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Summary

The cause of the changes in wing pitch at stroke reversal in Diptera has been
investigated. The high compliance of the wing base makes it seem unlikely that
pitch changes are caused by active torsion at the wing articulation.

The centre of mass of insect wings tends to be behind the centre of torsion of the
wing, and it is proposed that wing inertia about the torsional axis alone is
responsible for pitch changes as the wing is accelerated at stroke reversal. A
simplified inertial model is developed to calculate the angular velocity about the
torsional axis that would be caused by wing inertia.

The mass distribution and the torsional axis of the wings of two species of flies
was found and it was shown that in these animals inertial causes alone could
develop the angular velocity in the pitching plane that is observed at stroke
reversal.

Analysis of the movement of individual regions of the wing shows further that
inertial effects will produce the tip to base ‘torsion wave’ seen in the wing at stroke
reversal.

Introduction

The kinematics of flight in Diptera has been extensively studied (Nachtigall,
1966, 1981; Vogel, 1966; Weis-Fogh, 1973; Ellington, 1984; Dudley, 1987), and the
basic pattern of wing movements is well known. During the two half-strokes the
wings are moved through the air along a stroke plane at a more or less constant
angle of pitch: about 30-45° from the stroke plane. At the ends of each half-stroke
the wings rotate quickly by around 90° to the orientation for the coming stroke.
The trailing edge sweeps under the leading edge, until the wing has rotated a few
degrees past the pitch angle for the coming stroke, after which it recoils to this
position (Ellington, 1984). The wing does not rotate as a flat plate. Anterior and
distal areas of the wing rotate first and then a tip to base ‘torsion wave’ runs along
the wing until rotation is complete (Fig. 1).

It has generally been assumed that torque is actively applied by wing base
sclerites (Boettiger & Furshpan, 1952; Pfau, 1985; Miyan & Ewing, 1985) which
rotate the leading edge of the wing. The torsion is then transmitted quickly along
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Fig. 1. Film tracings of stroke reversal during the hovering flight of Eristalis tenax
(insect facing out of page) showing the rotation of the wings. (A) Supination, with the
trailing edge sweeping under the leading edge; (B) pronation. The outer regions of the
wing rotate first, then a tip to base torsion wave runs in along the wing between frames
3 and 5in A and 2 and 4 in B. The position of the wave is pointed out by arrowheads.
Time between frames, 0-2 ms.

the stiff leading edge to the wing tip, and from there the torsion travels more
slowly through the more compliant rear wing region to the base (Wootton, 1981;
Ellington, 1984).

I have found, however, that in flies the base of the leading edge is very compliant
to torsion (Ennos, 1987, 1988). Torsion applied at the base would not be
transmitted immediately to the outer wing. It therefore seems unlikely that control
of the wing can be effected in this manner.

In his study on the function of the pterostigma in dragonflies, Norberg (1972)
demonstrated the importance of inertial effects on wing rotation. He showed that
wing flutter could be caused in gliding flight if the centre of mass of the wing was
too far behind its torsional axis, and suggested that wing inertia could control pitch
angles at stroke reversals during flapping flight, though neuromuscular control
would also operate in many insects.

In this paper I hope to show that no active twisting need be invoked in the case
of the Diptera and that the rotational velocity of the wing at stroke reversal and its
associated pattern of deformation can both be explained by inertial effects alone.

In a wing flapping with a sinusoidal motion, the torques which cause angular
acceleration will be constantly changing. These torques may have several causes.
(1) Inertia. The centre of mass of an insect wing is often behind its torsional axis
(Norberg, 1972). If such a wing is accelerated the inertia of the wing will cause
torque to be set up around this axis, and this should rise to a maximum at stroke
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Fig. 2. (A) A wing travelling along a stroke plane with angle of pitch 45°. The centre
of mass is behind the torsional axis and so does not move along the same line. The wing
possesses angular momentum around the torsional axis which will cause it to rotate
when the wing is decelerated. (B) A wing with torsional axis drawn (large dashes). x is
the perpendicular distance to a point on the wing from the wing base. y is the
perpendicular distance from the torsional axis. Equal values of x/y are shown as lines
radiating from the wing base.

reversal, when acceleration is high. (2) Aerodynamic. The centre of pressure of
aerodynamic forces tends to act behind the torsional axis (Norberg, 1972, 1973;
Wootton, 1981). Aerodynamic force will therefore also tend to produce torque,
which should rise to a maximum at the middle of each wingbeat, when the wing
velocity is greatest. (3) Elastic recoil. Elastic recoil of the wing will produce a
torque which tends to return it to its rest position. (4) Active torsion. The pattern
of active torsion is unknown.

A complex differential equation could be built up of the angular wing motion,
with estimates of the magnitudes of inertial, aerodynamic and elastic torques and
the motion of the wing. The expected rotational velocities could then conceivably
be computed numerically. Such an approach, however, as well as being lengthy
and possibly inaccurate, does not give an intuitive feel of the problem.

Instead, I have developed a simplified analysis which is based on the principle of
conservation of angular momentum. In the middle of a half-stroke there is no
rotation in the pitching plane, but the wing has linear momentum which is centred
off the torsional axis (Fig. 2A). It thus possesses angular momentum about the
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axis. When the wing is decelerated at the end of the beat this angular momentum
will remain and cause rotation in the pitching plane. The velocity of rotation is
calculated when the torsional axis has been brought to rest and hence in the middle
of stroke reversal, halfway through wing rotation. As the wing accelerates into the
coming stroke the rotational velocity should become even greater, but further
rotation is prevented by mechanical stops on the wing base (Ennos, 1987) and the
pitch angle becomes set for the coming half-stroke.

Given knowledge of the mass distribution of the wing and the position of the
torsional axis, the resulting angular velocity can be estimated and compared with
values from high-speed films.

The analysis
Take a wing in the middle of a half-stroke, travelling along a stroke plane with a
positive pitch angle of 45° as is commonly seen (Nachtigall, 1981; Ellington, 1984)
(Fig. 2A). The linear momentum dM of a small area of the wing of mass dm, a
distance x from the wing base, and a distance y behind the torsional axis (Fig. 2B)
will be:

dM =x dmd¢/dt, (1)

where d¢/dt is the angular velocity of the wing about its base in radians per
second. At this positive pitch angle the momentum of this piece of wing is not
along the same line as the torsional axis (Fig. 2A). It will therefore possess angular
momentum dMj,, about the torsional axis, of its linear momentum dM multiplied
by its perpendicular distance from the torsional axis, ysind5° or about 0-7y, so:

dM, =0-7xydmdg¢/dt. )

The angular momentum of the whole wing, M, is the sum of that of each piece,
so:

M, =0-7d¢p/dt ) xydm . (3)

At mid-stroke the angular velocity of a wing obeying simple harmonic motion

(Weis-Fogh, 1973) is #®n, where @ is the amplitude of the wingbeat and n is the

wingbeat frequency. The total angular momentum, M4, about the torsional axis
will therefore be:

M4 =0-72®Pn ) xydm. @)

When the torsional axis of the wing is still, at the end of the half-stroke, this
angular momentum remains and should cause rotation of angular velocity w
around the torsional axis:

w= MA/IT N (5)
where It is the moment of inertia of the wing about the torsional axis:

Ir=Y y’dm. (6)
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Combining equations 4, 5 and 6:
0=0-7a®n Y. xydm/) y*dm. @)

The average relative velocity, v,, of the wing edges due to this rotation is the
angular velocity multiplied by the mean length of the chord, ¢. This can
conveniently be expressed in terms of the length, R, of the wing and the aspect
ratio, AR, a measure of the average length/width ratio of a wing pair (Ellington,
1984):

AR =4R?/S, (8)
where S is the combined area of both wings and:
c=2R/AR. 9)
The average rotational velocity, v,, is therefore:
v, =1-4Ra®n ) xydm/R Y y*dm. (10)

This can be divided by the average velocity of the wing tip, v, during wing
translation, 2®nR, to yield a dimensionless ratio of rotational to translational
velocities (Ellington, 1984) which can be compared with observed values.

Ve/Vi = (0770 R)(L xy dm/ ¥ y’dm) . (11)

If the calculated ratio is less than the observed values then inertia alone is unable
to account for the speed of wing rotation.

The virtual mass of the wing is also likely to affect the rotation of the wing. Wing
virtual mass, however, is only around a third of the wing mass. If represented by a
cylinder of air around the wing, the centre of virtual mass will also be behind the
torsional axis of the wing, at the mid-chord. It should therefore produce an effect
similar to the wing mass on wing rotation. For these reasons, and also because the
actual distribution of the virtual mass is unknown, it is ignored in these
calculations.

Materials and methods

Specimens of the hoverfly, Eristalis tenax, and the bluebottle, Calliphora vicina
were killed with ethyl acetate vapour and the torsional axis of a wing was found by
pushing it with the point of a mounted needle. The centre of torsion was identified
as the line along which a force applied to the wing did not result in either pronation
or supination (Norberg, 1972).

The wing was then removed at the base and weighed intact on a Mettler UM3
microbalance, accurate to within 0-1ug. It was then placed between two
microscope slides and inserted into a photographic enlarger which gave an image
magnified by 10 times, and an outline drawing of the wing was made on graph
paper. The wing was then cut into rectangular elements 2 mm long and 1 mm broad
from the base of the leading edge and each element was weighed. The rest of the
wing was kept between the microscope slides to reduce desiccation and conse-
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Fig. 3. Mass distribution and torsional axis of the wing of the hoverfly Et.2. Masses are

given in micrograms.
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Fig. 4. Tip to base torsion wave at stroke reversal. View from below. As the torsional
axis decelerates at the end of the beat (A) anterodistal areas develop a higher angular
velocity (shown as longer arrows) and sweep beneath it (B and C) before the inner
trailing edge. (D) Reversal complete.

quent weight loss. Typically weight losses were of the order of 10 % of wing mass.
Element masses were multiplied by the ratio of wing mass to total strip mass to
give corrected figures.

The centre of mass of each element was then estimated from the wing outline,
and the wing moment of inertia, y>*dm and the value of xy dm about the torsional
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Table 1. Rotational velocity caused by wing inertia

R Y. y?dm Y xydm
Insect (mm) AR (kg m~2x10712) A
Et.1 12-0 7-6 0-445 1-167 0-76
Et.2 11-2 7-2 0-530 1-158 0-67
Cv.1 88 6-3 0-158 0-389 0-86
Cv.2 10-2 5-8 0-364 0-766 0-80
Cv.3 87 59 0-362 0-637 0-66
Cv.4 9-2 6-0 0-175 0-344 0-72

Results of measurements on hoverflies (Et.1 and 2) and bluebottles (Cv.1-4).

R, wing length; 4R, aspect ratio; 9./¥,, calculated ratios of mean rotational to translational
velocity.

Explanation of other symbols in text.

Et, Eristalis tenax; Cv, Calliphora vicina.

axis were calculated. Wing length and area were found using the magnified image
and hence the aspect ratio was calculated.

Error in identifying the exact position of the torsional axis was not critical. If the
torsional axis was actually further forward than was assumed, the moment arm to
the centre of the wing strips would be underestimated, but so would the moment of
inertia of the wing. As a result there would be little error in the calculated angular
velocity.

Results and discussion

The results of the measurements on individual wings are given in Table 1 and the
mass distribution and torsional axis of the wing of the hoverfly Et.2 are shown as
an example of the raw data in Fig. 3. In each case the torsional axis of the wing
seemed to be along the radial vein, 0-5mm, or about 15%, of the wing chord
behind the leading edge, whereas the centre of wing mass was about 1 mm, or 30 %
of the wing chord, behind the leading edge. The calculated values for the relative
magnitudes of rotational to flapping velocity are also given in the table. Values
range from 0-67 to 0-76 in Eristalis tenax and from 0-66 to 0-86 in Calliphora vicina.
Values observed in films range from 0-70 to 0-90 in Ellington’s (1984) films of
Eristalis and 0-58 to 0-79 in my own; values I obtained for Calliphora ranged from
0-61 to 1-02. The calculated values fall neatly into the observed range of velocity
ratios. Clearly the inertia of the wing is adequate to cause the observed velocities
of wing rotation. No active twisting of the wing base need be invoked.

Cause of the torsion wave

A further persuasive feature of this inertial mechanism for pitch change is the
ease with which it explains the tip to base torsion wave seen in the insects at stroke
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reversal. Take a small area of cuticle a distance x from the wing base and y behind
the torsional axis (Fig. 2B). The velocity of the piece at mid-stroke is given by:

v=xdg/dt. (12)

During stroke reversal the torsional axis decelerates. If it is not prevented by
neighbouring regions, however, the area of wing behind it will keep moving at the
same velocity. Its angular velocity around the torsional axis will therefore equal
this velocity divided by its distance to the torsional axis, y:

w = (x/y)de/dt. (13)

Therefore the further out along the wing and the closer to the torsional axis is a
piece of cuticle (and hence the greater x/y) the faster it will tend to rotate about
the torsional axis at stroke reversal. The front and outer part of the wing will rotate
most quickly and the basal trailing edge most slowly and the result will be a
torsional wave (Fig. 4). The stiffness of the wing will inhibit this to some extent
and so those insects with the most flexible rear wing regions (like Simulium and
Bibio) exhibit the torsion wave best, whereas in those insects with relatively stiff
wings (like Drosophila) the wing rotates more like a flat plate.

Though wing inertia can explain pitch alteration at stroke reversal it is clear that
the insects must exert some control, since the timing of wing rotation can be
altered in flight (Ellington, 1984).

I thank Dr R. J. Wootton for his help and criticism during the work and in the
production of the manuscript. The work was carried out while under tenure of an
SERC research studentship.
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