RELATIONSHIP BETWEEN WING LOADING, WINGBEAT FREQUENCY AND BODY MASS IN HOMOPTEROUS INSECTS

BY DAVID N. BYRNE

Department of Entomology, University of Arizona, Tucson, AZ 85721, USA STEPHEN L. BUCHMANN AND HAYWARD G. SPANGLER USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ 85719, USA

Accepted 17 September 1987

SUMMARY

Several biophysical properties of members of Alevrodidae and Aphididae were examined in order to explore how homopterous insects fly. Five species of aphids were found to weigh significantly more than five whitefly species (range $1.14-7.02 \times 10^{-4}$ g for aphids vs $3.3-8.0 \times 10^{-5}$ g for whiteflies) and to have significantly larger wing surface areas (range 0.0103-0.1106 cm² vs 0.0096- 0.0264 cm^2). As a consequence whiteflies and aphids can be partitioned into two groups with respect to wing loading (range $0.00633 - 0.01412 \,\mathrm{g \, cm^{-2}}$ for aphids, $1.74-5.23 \times 10^{-3}$ g cm⁻² for whiteflies). Members of the two families are also separated in terms of wingbeat frequency (range 81.1-123.4 Hz for aphids, 165.6-224.2 Hz for whiteflies). Since our animals were much smaller than any insects examined previously for these parameters, values were compared with the same parameters for 149 insect species recorded in the literature. Using these data, we found wingbeat frequency to be significantly correlated with wing loading only in insects weighing more than 0.03 g. Larger insects seem to employ a strategy similar to other flying animals, by compensating for high wing loading with higher wingbeat frequencies. The lack of correlation for these two parameters in insects weighing less than 0.03 g probably results from the use of different flying strategies. These include employment of a clap and fling mechanism and the possession by some of exceedingly low wing loading. Also, small insects may have reduced settling velocities because they possess high drag coefficients. Previous studies which failed to establish a relationship between wing loading and wingbeat frequency in larger insects may have considered too few subjects or too great a range of body masses. The mass range is important because smaller insects which employ increased wingbeat frequency must use rates exponentially higher than those of larger insects utilizing the same strategy.

INTRODUCTION

Whiteflies do not as readily engage in vertical flight as other homopterous insects, such as aphids. This was discovered when Byrne, von Bretzel & Hoffman (1986)

Key words: wing loading, wingbeat frequency, body mass, insects.

10 D. N. Byrne, S. L. Buchmann and H. G. Spangler

placed traps at heights of 0-15 cm, 50-65 cm and 100-115 cm to catch sweetpotato whiteflies, *Bemisia tabaci* (Gennadius) and bandedwinged whiteflies, *Trialeurodes abutilonea* (Haldeman). During two growing seasons, 81% of the whiteflies were captured in the lowest traps, 12% in the midlevel traps and 7% in the highest traps. In a previous survey of alate aphids, Broadbent (1948) placed traps at heights of 5-36 cm, 81-118 cm and 157-188 cm. Over a 24-week period in his study, 14% of the aphids were caught in the lowest traps, 34% in the midlevel traps and 52% in the highest traps. These findings led us to examine how members of these two homopterous families might differ in their flight mechanisms, particularly with regard to wing loading and wingbeat frequency.

MATERIALS AND METHODS

The members of Aleyrodidae we examined were Aleurothrixus floccosus (Maskell), Bemisia tabaci, Dialeurodes citri (Ashmead), Trialeurodes abutilonea and Trialeurodes vaporariorum (Westwood). Members of Aphididae were Aphis fabae Scopoli, Aphis gossypii Glover, Aphis nerii Fonscolombe, Acyrthosiphon kondoi Shinji and Myzus persicae (Sulzer). All species were reared in greenhouses or on research plots at agricultural experimental stations maintained by the University of Arizona at Tucson and the University of California at Riverside. Italian honeybees, Apis mellifera L., from the USDA Carl Hayden Bee Research Center in Tucson, AZ, were also measured to compare our data with those in the literature.

Using a Datamate 100 Microfiche Reader, we determined wing surface areas for all species by projecting images of their wings onto transparent acetate sheets. Templates of images were cut from the sheets and weighed. A linear regression equation, relating template masses of known dimensions to their surface areas, was developed. Surface areas for wings were calculated by inserting the masses of their templates into this equation. Wing lengths were determined using an ocular micrometer in a dissecting microscope. Fresh whole masses were obtained by immobilizing the insects with carbon dioxide and weighing them with either a Cahn 25 or Cahn 29 Microbalance.

Wing loadings for these insects were calculated in $g \text{ cm}^{-2}$ by dividing mass by total wing surface area. Total wing surface area was determined by summing twice the mean of the forewing area with twice the mean of the hindwing area.

Wingbeat frequencies were obtained with an optical tachometer, in a manner similar to that of Unwin & Ellington (1979), and a Nicolet 206 digital oscilloscope. Insects were allowed to fly freely inside a covered greenhouse at 24 ± 3 °C. A wingbeat frequency was obtained for the sexually dimorphic *D. citri* but, since separate values could not be determined for the two sexes, this species was not considered in statistical comparisons of wingbeat frequencies.

The number of animals measured for each variable was determined by examining coefficients of variation as data sets were accumulated. The data were tested for normality using the Shapiro-Wilk statistic (Shapiro & Wilk, 1965). If samples were normally distributed, a *t*-test or Student *F*-test was used to compare sample means.

Otherwise, Ansari-Bradley (Ansari & Bradley, 1960) and Mann-Whitney (Mann & Whitney, 1947) nonparametric tests for equality of dispersion were used. Statistical analysis was done using the RS/1 software system on a Digital Equipment Corporation Professional 350 microcomputer.

To compare aphids and whiteflies with other insects, we compiled data from the literature for 149 insect species with known values for wing loading, wingbeat frequency and wing surface area. Certain data were corrected to match our selected format for presentation. Only species with known values for all three variables were used.

RESULTS

Morphometrics for our homopterans appear in Table 1 as numbers 1–11. Table 1 also provides rankings of the animals measured in this study with respect to values in the literature for the same parameters. These are shown parenthetically in the columns for mass, wing area, wing loading and wingbeat frequency. For example, *B. tabaci* wingbeat frequency ranked as the 134th highest of 158 recorded frequencies.

The data for the honeybees we measured appear as number 54 in Table 1. Our results compare favourably with those reported earlier by Magnan (1934) and Sotavalta (1952) which are shown as numbers 49 and 50.

All wing area and wing length measurements had low coefficients of variation (c.v.), <15%, indicating that 20 individuals would constitute an adequate sample size. Wingbeat frequencies also had low c.v. (<10%), and only 10 individuals were measured. Body masses were more variable, and 40 individuals were weighed (c.v. <40%). Unlike the other insects we measured, *D. citri* males and females were significantly different in terms of the two important flight-associated parameters: body mass and wing surface area (P < 0.05). Consequently, all values for the measured variables, with the exception of wingbeat frequency (not given), are listed separately for *D. citri* males and females.

Wing surface areas and lengths

The forewing surface areas of the measured animals were significantly larger than those of their hindwings (P < 0.01). Generally, aphids had significantly larger forewings and hindwings than whiteflies, although *Ap. gossypii* was an exception (P < 0.01). Aphid forewings and hindwings were also longer than the forewings and hindwings of whiteflies (P < 0.01) (Table 2).

Body masses

Body masses are given in Table 1. Aphids were significantly larger than whiteflies; ranges were $1.14-7.02 \times 10^{-4}$ g for aphids and $3.3-8.0 \times 10^{-5}$ g for whiteflies (P < 0.01). Almost all body masses of the measured animals were significantly different from one another (P < 0.01). The exceptions were two whiteflies, *D. citri* males and *T. vaporariorum* (P > 0.01).

monthomotives	neur privincentes
servinted	sortation
t Hight-as	Jugne-us
Incort	1112011
Table 1	

Femily	Crosses	Mass	Wing area	Wing loading	Wingbeat frequency	Citation
r anniy	opecies	(8)	(ma)	(g cili)	(211)	
1. Aleyrodidae	Bemisia tabaci	3.3×10^{-5} (1)*	0-0134 (3)	2.45×10^{-3} (3)	168-6 (134)	Present study
2. Alcyrodidac	Trialeurodes vaporariorum	3.5×10^{-5} (2)	0.0165 (4)	$2 \cdot 12 \times 10^{-3}$ (2)	180-0 (139)	Present study
3. Alcyrodidac	Dialeurodes citri (malc)	3.6×10^{-5} (3)	0-0207 (6)	1.74×10^{-3} (1)	ļ	Present study
4. Alcyrodidac	Trialeurodes abutilonea	$5 \cdot 0 \times 10^{-5}$ (4)	9.6×10^{-3} (1)	$5 \cdot 23 \times 10^{-3}$ (7)	224-2 (152)	Present study
5. Aleyrodidae	Meurothrixus floccosus	6.5×10^{-5} (5)	0.194(5)	3.36×10^{-3} (5)	165-6 (133)	Present study
6. Aleyrodidae	Dialeurodes citri (female)	8.0×10^{-5} (6)	0.0264(8)	3.03×10^{-3} (4)	I	Present study
 Aphididac 	Aphis gossypii	$1 \cdot 14 \times 10^{-4}$ (7)	0.0103 (2)	0-01106 (18)	123-4 (110)	Present study
8. Aphididae	Myzus persicae	3.34×10^{-4} (8)	0.0237(7)	0.01412 (22)	90-9 (94)	Present study
9. Aphididac	Aphis fabae	$4 \cdot 11 \times 10^{-4}$ (9)	0.0526 (10)	$7 \cdot 8 \times 10^{-3}$ (13)	104.7 (101)	Present study
10. Aphididae	Aphis nerii	4.67×10^{-4} (10)	0.0663(13)	7.5×10^{-3} (12)	118-1 (104)	Present study
	Acyrthosiphon kondoi	7.02×10^{-4} (11)	0.1106 (14)	6.33×10^{-3} (10)	81.1 (89)	Present study
12. Trichoceridae	Trichocera sp.	1.2×10^{-3}	0.200	$6 \cdot 00 \times 10^{-3}$	74	Sotavalta, 1952
(2)†						
13. Culicidae (2)	Aedes aegypti	1.5×10^{-3}	0.037	0-039	480	Sotavalta, 1952
14. Drosophilidae	Drosophila virilis	2·0×10 ⁻³	0.058	0.04	240	Weis-Fogh, 1972
15. Drosophilidae	Drosophila virilis	2.0×10^{-3}	0.058	0.034	195	Vogel, 1966
16. Culicidae	Culicidae sp.	5.8×10^{-3}	0.150	0.039	277	Sotavalta, 1952
17. Culicidae	Theobaldia annulata	9.9×10^{-3}	0.169	0.059	262	Sotavalta, 1952
18. Anthomyiidae	Fannia scalaris	0.010	0.196	0.051	210	Magnan, 1934
19. Muscidae	Musca domestica	0.012	0.200	0.060	190	Magnan, 1934
	Platychirus peltatus	0.0128	0.230	0.056	147	Weis-Fogh, 1973
21. Syrphidae (3)	Sphaerophoria scripta	0.0193	0.200	0.094	308	Weis-Fogh, 1973
22. Syrphidae	Syrphus grossulariae	0.0200	0.480	0.042	114	Weis-Fogh, 1973
23. Noctuidae	Venilia macularia	0.021	3.400	0.006	25	Magnan, 1934
24. Apidae	Apis sp.	0.0213	0.20	0.11	130	Ahmad, 1984
25. Syrphidae (3)	Syrphus corollae	0-0213	0.350	0.061	174	Weis-Fogh, 1973
26. Syrphidac	Syrphus nitens	0.022	0.300	0.073	172	Weis-Fogh, 1973
27. Calliphoridae	Calliphora erythrocephala	0-023	0.240	0·096	160	Magnan, 1934
28. Syrphidae (7)	Syrphus balteatus	0-0232	0.490	0.047	138	Weis-Fogh, 1973
29. Panorpidae	Panorpa communis	0.030	1.750	0.017	28	Magnan, 1934
30. Tipulidae (12)	Tipula sp.	0.030	1.110	0.027	52	Sotavalta, 1952
31. Ichneumonidae	Ophion luteus	0-033	1.5501	0.021	62	Sotavalta, 1952

Magnan, 1934 Sotavalta, 1952 Weis-Fogh, 1973 Weis-Fogh, 1973 Magnan, 1934 Magnan, 1934 Magnan, 1934 Sotavalta, 1952 May, 1981 Weis-Fogh, 1973 Casey, May & Morgan, 1985 Magnan, 1934 Magnan, 1934	Sotavalta, 1952
190 6 126 126 120 120 120 120 120 120 120 120 120 120	181
0.085 0.004 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.092 0.099 0.094 0.094 0.094 0.094 0.094 0.0099 0.007	0.156
$\begin{array}{c} 0.400\\ 0.450\\ 0.450\\ 0.450\\ 0.450\\ 0.450\\ 0.450\\ 0.420\\ 0.420\\ 0.578\\ 0.578\\ 0.578\\ 0.740\\ 0.740\\ 0.740\\ 0.740\\ 0.740\\ 0.740\\ 0.780\\ 0.740\\ 0.780\\ 0.740\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.780\\ 0.770\\ 0.780\\ 0.$	0.827
0.034 0.034 0.037 0.037 0.0385 0.0385 0.045 0.0385 0.073 0.072 0.012	0·129
Catabomba pirastri Pieris napi Syrphus vitripennis Ammophila sabulosa Sarcophaga carnaria Coenonympha pamphilus Calliphora erythrocephala Perithemis tenera Perithemis tenera Chrysotoxum acenale Tipula gigantea Enistalis arbustorum Euglossa saphirina Chrysotoxum bacinctum Apis meltifera Apis meltifera Apis meltifera Apis meltifera Apis meltifera Apis meltifera Apis meltifera Apis meltifera Apis meltifera Apis meltifera Chrysotos americanum Englossa mandibularis Vespa vulgaris Apis meltifera Lymantria dispar Enistalis tenax Poecilocampa populi Polistes gallicus Volucella plumata Pieris brassicae Zygoena filipendulae	Eristalis tenax
Calliphoridae Pieridae Syrphidae (3) Syrphidae (3) Syrphidae Satyridae Calliphoridae (12) Libellulidae Syrphidae Syrphidae Syrphidae Syrphidae Syrphidae Syrphidae Syrphidae Syrphidae Cantharidae Apidae (4) Lasiocampidae Apidae (3) Lasiocampidae Syrphidae Syrphidae Syrphidae Apidae (3) Lasiocampidae Syrphidae Syrphidae Pieridae Syrphidae Lymantriidae Syrphidae Lymantriidae Syrphidae Lymantriidae Syrphidae Syrphidae Lymantriidae Syrphidae Syrphidae Syrphidae Syrphidae Syrphidae Syrphidae Syrphidae	65. Syrphidae (6)

		I aDI	l able 1. Continued			
				Wing	Wingbeat	
		Mass	Wing area	loading	frequency	
Family	Species	(g)	(cm ²)	$(g \mathrm{cm}^{-2})$	(Hz)	Citation
66. Noctuidae	Agrostis exclamationis	0.133	3.20	0.04	41	Magnan, 1934
67. Nymphalidac	Vanessa atalanta	0.134	10.800	0.012	10	Magnan, 1934
68. Cerambycidae	Cerambycidae sp.	0.142	1.33	0.107	80	Sotavalta, 1952
69. Pieridae	Pieris brassicae	0.144	17.200	0.08	10.5	Sotavalta, 1952
70. Noctuidae	Plusia gamma	0.144	4.400	0.033	48	Magnan, 1934
71. Apidae	Bombus hortorum	0.159	006-0	0.177	135	Magnan, 1934
72. Sphingidae	Chelonia villica	0.165	8.000	0.021	20	Magnan, 1934
73. Corduliidae	Tetragoneuria cynosura	0.165	7.500	0.022	27.6	May, 1981
74. Saturniidae (5)	<i>Hylesia</i> spp.	0.168	2.334	0.072	32.4	Bartholomew & Casey, 1978
75. Apidae (6)	Euglossa imperialis	0-169	0.79	0.21	179	Casey et al. 1985
76. Nymphalidae	Vanesa cardui	0.173	10-400	0.017	20	Magnan, 1934
77. Libellulidae	Erythemis simplicicollis	0.176	8.38	0-021	28	May, 1981
78. Libellulidae	Pachydiplax longipennis	0.178	8-476	0.021	24·3	May, 1981
79. Vespidae	Vespa germanica	0.187	0.980	0.191	110	Magnan, 1934
80. Sphingidae	Macroglossa bombyliforniis	0.189	2.620	0.072	80	Magnan, 1934
81. Nymphalidac	Vanessa io	0.195	14-000	0.0147	18	Magnan, 1934
82. Saturniidae (2)	Hyperchirica nausica	0.200	3.950	0.051	21-6	Bartholomew & Casey, 1978
83. Notodontidae	Notodonta dictaea	0.201	5.000	0.040	22	Magnan, 1934
84. Apidae	Bombus muscorum	0.226	006.0	0.251	128	Magnan, 1934
85. Diptera	Dasyramphis atra	0.233	1.500	0.155	100	Magnan, 1934
86. Lymantriidae	Dasichyra pudibunda	0.237	8.000	0.030	28	Magnan, 1934
87. Vespidae	Vespa germanica	0.240	1.330	0.180	139	Sotavalta, 1952
88. Libellulidae	Libellula depressa	0.245	13.200	0-019	20	Magnan, 1934
89. Libellulidae	Orthetrum coerulescens	0.248	10-800	0.023	20	Magnan, 1934
90. Scutelleridae	Chrysocoris purpureus	0.264	1.50	0.18	100	Ahmad, 1984
91. Tabanidac	Tabanus bovinus	0.276	1.840	0.150	96	Magnan, 1934
92. Nymphalidae	Argynnis pandora	0.278	18.00	0-015	10	Magnan, 1934
93. Libellulidae	Sympetrum meridionale	0.281	10.000	0.028	21	Magnan, 1934
	Macroglossa stelatorum	0.282	3.790	0.074	73	Sotavalta, 1952
95. Melolonthidae	Amphimallon solstitialis	0-291	2.290	0.127	78	Sotavalta, 1952
96. Saturniidae (4)	Automeris jacunda	0.298	7-572	0.039	17.1	Bartholomew & Casey, 1978

D. N. Byrne, S. L. Buchmann and H. G. Spangler

Magnan, 1934 Magnan, 1934 May, 1981 Magnan, 1934 May, 1981 May, 1981 May, 1981 May, 1981 May, 1981 Magnan, 1934	Barcholomew & Casey, 1978 Barcholomew & Casey, 1978 Casey <i>et al.</i> 1985 Casey <i>et al.</i> 1985 Barcholomew & Casey, 1978 May, 1981 Magnan, 1934	Bartholomew & Cascy, 1978 Magnan, 1934 May, 1981 Magnan, 1934 Magnan, 1934 May, 1981 Casey <i>et al.</i> 1985 Magnan, 1934	Bartholomew & Casey, 1978 Bartholomew & Casey, 1978 Magnan, 1934 Sotavalta, 1952 Bartholomew & Casey, 1978 Magnan, 1934 Sotavalta, 1952 Sotavalta, 1952 Magnan, 1934
10 21-22-9 85 31-4-25-8 31-4-25-8 31-4-25-8 31-4-25-8 31-4-25-8 31-4-25-9 31	56·1 17·4 149 170 19·0 21·1 24	41.0 90 38 38 30.0 33 33	48.5 23.5 100 133.1 33.1 18 18 62 62 8 8
0-008 0-029 0-023 0-023 0-023 0-029 0-021 0-021	0-132 0-045 0-24 0-33 0-052 0-062	0-168 0-300 0-031 0-04 0-413 0-039 0-039 0-046	0.157 0.103 0.218 0.315 0.116 0.116 0.134 0.196 0.112
36.000 10.600 13.400 9.400 4.000 12.138 12.138 17.900 11.735 1.420	2:950 8:680 1:67 1:27 8:297 7:800	2:900 1-650 16:387 13:80 1:300 13:974 2:03 12:000	3:560 5:450 2:600 1-805 4:920 4:450 3:040 50:000
0.300 0.307 0.307 0.312 0.312 0.312 0.312 0.312 0.355 0.355 0.382 0.382	0.388 0.394 0.399 0.425 0.428 0.428 0.430	0.487 0.495 0.508 0.530 0.537 0.545 0.547	0.559 0.564 0.567 0.568 0.571 0.571 0.597 0.597
Papilio podalirius Leptetrum quadrimaculatum Pantala flavescens Ophiogomphus serpentinus Libellula luctuosa Macroglossa stellatarum Somatochlora tenebrosa Tramea carolina Plathemis lydia Tramea lacerata Bombus terrestris	Enyo ocypete Automeris fieldi Eulaema nigrita Eufresia pulchra Automeris zugana Nasiaeschna pentacantha Triphoena pronuba	Adeloneivaia subungulata Bombus lapidarius Libellula pulchella Aeschna mixta Cetonia aurata Macromia georgina Eulaema cingulata Brachytron pratense	Nylophanes libya Automeris hamata Vespa crabro Bombus lapidarus Manduca lefeburei Bombyx rubi Melolontha vulgaris Vespa crabro Philosamia cynthia
 97. Papilionidac 98. Libellulidac 99. Libellulidac 100. Gomphidae 101. Libellulidae 102. Sphingidae 102. Sphingidae 103. Corduliidae 103. Corduliidae 104. Libellulidae 105. Libellulidae 105. Libellulidae 106. Libellulidae 107. Apidae 	 108. Sphingidac 109. Saturniidae 110. Apidac (2) 111. Apidac (4) 112. Saturniidae (3) 113. Aeschnidae 114. Noctuidae 	 Saturniidae Apidae A. Apidae Libellulidae Aeshnidae Octoniidae Macromiidae Aschnidae Aschnidae 	 123. Sphingidae 124. Saturniidae 125. Vespidae 126. Apidae (2) 127. Sphingidae 128. Bombycidae 129. Melolonthidae 130. Vespidae 131. Saturniidae

				Wing .	Wingbeat	
Family	Species	Mass (g)	Wing area (cm ²)	loading (g cm ⁻²)	frequency (Hz)	Citation
32. Aeshnidae	Aeschna rufescens	0-611	17.80	0-03	20	Magnan, 1934
33. Xylocopidae	Nylocopa violacea	0.614	1.720	0.357	130	Magnan, 1934
34. Sphingidae (2)	Perigonia lusca	0.638	2.470	0.258	62.9	Bartholomew & Casey, 1978
35. Apidae (4)	Exaerete frontalis	0.644	3.48	0.19	87	Casey et al. 1985
136. Saturniidae	Automeris belti	0.665	10.960	0.061	14.4	Bartholomew & Casey, 1978
137. Sphingidac	Pachygonia drucei	0.702	4.770	0.147	48.4	Bartholomew & Casey, 1978
138. Saturniidae	Automerina auletes	0.720	8.090	0.089	23.4	Bartholomew & Casey, 1978
139. Cicadidae	Cicada sp.	0.752	7-64	0.10	42	Ahmad, 1984
140. Acshnidae	Anax junius	0.820	21.02	0.039	20.5	May, 1981
141. Sphingidae (2)	Xylophanes pluto	0.829	4.430	0.187	45.0	Bartholomew & Casey, 1978
142. Saturniidae (3)	Adeloneivaia boisduvalii	0.839	5.564	0.151	24-9	Bartholomew & Casey, 1978
143. Apidac	Bombus terrestris	0.880	1-970	0.447	156	Sotavalta, 1952
144. Hemiptera	Tesseratoma javanica	0-926	3.88	0.239	99	Ahmad, 1984
145. Macromiidae	Macromia taeniolata	0.930	20-217	0.046	25-5	May, 1981
146. Apidae (7)	Eulaema meriana	0-940	3.46	0.270	98	Casey et al. 1985
147. Melolonthidae	Melolontha vulgaris	0.961	4.020	0.239	46	Magnan, 1934
148. Saturniidae (3)	Eacles imperialis	1.105	12.600	0.088	17-9	Bartholomew & Casey, 1978
149. Aeschnidae	Anax formosus	1.200	22·80	0.053	22	Magnan, 1934
150. Sphingidae	Ernnyis ello	1.210	5-480	0.221	23-7	Bartholomew & Casey, 1978
151. Blattidac	Periplaneta americana	1.555	10-44	0.148	26	Ahmad, 1984
52. Sphingidae	Acherontia atropos	1.600	20.500	0.078	22	Magnan, 1934
153. Apidae	Bombus sp.	1.600	3.50	0-46	125	Ahmad, 1984
154. Sphingidae (4)	Manduca corallina	1.618	10.270	0.158	28.0	Bartholomew & Casey, 1978
155. Saturniidae	Syssphinx molina	1.630	0.700	0.168	22.9	Bartholomew & Casey, 1978
156. Sphingidae (2)	Madoryx oechis	1.699	4.715	0.360	41·8	Bartholomew & Casey, 1978
157. Saturniidae	Saturnia pyri	1.890	120-000	0.016	8	Magnan, 1934
158. Lucanidac	Lucanus cervus	2.600	8·000	0.325	33	Magnan, 1934
159. Sphingidae	Manduca rustica	2.704	10.720	0.252	29-5	Bartholomew & Casey, 1978
160. Sphingidae (2)	Oryba achemenides	2·809	10.200	0.275	39-9	Bartholomew & Casey, 1978

16

+Where a number is presented parenthetically in column 1, the values tabulated are means from several individuals in the literature. The number in parentheses indicates from how many individuals the data are derived.

Species		Ň	Ν	Coefficient of variation (%)
Acyrthosiphon kondoi	forewing	3·39	20	3·5
	hindwing	1·93	20	5·8
Aleurothrixus floccosus	forewing	1·52	20	4·3
	hindwing	0·94	20	8·3
Aphis fabae	forewing	2.66	20	6·1
	hindwing	1.62	20	8·1
Aphis gossypii	forewing	2·18	20	7·9
	hindwing	1·37	20	9·5
Aphis nerii	forewing	2·94	20	6·6
	hindwing	1·75	20	7·0
Bemisia tabaci	forewing	0·84	20	5·6
	hindwing	0·69	20	7·2
<i>Dialeurodes citri</i>	forewing	1·37	20	3·6
(female)	hindwing	1·16	20	4·3
Dialeurodes citri	forewing	1·16	20	8·9
(male)	hindwing	0·93	20	4·0
Myzus persicae	forewing	3·08	20	5·2
	hindwing	1·89	20	8·5
Trialeurodes abutilonea	forewing	0∙98	20	11·3
	hindwing	0∙78	20	13·1
Trialeurodes vaporariorum	forewing	0·99	20	5·4
	hindwing	0·84	20	10·1

Table 2. Wing length (in mm) of measured homopterous insects

Wingbeat frequency

The two families could also be separated by wingbeat frequency (Table 1). Aphids had significantly lower wingbeat frequencies than whiteflies (range $81\cdot1-123\cdot4$ Hz for aphids, $165\cdot6-224\cdot2$ Hz for whiteflies) (P < 0.01). Within the groups, only two aphids, *Ap. nerii* and *Ap. gossypii*, and two whiteflies, *Al. floccosus* and *B. tabaci*, had wingbeat frequencies not significantly different from one another (P > 0.05).

Wing loading

Calculated wing loadings for aphids $(6.33 \times 10^{-3} \text{ to } 0.01412 \text{ g cm}^{-2})$ were all larger than those of whiteflies $(1.74-5.23 \times 10^{-3} \text{ g cm}^{-2})$; Table 1).

Relationships between wingbeat frequency and morphometrics

Relationships between wingbeat frequency and various body morphometrics, such as wing area and length, body mass and wing loading, were evaluated for all measured insect species (exclusive of *D. citri*) (Table 3). Coefficients of determination (r^2) revealed that wingbeat frequency was most closely linked with body mass

Body characteristic	Coefficient of determination r^2	F value	Significance P<
Forewing area	0.6939	7.43	0.02
Hindwing area	0.5569	3.60	NS
Total area	0.6651	6.35	NS
Forewing length	0.9261	48.23	0.001
Hindwing length	0.9160	41.69	0.001
Body mass	0.8275	17.37	0.005
Wing loading	0.6680	6.45	0.05

 Table 3. Relationships between wingbeat frequency and body morphometrics for selected members of Aleyrodidae and Aphididae

and fore- and hindwing length: 68% of the variation in wingbeat frequency was attributable to body mass, and >80% to length of both the forewings and hindwings. Compared with whiteflies, aphids generally have lower wingbeat frequencies and higher wing loading.

Relationships with other insects

Our homopterans weighed less than all the insects whose flight-associated morphometrics were measured in previous studies. Masses ranged from $3 \cdot 3 \times 10^{-5}$ g (*B. tabaci*) to 2.809 g (*Oryba achemenides*) (Table 1). Using total wing surface area as a criterion for size, our homopterans are among the smallest insects for whom wing loading and wingbeat frequencies have been calculated. The range of wing surface areas was from 9.6×10^{-3} cm² (*T. abutilonea*) to 120.00 cm² (*Saturnia pyri*). Our largest homopteran ranked only fourteenth out of 160.

The ratio of body mass to wing surface area was also low in the 11 homopterans, with five having wing loading values lower than any in the literature. The 160 insects ranged from 1.74×10^{-3} g cm⁻² for male *D. citri* to 0.460 g cm⁻² for *Bombus* spp. None of those we measured exhibited a wing loading that ranked higher than 22nd out of 160 (Table 1). For wingbeat frequencies, our homopterans exhibited some of the highest values within the recorded range of 8–480 Hz (Table 1). Rankings for whiteflies and aphids ranged from 89th to 152nd of 158.

We were also interested in the statistical relationship between body mass, wing loading and wingbeat frequency for all insects either in the literature or measured herein. Since *D. citri* was not included (for reasons discussed previously) the statistical comparisons involve 158 species. Using wing loading as the independent variable and calculating coefficients of determination for all 158 insects, we found that wing loading accounted for only $5 \cdot 5 \%$ of the variation in wingbeat frequency ($r^2 = 0.0550$, F value = 9.08). Similar calculations using body mass as the independent variable indicate that this parameter accounted for 14 % of the variation in wingbeat frequency ($r^2 = 0.1378$, F value = 24.92). Considering both mass (first

entry) and wing loading (second entry) as independent variables in a stepwise regression, we found that 34% of the variation in wingbeat frequency was attributable to these two parameters ($r^2 = 0.344$, F value = 40.58).

Relationships between body mass, wing loading and wingbeat frequency became clearer after data had been sorted according to mass. The 158 species were divided into six groups of roughly equal size. Insects weighing more than 0.03 g had to be separated into groups because slopes for regression lines for wingbeat frequency and wing loading were significantly different (P < 0.015) (Table 4). The slope for animals weighing 0.030-0.104 g was 1050.0, whereas the slope for insects weighing 0.720-2.809 g was 221.8. Coefficients of determination were calculated for the species within each mass group (Table 4). Examination of the F values indicated that the linear relationship between wingbeat frequency and wing loading was highly significant for all mass groups with the exception of the lightest animals (i.e. < 0.03 g) (P < 0.001).

The importance of excluding the smaller insects from considerations of the relationships between wingbeat frequency and wing loading became more apparent when coefficients of determination were calculated for all insect species weighing >0.03 g (Table 5). A log transformation of the independent variable, wing loading, and a log/log transformation of both the independent variable and the dependent variable, wingbeat frequency, improved the goodness-of-fit as shown by an increase in F values from 43.96 to 135.88. Similar transformation of data for insects weighing <0.03 g did little to improve the goodness-of-fit, as F values increased from 2.87 to 3.72. Log and log/log transformation for insect species in the larger mass groups decreased F values, indicating a clearly linear relationship.

We attempted to identify the relationship between wingbeat frequency and wing loading for the various taxa shown in Table 1. Although a few cases, e.g. members of Sphingidae, showed significant correlations, the majority did not. The lack of significant correlations may have been due to small sample sizes or situations where animals were arbitrarily selected because of a taxonomic relationship from groups with different slopes.

DISCUSSION

In terms of flight-associated morphometrics, the two measured families differed from one another in all important parameters considered: body mass, wingbeat frequency and wing loading. These data support the earlier observation concerning distribution of whiteflies and aphids in air columns. Our data also demonstrate that, although closely related, these insects employ different methods of flight.

The relationship between wingbeat frequency and wing loading is of special significance. The finding that whiteflies had a higher wingbeat frequency and a lower wing loading than aphids was unexpected. Other authors have argued that insects with heavy bodies in relation to total wing surface area should beat their wings more rapidly than insects of similar mass, but with larger wing surface areas (Dorsett, 1962; Bartholomew & Heinrich, 1973). This seems to be theoretically correct as well

efficients of determination for the regression equation $y = a+bx$ where $y = wingbeat$ frequency and $x = wing$	loading for all insects	
-		

			(Summer	manual in the Summer			
		Coefficient					
		of	F value				
		determination	of	Significance		t value*	Significance
Mass range (g)	Ν	r ²	regression	P <	Slope	of slope	P <
0.000033 - 0.030	27	0.1030	2.87	NS	938-7		
						3.25	0.015
0.030 - 0.104	27	0.7780	87.56	0.001	1050.0		
						2.83	0.01
0.107 - 0.201	27	0.8904	203.17	0.001	814-7		
						4.54	0.001
0.226 - 0.399	27	0.9034	233.78	0.001	519-9		
						4.02	0.001
0.425 - 0.702	27	0.7483	74.32	0.001	333-4		
						3.38	0.001
0.720 - 2.809	23	0.6020	31.76	0-001	221-8		
All insects							
0.000033 - 2.809	159	0.0550	9.08	0.001	186.1		
* Calculated t value	for diffe	* Calculated t value for differences between slopes.	ċ				
NS, not significant.							

as agreeing with other authors' (Ahmad, 1984; Greenewalt, 1962) statements about birds and bats, which apparently also employ an increased wingbeat frequency tactic.

This study of wingbeat frequency and wing loading in our measured homopterans (as well as other small insects) has helped shed some light on these relationships among insects in general, about which differing conclusions have been drawn. Certain authors have concluded that wing loading and wingbeat frequency are significantly correlated, especially if wing lengths are part of the equation (e.g. May, 1981). Others, such as Bartholomew & Casey (1978), are less certain of such a relationship and suggest that it is variable. Finally, others (Casey, May & Morgan, 1985) state no such relationship could be established for insect species they studied.

Our data demonstrate that among groups of larger insects wingbeat frequency and wing loading are significantly correlated, conforming to the hypothesis that animals with high wing loading compensate by using higher wingbeat frequencies. The differences in the steepness of the slopes of regression lines for each group indicate that smaller insects employ increased wingbeat tactic at rates exponentially higher than for larger insects.

Previous authors whose data failed to indicate a correlation between these two parameters may have considered either too few subjects or mixed insect species whose body masses were dramatically different. Casey *et al.* (1985) measured euglossine bees and showed that their wingbeat frequencies were inversely correlated with wing length and mass, but not with wing loading. We incorporated their data on bees into our larger data set, selecting groups of the same size as those used in our calculations (i.e. 26 ± 2), which included their insects. The correlation between wing loading and wingbeat frequency for the groups was highly significant for each (P < 0.001) (Table 6). Similar incorporations and recalculations were made using the data for members of the Sphingidae and Saturniidae generated by Bartholomew

Mass range (g)	Coefficient of determination r^2	F value	Significance P<
3.3×10^{-5} to 2.809 (all insects)			
no transformation	0.0550	9.08	0.003
log transformation of x	0.0623	10.36	0.002
log/log transformation	0.3831	26.68	0.001
0.03-2.809 (without smallest insects)			
no transformation	0.2242	43.96	0.001
log transformation of x	0.3498	69.41	0.001
log/log transformation	0.6489	135.87	0.001
3.3×10^{-5} to 0.03 (smallest insects)			
no transformation	0.1030	2.87	0.1
log transformation of x	0.1227	3.49	0.073
log/log transformation	0.1294	3.72	0.065

Table 5. Coefficient of determination for log transformations where y = wingbeatfrequency and x = wing loading

Family	N	Mass range* (g)	Coefficient of determination r^2	F value	Significance P<
Apidae	26	0.071-0.144	0.8369	123.11	0.001
	26	0.144-0.291	0.8836	182.16	0.001
	26	0.298-0.547	0.7212	62.09	0.001
	25	0.557-0.940	0.8392	120.04	0.001
Saturniidae	28	0.168-0.318	0.8879	205.86	0.001
	27	0.345-0.595	0.7159	62.99	0.001
	27	0.597-1.631	0.7573	78 .07	0.001
Sphingidae	27	0.388-0.638	0.7280	66.93	0.001
	26	0.644-2.809	0.5712	31.37	0.001

Table 6. Relationship between wingbeat frequency and wing loading among members of Apidae, Saturniidae and Sphingidae determined after combining referenced data

& Casey (1978). Results were the same, i.e. correlations between wingbeat frequency and wing loading were highly significant (P < 0.001) (Table 6).

For very small insects, the lack of relationship may be explained by the fact that some minute species solve the problem of staying aloft in unique ways. Some, like whiteflies (Wootton & Newman, 1979) and Drosophila (Weis-Fogh, 1972), employ a clap and fling mechanism to generate extra lift. This reduces the need for exceptionally high wingbeat frequencies, and agrees with the data presented here. Our data also support Pringle's (1976) correct prediction that, because they have exceptionally low wing loadings, whiteflies would not have the high wingbeat frequencies commonly associated with small insects (e.g. 480 Hz for Aedes aegypti; Table 1). Whitefly wingbeat frequencies are rather more correctly characterized as being mid-range (here 165.6-224.2 Hz; Table 1). The same strategy may be employed by other insects weighing < 0.03 g. A third possibility is that many small insects accomplish flight in a manner similar to that reported for aphids (Haine, 1955), i.e. by relying to a large extent on an ability to use wind currents passively. Being small, they have low settling velocities because of high drag coefficients. Any of these strategies would help explain why small insects may not conform to the generalization that animals with high wing loading have a high wingbeat frequency (e.g. members of Hymenoptera) and that insects with low wing loading have a low wingbeat frequency (e.g. members of Lepidoptera). Any group of small insects may contain several statistical 'outliers', resulting in a lack of relationship between wingbeat frequency and wing loading.

The authors thank T. S. Bellows and T. R. Unruh of the University of California, Riverside and D. Coudriet of USDA, Riverside for supplying and measuring some insects. We thank P. K. von Bretzel, H. E. DeVries, S. K. Sakaluk, F. G. Werner and R. L. Smith of the University of Arizona for their valuable comments during manuscript preparation. Finally, we thank E. A. Draeger and D. W. Zeh of the University of Arizona for their invaluable efforts in providing technical assistance during the course of this study. Journal Series No. 4241 of the University of Arizona Agricultural Experimental Station.

REFERENCES

- AHMAD, A. (1984). A comparative study on flight surface and aerodynamic parameters of insects, birds and bats. *Indian J. exp. Biol.* 22, 270–278.
- ANSARI, A. R. & BRADLEY, R. A. (1960). Rank-sum tests for dispersions. Ann. Math. Stat. 31, 1174-1189.
- BARTHOLOMEW, G. A. & CASEY, T. M. (1978). Oxygen consumption of moths during rest, preflight warm-up, and flight in relation to body size and wing morphology. J. exp. Biol. 76, 11-25.
- BARTHOLOMEW, G. A. & HEINRICH, B. (1973). A field study of flight temperatures in moths in relation to body weight and wing loading. J. exp. Biol. 58, 123–135.
- BROADBENT, L. (1948). Aphis migration and the efficiency of the trapping method. Ann. Appl. Biol. **35**, 379–394.
- BYRNE, D. N., VON BRETZEL, P. K. & HOFFMAN, C. J. (1986). Impact of trap design and placement when monitoring for the bandedwinged whitefly and the sweetpotato whitefly. *Environ. Entomol.* 15, 300–304.
- CASEY, T. M. (1981). Energetics and thermoregulation of *Malacosoma americanum* (Lepidoptera: Lasiocampidae) during hovering flight. *Physiol. Zool.* 54, 362–371.
- CASEY, T. M., MAY, M. L. & MORGAN, K. R. (1985). Flight energetics of euglossine bees in relation to morphology and wing stroke frequency. J. exp. Biol. 116, 271–289.
- DORSETT, D. A. (1962). Preparation for flight by hawk-moths. J. exp. Biol. 39, 579-588.
- GREENEWALT, C. H. (1962). Dimensional relationships for flying animals. Smithson. Misc. Collns. 144, 1-46.
- HAINE, E. (1955). Aphid take-off in controlled wind speeds. Nature, Lond. 175, 474-475.
- MAGNAN, A. (1934). La Locomotion Chex les Animaux, vol. 1, Le Vol des Insectes. Paris: Hermann & Co. 183 pp.
- MANN, H. B. & WHITNEY, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statistics. 18, 50-60.
- MAY, M. L. (1981). Wingstroke frequency of dragonflies (Odonata: Anisoptera) in relation of temperature and body size. J. comp. Physiol. 144, 229-240.
- PRINGLE, J. W. S. (1976). The muscles and sense organs involved in insect flight. In *Insect Flight* (ed. R. C. Rainey), pp. 3–15. New York: John Wiley & Sons.
- SHAPIRO, S. S. & WILK, M. B. (1965). An analysis of variance test for normality (complete samples). *Biometrika* 52, 591-611.
- SOTAVALTA, O. (1952). The essential factor regulating the wing stroke frequency of insects in wing mutilation and loading experiments and in experiments at subatmospheric pressure. Ann. Zool. Soc. "Vanamo" 15, 1–67.
- UNWIN, D. M. & ELLINGTON, C. P. (1979). An optical tachometer for measurement of the wingbeat frequency of free-flying insects. J. exp. Biol. 82, 377-378.
- VOGEL, S. (1966). Flight in *Drosophila*. I. Flight performance of tethered flies. J. exp. Biol. 44, 567-578.
- WEIS-FOGH, T. (1972). Energetics of hovering flight in hummingbirds and Drosophila. J. exp. Biol. 56, 79-104.
- WEIS-FOGH, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. exp. Biol. 59, 169-230.
- WOOTTON, R. J. & NEWMAN, D. J. S. (1979). Whitefly have the highest contraction frequencies yet recorded in non-fibrillar muscles. *Nature, Lond.* 280, 402–403.