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Summary

Males of the giant silk moth Antheraea polyphemus Cramer (Lepidoptera:
Saturniidae) were video-recorded in a sustained-flight wind tunnel in a constant
plume of sex pheromone. The plume was experimentally truncated, and the
moths, on losing pheromone stimulus, rapidly changed their behaviour from up-
tunnel zig-zag flight to lateral casting flight. The latency of this change was in the
range 300-500 ms. Video and computer analysis of flight tracks indicates that these
moths effect this switch by increasing their course angle to the wind while
decreasing their air speed. Combined with previous physiological and biochemical
data concerning pheromone processing within this species, this behavioural study
supports the argument that the temporal limit for this behavioural response
latency is determined at the level of genetically coded kinetic processes located
within the peripheral sensory hairs.

Introduction

The males of numerous moth species have been shown to utilize two distinct
behaviour patterns during sex-pheromone-mediated flight. In the presence of
pheromone they zig-zag upwind, making forward progress over the ground, and in
the abrupt absence of pheromone they switch to a side-to-side or lateral casting
flight, making little or no forward or backward progress (Kennedy & Marsh, 1974;
Kennedy, 1983; David, Kennedy & Ludlow, 1983; Baker, 1986). This switch to
casting flight is thought to be a behavioural strategy for relocating a lost
pheromone plume in turbulent air (David etal. 1983; Baker & Haynes, 1987). For
two moth species, Bombyx mori during walking (Kramer, 1975) and Plodia
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interpunctella during flight (Marsh, Kennedy & Ludlow, 1981), the response
latency for this behavioural switch on loss of pheromone was in the range
0-5-1-0s. For a third species, Grapholita molesta, this latency was even shorter,
0-15 s, in achieving a significant increase in the course angle to wind (Baker &
Haynes, 1987). These short-latency responses have supported the idea that
pheromone-sensitive sensory hairs possess mechanisms for the rapid inactivation
of stimulus molecules (Kaissling, 1974, 1986a; Vogt & Riddiford, 1981; Vogt,
Riddiford & Prestwich, 1985; Vogt, 1987). Rapid inactivation would act as a noise
filter within the sensory hair, eliminating residual pheromone molecules from the
space surrounding the sensory dendrite, allowing the moth to respond physiologi-
cally and behaviourally to rapid fluctuations in ambient pheromone levels.

Little is known about the details of sex-pheromone-mediated flight in the large
saturniid moths; it is not known whether they exhibit the two characteristic
behaviours of forward zig-zag flight and lateral casting flight, or what the latency
might be of switching behaviour on pheromone loss. The giant silkmoth Antheraea
polyphemus is the only species for which there is considerable sensory physiologi-
cal and sensory biochemical data within the context of pheromone-elicited
behaviour. Thus, to correlate the physiological and biochemical kinetics for
pheromone inactivation with the latency for switching behaviour within the same
species, we flew male A. polyphemus moths in a wind tunnel using freshly
prepared pheromone gland extracts as an attractant odour source. Moths which
flew upwind in response to sex pheromone repeatedly exhibited a rapid switch to
casting flight upon flying out of an experimentally truncated pheromone plume.

Materials and methods

Antheraea polyphemus were obtained as pupae (H. W. Hartman), stored at
4°C, and reared to adults at 25°C on a 16 h: 8 h light: dark cycle. One- to three-day-
old males were transferred to the wind tunnel room during their photophase, and
lights were dimmed to experimental levels at the normal time of lights off. All
experiments were conducted during the first 4h of the moth's scotophase.

Males were flown in a large sustained-flight wind tunnel constructed of clear
polycarbonate plastic with a working section 3-6m long, 1 m high and 1 m wide at
ground level (Kuenen & Baker, 1982,1983). Wind at 0-5 ms"1 was provided by a
746-W voltage-regulated fan, and air turbulence was reduced by passing the air
through layers of muslin (supported by a mesh screen) and finally through a layer
of fine-mesh polyester fabric. Light intensity was less than 51x.

Sex pheromone was prepared from freshly excised female pheromone glands
extracted in methylene chloride. The solvent was evaporated under nitrogen gas,
and pheromone was subsequently dissolved in hexane. One gland equivalent (20/̂ 1
hexane) was applied to filter paper attached to the end of a thread hanging from
the tunnel ceiling. This odour source was positioned 15 cm above the axial centre
of the floor and 3 cm from the upwind end of the wind tunnel. The filter paper
functioned as a point source of pheromone release and yielded a tightly structured
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plume travelling in a straight line down the tunnel parallel with its walls with a
maximum cross-sectional diameter of approximately 5 cm as estimated by TiCl4

release. Pheromone was removed from the tunnel by a 30-cm diameter exhaust
tube (air speed at centre 2-9ms"1) aligned with the centre of the plume. The
remainder of the air passing through the tunnel was recirculated through the
room.

Moths were released into the tunnel at the downwind end. When a moth was
observed to orient its upwind flight along the centre line of the tunnel at the height
of the filter paper, the upwind observer quickly raised the filter paper by pulling on
the thread. This caused an abrupt truncation of the pheromone plume at the flight
level of the insect. A moth flying upwind in the pheromone plume was thus
subjected to a sudden loss of stimulus as it flew out of the truncated plume. The
upwind observer coordinated stimulus removal with moth position so that loss of
stimulus occurred in the field of view of a video camera. A strip of light-emitting
diodes (LEDs), activated sequentially according to the wind speed measured using
TiCl4 smoke, was used to display the down-tunnel progression of the plume's
truncated upwind end (J. S. Kennedy & C. T. David, unpublished). Thus the
precise moment of last possible contact with pheromone was observed from the
video record as the point where the light pulse travelling down the tunnel with the
wind met the moth travelling up the tunnel.

Flights were video-recorded from above in plan view, as described by Kuenen &
Baker (1983). The camera's field of view spanned 105 cm, from 65 to 170cm
downwind of the pheromone source, and 40cm on either side of the plume axis.
Individual flight tracks were re-recorded onto a Sony SVM-1010 motion analyser.
Frame-by-frame playback from this system gave the moth's consecutive 1/30 s
positions, which were marked by an ink dot on a Mylar (clear plastic) sheet taped
to the screen of the analyser (see Fig. 1). These tracks were digitized onto a
microcomputer for further analysis. For each complete flight track, the track angle
(with respect to the wind direction) and ground speed were calculated by
computer for each l/30-s vector, and the course angle, air speed, drift angle and
other values were calculated by computer using the triangle of velocities formula
(Kennedy, 1940; Marsh, Kennedy & Ludlow, 1978). The grand means of these
l/30-s values were calculated over 0-1 s intervals before and after pheromone loss
for the six tracks that were analysed (see Fig. 2). The plots presented in Fig. 2
represent these grand means, averaged over the six flight tracks represented in
Fig. 1. Time zero (Fig. 2) corresponds to the moment of last possible contact with
pheromone, which is indicated for each flight track by arrows (Fig. 1).

To record electroantennograms (EAG) (Fig. 3) within the wind tunnel, a single
male A. polyphemus antenna was positioned vertically, anterior side upwind, on
the upwind edge of a mobile mount (T. C. Baker & K. F. Haynes, in preparation).
The antennal base was impaled by a silver chloride plated silver wire, and the cut
distal end was placed in contact with a saline/AgCl electrode. The antenna was
positioned within the pheromone plume, 1 or 2 m downwind from the pheromone
source. Signals were processed through a d.c. amplifier (lOOx gain) directly onto a
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strip chart recorder. Stimulus conditions were identical to those employed in the
flight studies, except that the stimulus was 10ng of synthetic pheromone
component (E,Z)-6,ll-hexadecadienyl acetate (Kochansky et al. 1975; syn-
thesized by H. J. Bestmann, courtesy of K.-E. Kaissling) applied to the filter
paper.

Results and discussion

Analysis of flight tracks

The tracks analysed come from six independent approaches to the pheromone
source by a single male (Fig. 1). Ten unrecorded males appeared to behave in the
same way. While in the pheromone plume, the moths flew slowly and zig-zagged
narrowly, all the time progressing upwind and up-tunnel. As they approached the
field of view of the video recorder, the pheromone source was raised and the
pheromone plume truncated. Computer analysis of the video recordings (Fig. 2)
indicated that by 0-5 s after the last possible contact with pheromone (pheromone
loss), the moth's track angle had already increased significantly, becoming
crosswind casting at approx. 90° by 0-8s (Fig. 2A). Casting lasted approximately
10 s, by which time the moth had drifted down-tunnel while remaining at the same
height. The pheromone source was then repositioned and the moth re-attracted.
In the case of the moth whose tracks were analysed, this cycle was repeated six
times, after which the moth landed on the floor.

The moth accomplished this increase in track angle by a combination of
increasing its steered course angle to wind (Fig. 2B) and reducing its air speed
(Fig. 2C). Prior to pheromone loss, the moth steered a course at a mean of
11-4° ±3-9° ( ± S . D . ) while flying upwind during the -1-0 to +0-1 s time interval
(Fig. 2B) (0° = upwind; absolute values of angles were used for means). The
course angle increased to 20-1°±0-9° during the 0-4-0-7s interval, and to
36-0° ±2-8° during the 0-8-1-5 s interval following last possible contact with
pheromone. Air speed had decreased significantly by 0-5 s after last possible
pheromone contact (Fig. 2C). The decreasing air speed, already noticeable by
0-3 s following pheromone loss, combined with the increasing course angle,
resulted in the observed significant increase in the resultant track angle to wind
apparent by 0-5 s after pheromone loss (Fig. 2A).

Upwind flight to an odour source by moths is thought to be controlled by
optomotor anemotaxis, where the moth monitors its direction and speed of
progress over the ground visually, compensating for wind-induced drift by
adjusting its course angle and air speed (Marsh et al. 1978; Kennedy, 1983, 1986).
In addition, the counterturns associated with zig-zagging and casting are thought
to be strictly internally controlled (Kennedy, 1983; Baker, 1986). In our exper-
iments, regular counterturns were often not apparent in the moth progressing
upwind in pheromone. As best could be determined, they occurred at intervals of
0-43 ± 0-20s ( ± S . D . average of 19 counterturns). However, following plume los |
obvious counterturns occurred at increasing intervals of 0-59 ± 0-25 s, 1-03 ± 0-15 s
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10 cm

Fig. 1. Flight tracks of a single Antheraea polyphemus male flying in a wind tunnel and
making six consecutive approaches towards a pheromone source, videotaped from
above. For each track, the moth entered the field of view from the right, and wind was
from the left. At the arrows the moth flew out of the experimentally truncated plume
(last possible contact with pheromone) and switched his flight behaviour to lateral
casting. Dots represent the moth's positions at 1/15 s intervals. Alternate dots from the
original 1/30 s data tracings have been omitted for clarity.
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Fig. 2. Analysis of the flight tracks depicted in Fig. 1. The switch from up-tunnel flight
to lateral casting on loss of pheromone (marked with an arrow) is seen as an increase in
track angle (A) off the wind vector (0°). This was accomplished by an increase in
course angle (B) accompanying a decrease in air speed (C). Values were calculated for
each 1/30 s vector for 1 s preceding and 2 s after pheromone loss, 0 s corresponding to
the arrows in Fig. 1. Calculated data were pooled for all six tracks over each 0-1 s
interval, and are presented as a mean absolute value ± S.E.

and 1-53 ± 0-54 s on the first to third, fourth to sixth, and seventh to ninth track
legs, respectively.

Responses to fine-scale discontinuities in plume structure

A naturally occurring pheromone plume has a highly turbulent and discontinu-
ous structure (Wright, 1958; Murlis & Jones, 1981; David etal. 1983; Murlis, 1986).
From the perspective of a stationary observer these discontinuities can occur at
time scales of milliseconds, seconds or minutes, depending on their cause (Murlis,
1986). Clearly, our experiments support other observations that moths will
respond to interruptions of the stimulus if those interruptions are of sufficiently
long duration. We would like to know how brief an interruption of the stimulus can
be and still be detected and acted upon.

The fine-scale discontinuities in plume structure can be inferred from stationary
electroantennogram (EAG) recordings made within the wind tunnel (Fig. 3).>
Although air flow in our wind tunnel was reasonably laminar, turbulence induced^
by the filter paper source caused the plume to leave in the form of a spiral, which
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2 m

Fig. 3. Electroantennogram recordings of an isolated Antheraea polyphemus antenna
positioned lm or 2 m downwind from the pheromone source.

tended to expand slightly during its down-tunnel movement. Such induced
turbulences are common in nature. At 1 m from the pheromone source the
antenna responded with depolarizations (bursts) of 1-13 ± 0-83 s ( ± S . D . , averaged
over 53 s; burst detection threshold was 0-2 mV) (Fig. 3). The burst frequency was
similar at 2m 1-09 ±0-9s (averaged over 70s). A male with two antennae, instead
of the one used for these EAGs, would span approximately 3 cm and probably
encounter plume filaments at a somewhat higher frequency because of the doubled
antennal area presented. Likewise, males flying at 80cms"1 air speed instead of
being stationary as with the EAG preparation (where air speed was 50cms"1)
should encounter filaments at approximately a 50% higher frequency, or
approximately 1 -6bursts s~l. Such an increase in burst frequency with air speed
has been observed in EAGs from the moth Grapholita molesta, where the
antennae were pushed at various velocities directly upwind in a pheromone plume
(T. C. Baker & K. F. Haynes, unpublished results).

Kramer (1986) utilized a walking assay to present males of the silk moth
Bombyx mori with pulsed pheromone at varying pulse durations and intervals.
When the interval between pheromone pulses exceeded 0-6 s the animals
responded with a noticeable change to a more obliquely cross-wind track. This
result is temporally similar to those from our wind tunnel studies. However,
although B. mori responded to constant pheromone stimulation with upwind
movement, its response was significantly enhanced when the stimulus was pulsed
at 0-3 s intervals. Thus, B. mori males responded to pulses at intervals exceeding
0-6s and sometimes to pulses at intervals of 0-3 s, but apparently fused pulses
separated by shorter intervals. Kaissling (1969) measured by EAG the physiologi-
cal response characteristics of B. mori antennae, and showed that the half-time for
decay in electrical output following stimulus loss was about 0-5 s. This temporal
correlation between antennal physiology and behaviour suggests that the fre-
quency limits may be determined peripherally in the antenna, rather than in the
central nervous system.

Such a correlation can also be made for A. polyphemus. Our own experiments
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have demonstrated that a flying A. polyphemus male can display a significant
change in behaviour by 0-4-0-5 s following pheromone loss (Fig. 2), although full
casting was not obvious until 0-7 s. Kaissling (19866) has reported that the
neurones in single sensory hairs of A. polyphemus antennae can respond with
action potentials to each repeated odour pulse of 20 ms duration, when presented
at a rate of up to 3-4 Hz. At 4-2 Hz not every odour pulse evoked action potentials.
These experiments demonstrated that, at least at pulse frequencies below 4 Hz,
A. polyphemus receptors accurately relay the frequency of arriving odour bursts to
higher centres. However, at frequencies above 4 Hz, these antennal sensory hairs
no longer record the pulses as distinct and separate. As in B. mori, frequency
limits appear to be set at the periphery, in the sensory hairs themselves.

Biochemical correlates of the behavioural response

These findings suggest that a moth's ability to detect temporal discontinuities in
pheromone stimulus is limited by processes within the pheromone-sensitive
sensory hairs, whatever else might be occurring within the central nervous system.
Pheromone molecules are thought to enter the sensory hairs through thousands of
small pores which penetrate the outer cuticular hair-wall (Steinbrecht, 1980,1987;
Keil, 1984). The pheromone molecules then pass through a lumen containing a
proteinaceous fluid consisting of pheromone-binding proteins and pheromone-
degrading enzymes (Vogt & Riddiford, 1981; Klein, 1987; Vogt, 1987), arriving at
the sensory dendrite membrane where they presumably initiate an electrical
impulse in the sensory neurone by interacting with a membrane-bound receptor
protein (Vogt, Prestwich & Riddiford, 1988).

Vogt and colleagues (Vogt & Riddiford, 1986; Vogt etal. 1985,1988; Vogt, 1987)
have described some of the biochemical components that control sensory hair
function in A. polyphemus, and have suggested that these components are
organized and kinetically designed with the function of processing pheromone
molecules in an efficient manner. One of these components is a potent sensilla-
specific esterase which degrades pheromone in situ with an estimated half-life of
15 ms (Vogt et al. 1985). At such rates, this esterase could easily clear the sensory
hair of 'old' stimulus rapidly enough to allow the hair to respond to external
stimulus transients, down to a limiting frequency. These limits could be deter-
mined by how fast the esterase can function, by its kinetic properties. Addition-
ally, the pheromone receptor proteins (Vogt et al. 1988) and associated transduc-
tory components may possess inherent refractory properties that limit sensory hair
response. We therefore suggest that these biochemical components provide the
molecular correlate which underlies the animals' ability to discern fine-scale
discontinuities in pheromone plume structure. We are left with one question.
Have these animals reached some physical limit which constrains the biochemical
components of the sensory hairs from processing signal more quickly; or have they
produced components which are optimally tuned in their kinetic properties to a
particular level of efficiency, thus acting as genetically tuned signal filters? The
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answer must await more information regarding the molecular-level properties of
these sensory hairs, and the behavioural utilization of pulsed signals.
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