1b)

U (t) =
A0

2
cos 2π ft  , (A1a)

amplitude of the pitching angle of attack and the phase shift,
respectively. The common frequency f of the flapping and pitching
is set to produce the Reynolds number Re=ρfVmaxc/μ=75, where ρf

is the fluid mass density, μ is the fluid viscosity and Vmax=πfA0 is
the maximum wing velocity. The wing starts its downstroke with
the initial angular displacement a(0)=a0=0. Notice that this wing
motion agrees with that used by Wang and colleagues (Wang et al.,
2004) with symmetrical pitching. Miller and Peskin (Miller and
Peskin, 2005) have used a similar wing model with symmetrical
pitching to demonstrate the validity of their numerical technique.
Fig.A2 gives the time history of lift coefficient CL and drag
coefficient CD, normalized by 0.5ρfcVmax

2, which shows very good
agreement with the results of Wang and colleagues (Wang et al.,
2004). As, in both simulations, the leading edge vortex is attached
to the wing during the wing stroke, the lift coefficient agrees well
with that obtained from the three-dimensional experiment even
though the three-dimensional axial flow is absent.

In the benchmark problem described above, where comparison
with the results of Wang and colleagues (Wang et al., 2004) was
made, the position of the axis of rotation is located at the center of
the wing. In contrast, the position of the rotational axis of our lumped
flexibility model is located within the upper 20% of the wing, while
that of the real insects is located near the leading edge. Thus the
effects of the location of the axis of rotation need to be investigated.
We applied U(t) and a(t) at four positions; center (O), top (A), upper
1/10 (B) and upper 1/3 (C). Fig.A3 shows the time history of CL

and CD for these positions, and Fig.A4 shows the relationship
between the rotational axis positions and the second peak value of
the force coefficients from 3.5 to 4 cycles in Fig.A3. As shown in
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Fig. A2. Comparisons of the time histories of CL and CD. The red and blue
lines show the results given by the present method and that of Wang and
colleagues (Wang et al., 2004), respectively, while the black line represents
the experimental data given by Wang and colleagues (Wang et al., 2004).
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Fig. A3. Time histories of CL and CD for the different positions of the axis of
rotation. The black, red, blue and green lines correspond to positions O
(centre), A (top), B (upper 1/10) and C (upper 1/3), respectively.
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Fig. A4. The relationship between the rotational axis positions and the
second peak values of the force coefficients from 3.5 to 4 cycles in Fig. A3.

Mesh O Mesh A Mesh B 

Fig. A5. Convergence test where the fluid grid is
refined. Mesh O (the number of nodes and
elements is 3417 and 6600, respectively) is used
to give the results in Figs A2, A3 and A4. The
refined meshes A (the number of nodes and
elements is 3905 and 7560, respectively) and B
(the number of nodes and elements is 4697 and
9120, respectively) have 1.4 and 2 times finer
space resolutions, respectively, around the wing.
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Fig.A3, the time histories of CL and CD for the four positions are
similar. As shown in Fig.A4, the force coefficients vary linearly.
CL varies from 1.46 to 1.65 and CD varies from 2.26 to 2.71 as the
rotational axis position varies from positions C (upper 30% of the
wing) to A (top of the wing). The rotational axis of our model is
located within the upper 20% of the wing chord and that of real
insects is located near the leading edge. As a consequence, the effect
of the location of the rotational axis is negligible as long as the
rotational axis is located near the top of the wing chord or the leading
edge.

A convergence test in which the fluid grid is refined is also
provided here. Fig.A5 shows the three fluid grids (meshes O, A
and B) employed. Mesh O (the number of nodes and elements is
3417 and 6600, respectively) is used to give the results in FigsA2,
A3 and A4. The refined meshes A (the number of nodes and
elements is 3905 and 7560, respectively) and B (the number of nodes
and elements is 4697 and 9120, respectively) have 1.4 and 2 times
finer space resolutions, respectively, around the wing. As shown in
Fig.A6, the force coefficients given by using these meshes show
very good agreement. As a consequence, we employed mesh O
throughout this study.
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Culture, Sports, Science and Technology (No. 17760088).
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