RELATIONSHIP BETWEEN WING LOADING, WINGBEAT FREQUENCY AND BODY MASS IN HOMOPTEROUS INSECTS

By DAVID N. BYRNE
Department of Entomology, University of Anizona, Tucson, AZ 85721, USA
STEPHEN L. BUCHMANN and HAYWARD G. SPANGLER
USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ 85719, USA

Accepted 17 September 1987

SUMMARY

Several biophysical properties of members of Aleyrodidae and Aphididae were examined in order to explore how homopterous insects fly. Five species of aphids were found to weigh significantly more than five whitefly species (range $1 \cdot 14-7.02 \times 10^{-4} \mathrm{~g}$ for aphids $v s 3.3-8.0 \times 10^{-5} \mathrm{~g}$ for whiteflies) and to have significantly larger wing surface areas (range $0.0103-0.1106 \mathrm{~cm}^{2}$ vs $0.0096-$ $0.0264 \mathrm{~cm}^{2}$). As a consequence whiteflies and aphids can be partitioned into two groups with respect to wing loading (range $0.00633-0.01412 \mathrm{~g} \mathrm{~cm}^{-2}$ for aphids, $1.74-5.23 \times 10^{-3} \mathrm{~g} \mathrm{~cm}^{-2}$ for whiteflies). Members of the two families are also separated in terms of wingbeat frequency (range $81 \cdot 1-123 \cdot 4 \mathrm{~Hz}$ for aphids, $165 \cdot 6-224 \cdot 2 \mathrm{~Hz}$ for whiteflies). Since our animals were much smaller than any insects examined previously for these parameters, values were compared with the same parameters for 149 insect species recorded in the literature. Using these data, we found wingbeat frequency to be significantly correlated with wing loading only in insects weighing more than 0.03 g . Larger insects seem to employ a strategy similar to other flying animals, by compensating for high wing loading with higher wingbeat frequencies. The lack of correlation for these two parameters in insects weighing less than 0.03 g probably results from the use of different flying strategies. These include employment of a clap and fling mechanism and the possession by some of exceedingly low wing loading. Also, small insects may have reduced settling velocities because they possess high drag coefficients. Previous studies which failed to establish a relationship between wing loading and wingbeat frequency in larger insects may have considered too few subjects or too great a range of body masses. The mass range is important because smaller insects which employ increased wingbeat frequency must use rates exponentially higher than those of larger insects utilizing the same strategy.

INTRODUCTION

Whiteflies do not as readily engage in vertical flight as other homopterous insects, such as aphids. This was discovered when Byrne, von Bretzel \& Hoffman (1986)

Key words: wing loading, wingbeat frequency, body mass, insects.
placed traps at heights of $0-15 \mathrm{~cm}, 50-65 \mathrm{~cm}$ and $100-115 \mathrm{~cm}$ to catch sweetpotato whiteflies, Bemisia tabaci (Gennadius) and bandedwinged whiteflies, Trialeurodes abutilonea (Haldeman). During two growing seasons, 81% of the whiteflies were captured in the lowest traps, 12% in the midlevel traps and 7% in the highest traps. In a previous survey of alate aphids, Broadbent (1948) placed traps at heights of $5-36 \mathrm{~cm}, 81-118 \mathrm{~cm}$ and $157-188 \mathrm{~cm}$. Over a 24 -week period in his study, 14% of the aphids were caught in the lowest traps, 34% in the midlevel traps and 52% in the highest traps. These findings led us to examine how members of these two homopterous families might differ in their flight mechanisms, particularly with regard to wing loading and wingbeat frequency.

MATERIALS AND METHODS

The members of Aleyrodidae we examined were Aleurothrixus floccosus (Maskell), Bemisia tabaci, Dialeurodes citri (Ashmead), Trialeurodes abutilonea and Trialeurodes vaporarionum (Westwood). Members of Aphididae were Aphis fabae Scopoli, Aphis gossypii Glover, Aphis nerii Fonscolombe, Acyrthosiphon kondoi Shinji and Myzus persicae (Sulzer). All species were reared in greenhouses or on research plots at agricultural experimental stations maintained by the University of Arizona at Tucson and the University of California at Riverside. Italian honeybees, Apis mellifera L., from the USDA Carl Hayden Bee Research Center in Tucson, AZ , were also measured to compare our data with those in the literature.

Using a Datamate 100 Microfiche Reader, we determined wing surface areas for all species by projecting images of their wings onto transparent acetate sheets. Templates of images were cut from the sheets and weighed. A linear regression equation, relating template masses of known dimensions to their surface areas, was developed. Surface areas for wings were calculated by inserting the masses of their templates into this equation. Wing lengths were determined using an ocular micrometer in a dissecting microscope. Fresh whole masses were obtained by immobilizing the insects with carbon dioxide and weighing them with either a Cahn 25 or Cahn 29 Microbalance.

Wing loadings for these insects were calculated in $\mathrm{g} \mathrm{cm}^{-2}$ by dividing mass by total wing surface area. Total wing surface area was determined by summing twice the mean of the forewing area with twice the mean of the hindwing area.

Wingbeat frequencies were obtained with an optical tachometer, in a manner similar to that of Unwin \& Ellington (1979), and a Nicolet 206 digital oscilloscope. Insects were allowed to fly freely inside a covered greenhouse at $24 \pm 3^{\circ} \mathrm{C}$. A wingbeat frequency was obtained for the sexually dimorphic D. citri but, since separate values could not be determined for the two sexes, this species was not considered in statistical comparisons of wingbeat frequencies.

The number of animals measured for each variable was determined by examining coefficients of variation as data sets were accumulated. The data were tested for normality using the Shapiro-Wilk statistic (Shapiro \& Wilk, 1965). If samples were normally distributed, a t-test or Student F-test was used to compare sample means.

Otherwise, Ansari-Bradley (Ansari \& Bradley, 1960) and Mann-Whitney (Mann \& Whitney, 1947) nonparametric tests for equality of dispersion were used. Statistical analysis was done using the RS/1 software system on a Digital Equipment Corporation Professional 350 microcomputer.

To compare aphids and whiteflies with other insects, we compiled data from the literature for 149 insect species with known values for wing loading, wingbeat frequency and wing surface area. Certain data were corrected to match our selected format for presentation. Only species with known values for all three variables were used.

RESULTS

Morphometrics for our homopterans appear in Table 1 as numbers 1-11. Table 1 also provides rankings of the animals measured in this study with respect to values in the literature for the same parameters. These are shown parenthetically in the columns for mass, wing area, wing loading and wingbeat frequency. For example, B. tabaci wingbeat frequency ranked as the 134th highest of 158 recorded frequencies.

The data for the honeybees we measured appear as number 54 in Table 1. Our results compare favourably with those reported earlier by Magnan (1934) and Sotavalta (1952) which are shown as numbers 49 and 50.

All wing area and wing length measurements had low coefficients of variation (c.v.),$<15 \%$, indicating that 20 individuals would constitute an adequate sample size. Wingbeat frequencies also had low c.v. $(<10 \%)$, and only 10 individuals were measured. Body masses were more variable, and 40 individuals were weighed (c.v. $<40 \%$). Unlike the other insects we measured, D. citri males and females were significantly different in terms of the two important flight-associated parameters: body mass and wing surface area ($P<0.05$). Consequently, all values for the measured variables, with the exception of wingbeat frequency (not given), are listed separately for D. citri males and females.

Wing surface areas and lengths

The forewing surface areas of the measured animals were significantly larger than those of their hindwings $(P<0 \cdot 01)$. Generally, aphids had significantly larger forewings and hindwings than whiteflies, although Ap. gossypii was an exception ($P<0 \cdot 01$). Aphid forewings and hindwings were also longer than the forewings and hindwings of whiteflies $(P<0.01)$ (Table 2).

Body masses

Body masses are given in Table 1. Aphids were significantly larger than whiteflies; ranges were $1.14-7.02 \times 10^{-4} \mathrm{~g}$ for aphids and $3.3-8.0 \times 10^{-5} \mathrm{~g}$ for whiteflies ($P<0 \cdot 01$). Almost all body masses of the measured animals were significantly different from one another $(P<0 \cdot 01)$. The exceptions were two whiteflies, D. citri males and T. vaporarionm $(P>0.01)$.
Table 1. Insect fight-associated morphometrics

Family	Species	Mass (g)	Wing area (cm^{2})	Wing loading $\left(\mathrm{g} \mathrm{cm}^{-2}\right)$	Wingbeat frequency (Hz)	Citation
1. Neyrodidae	Bemisia tabaci	$3.3 \times 10^{-5}(1)^{*}$	0.0134 (3)	$2.45 \times 10^{-3}(3)$	$168 \cdot 6$ (134)	Present study
2. Alcyrodidae	Trialeurodes z'aporariorum	$3.5 \times 10^{-5}(2)$	$0 \cdot 0165$ (4)	$2.12 \times 10^{-3}(2)$	$180 \cdot 0$ (139)	Present study
3. Alcyrodidae	Dialeurodes citri (male)	$3.6 \times 10^{-5}(3)$	0.0207 (6)	$1.74 \times 10^{-3}(1)$	-	Present study
4. Mleyrodidae	Trialeurodes abutilonea	$5.0 \times 10^{-5}(4)$	$9.6 \times 10^{-3}(1)$	$5.23 \times 10^{-3}(7)$	$224 \cdot 2$ (152)	Present study
5. Alcyrodidae	Aleurothrixus floccosus	$6.5 \times 10^{-5}(5)$	0.194 (5)	$3.36 \times 10^{-3}(5)$	$165 \cdot 6$ (133)	Present study
6. Aleyrodidae	Dialeurodes citri (female)	$8.0 \times 10^{-5}(6)$	0.0264 (8)	$3.03 \times 10^{-3}(4)$	-	Present study
7. Aphididac	Aphis gossypii	$1.14 \times 10^{-4}(7)$	0.0103 (2)	0.01106 (18)	$123 \cdot 4$ (110)	Present study
8. Aphididac	Myzus persicae	$3.34 \times 10^{-4}(8)$	0.0237 (7)	0.01412 (22)	$90 \cdot 9$ (94)	Present study
9. Aphididac	Aphis fabae	$4.11 \times 10^{-4}(9)$	0.0526 (10)	7.8×10^{-3} (13)	$104 \cdot 7$ (101)	Present study
10. Aphididae	Aphis nerii	$4.67 \times 10^{-4}(10)$	0.0663 (13)	7.5×10^{-3} (12)	$118 \cdot 1$ (104)	Present study
11. Aphididae	Acyrthosiphon kondoi	$7.02 \times 10^{-4}(11)$	$0 \cdot 1106$ (14)	$6.33 \times 10^{-3}(10)$	$81 \cdot 1$ (89)	Present study
12. Trichoceridac $\text { (2) } \dagger$	Trichocera sp.	1.2×10^{-3}	0.200	6.00×10^{-3}	74	Sotavalta, 1952
13. Culicidae (2)	Aedes aegypti	1.5×10^{-3}	0.037	0.039	480	Sotavalta, 1952
14. Drosophilidae	Drosophila virilis	2.0×10^{-3}	0.058	0.04	240	Weis-Fogh, 1972
15. Drosophilidae	Drosophila virilis	2.0×10^{-3}	0.058	0.034	195	Vogel, 1966
16. Culicidae	Culicidae sp.	5.8×10^{-3}	0.150	0.039	277	Sotavalta, 1952
17. Culicidae	Theobaldia anmulata	9.9×10^{-3}	$0 \cdot 169$	0.059	262	Sotavalta, 1952
18. Anthomyiidae	Fanmia scalaris	0.010	$0 \cdot 196$	$0 \cdot 051$	210	Magnan, 1934
19. Muscidae	Masca domestica	0.012	$0 \cdot 200$	0.060	190	Magnan, 1934
20. Syrphidae	Platychirus peltatus	0.0128	$0 \cdot 230$	0.056	147	Weis-Fogh, 1973
21. Syrphidat (3)	Sphaemphoria scripta	$0 \cdot 0193$	0.200	0.094	308	Weis-Fogh, 1973
22. Syrphidae	Syrphus grossulariae	$0 \cdot 0200$	$0 \cdot 480$	0.042	114	Weis-Fogh, 1973
23. Noctuidac	Venilia macularia	0.021	$3 \cdot 400$	$0 \cdot 006$	25	Magnan, 1934
24. Apidae	Apis sp.	0.0213	$0 \cdot 20$	$0 \cdot 11$	130	Ahmad, 1984
25. Syrphidac (3)	Syrphus comollae	0.0213	$0 \cdot 350$	0.061	174	Weis-Fogh, 1973
26. Syrphidae	Syphus nitens	0.022	$0 \cdot 300$	0.073	172	Weis-Fogh, 1973
27. Calliphoridae	Calliphora erythrocephala	0.023	$0 \cdot 240$	0.096	160	Magnan, 1934
28. Syrphidac (7)	Syrohus balteatus	0.0232	0.490	0.047	138	Weis-Fogh, 1973
29. Panorpidac	Panorpa communis	0.030	1.750	0.017	28	Magnan, 1934
30. Tipulidae (12)	Tipula sp.	0.030	$1 \cdot 110$	0.027	52	Sotavalta, 1952
31. Ichneumonidae	Ophion luteus	0.033	1.5501	0.021	62	Sotavalta, 1952

Table 1. Continued

Family	Species	Mass (g)	Wing area (cm^{2})	$\begin{gathered} \text { Wing } \\ \text { loading } \\ \left(\mathrm{g} \mathrm{~cm}^{-2}\right) \end{gathered}$	Wingbeat frequency (Hz)	Citation
66. Noctuidae	Agrostis exclamationis	0.133	$3 \cdot 20$	0.04	41	Magnan, 1934
67. Nymphalidae	l'anessa atalanta	0.134	$10 \cdot 800$	0.012	10	Magnan, 1934
68. Cerambycidac	Cerambycidae sp.	0.142	$1 \cdot 33$	$0 \cdot 107$	80	Sotavalta, 1952
69. Pieridac	Pieris brassicae	0.144	17.200	0.08	$10 \cdot 5$	Sotavalta, 1952
70. Noctuidae	Plusia gamma	0.144	$4 \cdot 400$	0.033	48	Magnan, 1934
71. Apidac	Bombus hortorum	$0 \cdot 159$	0.900	$0 \cdot 177$	135	Magnan, 1934
72. Sphingidae	Chelonia villica	$0 \cdot 165$	$8 \cdot 000$	0.021	20	Magnan, 1934
73. Corduliidac	Tetragoneuria cynosura	$0 \cdot 165$	$7 \cdot 500$	0.022	$27 \cdot 6$	May, 1981
74. Saturniidac (5)	Hylesia spp.	0.168	2.334	0.072	$32 \cdot 4$	Bartholomew \& Casey, 1978
75. Apidae (6)	Euglossa imperialis	0.169	0.79	0.21	179	Casey et al. 1985
76. Nymphalidae	l'anesa cardui	0.173	$10 \cdot 400$	0.017	20	Magnan, 1934
77. Libellulidae	Erythemis simplicicollis	0.176	$8 \cdot 38$	0.021	28	May, 1981
78. Libellulidae	Pachydiplax longipennis	0.178	8.476	0.021	$24 \cdot 3$	May, 1981
79. Vespidae	lespa germanica	0.187	0.980	0.191	110	Magnan, 1934
80. Sphingidae	Macroglossa bombyliformis	$0 \cdot 189$	$2 \cdot 620$	0.072	80	Magnan, 1934
81. Nymphalidae	Vanessa io	0.195	$14 \cdot 000$	0.0147	18	Magnan, 1934
82. Saturniidac (2)	Hyperchirica nausica	0.200	3.950	0.051	21.6	Bartholomew \& Cascy, 1978
83. Notodontidac	Notodonta dictaea	0.201	$5 \cdot 000$	0.040	22	Magnan, 1934
84. Apidae	Bombus muscorum	0.226	0.900	0.251	128	Magnan, 1934
85. Diptera	Dassramphis atra	0.233	1.500	0.155	100	Magnan, 1934
86. Lymantriidae	Dasichyra pudibunda	0.237	8.000	0.030	28	Magnan, 1934
87. Vespidae	Vespa germanica	$0 \cdot 240$	$1 \cdot 330$	0.180	139	Sotavalta, 1952
88. Libellulidae	Libellula depressa	0.245	13.200	0.019	20	Magnan, 1934
89. Libellulidae	Orthetrum coervlescens	0.248	$10 \cdot 800$	0.023	20	Magnan, 1934
90. Scutellcridae	(huysocoris purpurus	0.264	1.50	$0 \cdot 18$	100	Ahmad, 1984
91. Tabanidae	Tabanus bozinus	0.276	1.840	$0 \cdot 150$	96	Magnan, 1934
92. Nymphalidae	Argymis pandora	0.278	18.00	0.015	10	Magnan, 1934
93. Libellulidae	Sympetrum meridionale	0.281	10.000	0.028	21	Magnan, 1934
94. Sphingidac	Macroglossa stelatorum	$0 \cdot 282$	3.790	0.074	73	Sotavalta, 1952
95. Melolonthidac	Amphimallon solstitiolis	$0 \cdot 291$	$2 \cdot 290$	0.127	78	Sotavalta, 1952
96. Saturnidae (4)	Automeris jacunda	0.298	$7 \cdot 572$	0.039	17.1	Bartholomew \& Casey, 1978

Magnan, 1934
Magnan, 1934
May, 1981
Magnan, 1934
May, 1981
Magnan, 1934
May, 1981
May, 1981
May, 1981
May, 1981
Magnan, 1934
Bartholomew \& Casey, 1978 Bartholomew \& Casey, 1978 n
0
\vdots
\vdots
\vdots
\vdots
0
0
0
Bartholomew \& Casey, 1978
Magnan, 1934
Bartholomew \& Cascy, 1978 \downarrow E6I 'ueusiew ∞
\vdots
\vdots
\vdots
Magnan, 1934
Magnan, 1934
Casey et al. 1985
Magnan, 1934
Bartholomew \& Cascy, 1978 8161 'Koseว 28 mawopoypreg Magnan, 1934
1978 Bartholomew \& Magnan, 1934

Papilionidae
Libellulidae (4)
Libellulidae
Gomphidae
Libellulidae
Sphingidae
Cordulidae
Libellulidae
Libellulidae
Libellulidae
Apidae
Sphingidae
Saturnidae
Apidae (2)
Apidac (4)
Saturnidae (3)
Aeschnidae
Noctuidae
Saturniidae
Apidae
Libellulidae
Aeshnidae
Cetoniidae
Macromiidae
Apidae (6)
Aeschnidae
Sphingidae
Saturniidae
Vespidae
Apidae (2)
Sphingidae
Bombycidae
Melolonthidae
Vespidae
Saturniidae

Table 1. Continued

Family	Species	Mass (g)	Wing area (cm^{2})	Wing loading $\left(\mathrm{g} \mathrm{~cm}^{-2}\right)$	Wingbeat frequency (Hz)	Citation
132. Aeshnidae	Aeschna mfescens	0.611	17.80	0.03	20	Magnan, 1934
133. Xylocopidac	Nilocopa violacea	0.614	1.720	$0 \cdot 357$	130	Magnan, 1934
134. Sphingidae (2)	Perigonia lusca	0.638	$2 \cdot 470$	$0 \cdot 258$	$62 \cdot 9$	Bartholomew \& Casey, 1978
135. Apidae (4)	Exaerete frontalis	0.644	$3 \cdot 48$	0.19	87	Cascy et al. 1985
136. Saturniidae	Automeris belti	0.665	10.960	0.061	14.4	Bartholomew \& Cascy, 1978
137. Sphingidae	Pachygonia drucei	0.702	4.770	0.147	$48 \cdot 4$	Bartholomew \& Cascy, 1978
138. Saturniidac	Automerina auletes	0.720	8.090	0.089	$23 \cdot 4$	Bartholomew \& Cascy, 1978
139. Cicadidae	Cicada sp.	0.752	$7 \cdot 64$	$0 \cdot 10$	42	Ahmad, 1984
140. Aeshnidae	Anax jumius	$0 \cdot 820$	21.02	0.039	$20 \cdot 5$	May, 1981
141. Sphingidae (2)	XVlophanes pluto	0.829	$4 \cdot 430$	$0 \cdot 187$	$45 \cdot 0$	Bartholomew \& Casey, 1978
142. Saturniidac (3)	Adeloneivaia boisduvalii	0.839	$5 \cdot 564$	$0 \cdot 151$	24.9	Bartholomew \& Cascy, 1978
143. Apidac	Bombus terrestris	0.880	1.970	0.447	156	Sotavalta, 1952
144. Hemiptera	Tesseratoma javanica	0.926	$3 \cdot 88$	0.239	66	Ahmad, 1984
145. Macromiidae	Macromia taeniolata	0.930	20.217	0.046	$25 \cdot 5$	May, 1981
146. Apidae (7)	Eulaema meriana	0.940	$3 \cdot 46$	0.270	98	Casey et al. 1985
147. Melolonthidae	Melolontha vulgaris	0.961	4.020	0.239	46	Magnan, 1934
148. Saturniidae (3)	Eacles imperialis	$1 \cdot 105$	$12 \cdot 600$	0.088	17.9	Bartholomew \& Casey, 1978
149. Aeschnidac	Anax formosus	$1 \cdot 200$	$22 \cdot 80$	0.053	22	Magnan, 1934
150. Sphingidae	Erimyls ello	1.210	5.480	0.221	$23 \cdot 7$	Bartholomew \& Casey, 1978
151. Blattidae	Periplaneta americana	1.555	$10 \cdot 44$	$0 \cdot 148$	26	Ahmad, 1984
152. Sphingidae	Acherontia atmpos	1.600	$20 \cdot 500$	0.078	22	Magnan, 1934
153. Apidae	Bombus sp.	1.600	$3 \cdot 50$	$0 \cdot 46$	125	Ahmad, 1984
154. Sphingidae (4)	Manduca corallina	1.618	$10 \cdot 270$	$0 \cdot 158$	28.0	Bartholomew \& Casey, 1978
155. Saturniidae	Syssphinx molina	1.630	9.700	$0 \cdot 168$	$22 \cdot 9$	Bartholomew \& Casey, 1978
156. Sphingidae (2)	Madorvx oeclus	1.699	4.715	$0 \cdot 360$	$41 \cdot 8$	Bartholomew \& Cascy, 1978
157. Saturniidac	Saturnia pyri	1.890	$120 \cdot 000$	0.016	8	Magnan, 1934
158. Lucanidae	Lucanus cervas	$2 \cdot 600$	8.000	$0 \cdot 325$	33	Magnan, 1934
159. Sphingidae	Manduca rustica	2.704	$10 \cdot 720$	$0 \cdot 252$	$29 \cdot 5$	Bartholomew \& Casey, 1978
160. Sphingidac (2)	Oryba achemenides	2.809	$10 \cdot 200$	$0 \cdot 275$	$39 \cdot 9$	Bartholomew \& Casey, 1978
* Numbers presented parenthetically in columns 3-6 indicate the levels of ranking, within the 160 insects tabulated, of the Homo \dagger Where a number is presented parenthetically in column 1, the values tabulated are means from several individuals in the literatu indicates from how many individuals the data are derived.						

Table 2. Wing length (in mm) of measured homopterous insects

Species		$\overline{\mathrm{X}}$	N	Coefficient of variation (\%)
Acyrthosiphon kondoi	forewing	$3 \cdot 39$	20	$3 \cdot 5$
	hindwing	1.93	20	5.8
Aleurothrixus floccosus	forewing	1.52	20	$4 \cdot 3$
	hindwing	0.94	20	$8 \cdot 3$
Aphis fabae	forewing	$2 \cdot 66$	20	$6 \cdot 1$
	hindwing	1.62	20	$8 \cdot 1$
Aphis gossypii	forewing	2.18	20	7.9
	hindwing	$1 \cdot 37$	20	$9 \cdot 5$
Aphis nerii	forewing	2.94	20	6.6
	hindwing	1.75	20	7.0
Bemisia tabaci	forewing	0.84	20	$5 \cdot 6$
	hindwing	0.69	20	7.2
Dialeurodes citn (female)	forewing	1.37	20	$3 \cdot 6$
	hindwing	$1 \cdot 16$	20	$4 \cdot 3$
Dialeurodes citri (male)	forewing	$1 \cdot 16$	20	8.9
	hindwing	0.93	20	4.0
Myzus persicae	forewing	3.08	20	$5 \cdot 2$
	hindwing	1.89	20	$8 \cdot 5$
Trialeurodes abutilonea	forewing	0.98	20	$11 \cdot 3$
	hindwing	0.78	20	$13 \cdot 1$
Trialeurodes vaporarionum	forewing	0.99	20	$5 \cdot 4$
	hindwing	0.84	20	$10 \cdot 1$

Wingbeat frequency
The two families could also be separated by wingbeat frequency (Table 1). Aphids had significantly lower wingbeat frequencies than whiteflies (range $81 \cdot 1-123 \cdot 4 \mathrm{~Hz}$ for aphids, $165 \cdot 6-224 \cdot 2 \mathrm{~Hz}$ for whiteflies) ($P<0.01$). Within the groups, only two aphids, Ap. nerii and Ap.gossypii, and two whiteflies, Al. floccosus and B. tabaci, had wingbeat frequencies not significantly different from one another ($P>0.05$).

Wing loading

Calculated wing loadings for aphids $\left(6.33 \times 10^{-3}\right.$ to $\left.0.01412 \mathrm{~g} \mathrm{~cm}^{-2}\right)$ were all larger than those of whiteflies $\left(1.74-5.23 \times 10^{-3} \mathrm{~g} \mathrm{~cm}^{-2}\right.$; Table 1).

Relationships between wingbeat frequency and morphometrics

Relationships between wingbeat frequency and various body morphometrics, such as wing area and length, body mass and wing loading, were evaluated for all measured insect species (exclusive of D. citri) (Table 3). Coefficients of determination $\left(r^{2}\right)$ revealed that wingbeat frequency was most closely linked with body mass

Table 3. Relationships between wingbeat frequency and body morphometrics for selected members of Aleyrodidae and Aphididae

	Coefficient of determination r^{2}	F value	Significance $P<$
Body characteristic	0.6939	7.43	0.05
Forewing area	0.5569	3.60	NS
Hindwing area	0.6651	6.35	NS
Total area	0.9261	48.23	0.001
Forewing length	0.9160	41.69	0.001
Hindwing length	0.8275	17.37	0.005
Body mass	0.6680	6.45	0.05
Wing loading			
NS, not significant.			

and fore- and hindwing length: 68% of the variation in wingbeat frequency was attributable to body mass, and $>80 \%$ to length of both the forewings and hindwings. Compared with whiteflies, aphids generally have lower wingbeat frequencies and higher wing loading.

Relationships with other insects

Our homopterans weighed less than all the insects whose flight-associated morphometrics were measured in previous studies. Masses ranged from $3.3 \times 10^{-5} \mathrm{~g}$ (B. tabaci) to $2 \cdot 809 \mathrm{~g}$ (Oryba achemenides) (Table 1). Using total wing surface area as a criterion for size, our homopterans are among the smallest insects for whom wing loading and wingbeat frequencies have been calculated. The range of wing surface areas was from $9 \cdot 6 \times 10^{-3} \mathrm{~cm}^{2}$ (T. abutilonea) to $120 \cdot 00 \mathrm{~cm}^{2}$ (Saturnia pyri). Our largest homopteran ranked only fourteenth out of 160 .

The ratio of body mass to wing surface area was also low in the 11 homopterans, with five having wing loading values lower than any in the literature. The 160 insects ranged from $1.74 \times 10^{-3} \mathrm{~g} \mathrm{~cm}^{-2}$ for male D. citri to $0.460 \mathrm{~g} \mathrm{~cm}^{-2}$ for Bombus spp. None of those we measured exhibited a wing loading that ranked higher than 22nd out of 160 (Table 1). For wingbeat frequencies, our homopterans exhibited some of the highest values within the recorded range of $8-480 \mathrm{~Hz}$ (Table 1). Rankings for whiteflies and aphids ranged from 89th to 152nd of 158.

We were also interested in the statistical relationship between body mass, wing loading and wingbeat frequency for all insects either in the literature or measured herein. Since D. citri was not included (for reasons discussed previously) the statistical comparisons involve 158 species. Using wing loading as the independent variable and calculating coefficients of determination for all 158 insects, we found that wing loading accounted for only 5.5% of the variation in wingbeat frequency $\left(r^{2}=0 \cdot 0550, F\right.$ value $\left.=9 \cdot 08\right)$. Similar calculations using body mass as the independent variable indicate that this parameter accounted for 14% of the variation in wingbeat frequency ($r^{2}=0.1378, F$ value $=24.92$). Considering both mass (first
entry) and wing loading (second entry) as independent variables in a stepwise regression, we found that 34% of the variation in wingbeat frequency was attributable to these two parameters ($r^{2}=0 \cdot 344, F$ value $=40 \cdot 58$).

Relationships between body mass, wing loading and wingbeat frequency became clearer after data had been sorted according to mass. The 158 species were divided into six groups of roughly equal size. Insects weighing more than 0.03 g had to be separated into groups because slopes for regression lines for wingbeat frequency and wing loading were significantly different $(P<0.015)$ (Table 4). The slope for animals weighing $0 \cdot 030-0 \cdot 104 \mathrm{~g}$ was $1050 \cdot 0$, whereas the slope for insects weighing $0 \cdot 720-2 \cdot 809 \mathrm{~g}$ was $221 \cdot 8$. Coefficients of determination were calculated for the species within each mass group (Table 4). Examination of the F values indicated that the linear relationship between wingbeat frequency and wing loading was highly significant for all mass groups with the exception of the lightest animals (i.e. $<0.03 \mathrm{~g}$) $(P<0 \cdot 001)$.

The importance of excluding the smaller insects from considerations of the relationships between wingbeat frequency and wing loading became more apparent when coefficients of determination were calculated for all insect species weighing $>0.03 \mathrm{~g}$ (Table 5). A log transformation of the independent variable, wing loading, and a \log / \log transformation of both the independent variable and the dependent variable, wingbeat frequency, improved the goodness-of-fit as shown by an increase in F values from 43.96 to 135.88 . Similar transformation of data for insects weighing $<0.03 \mathrm{~g}$ did little to improve the goodness-of-fit, as F values increased from 2.87 to 3.72. Log and \log / \log transformation for insect species in the larger mass groups decreased F values, indicating a clearly linear relationship.

We attempted to identify the relationship between wingbeat frequency and wing loading for the various taxa shown in Table 1. Although a few cases, e.g. members of Sphingidae, showed significant correlations, the majority did not. The lack of significant correlations may have been due to small sample sizes or situations where animals were arbitrarily selected because of a taxonomic relationship from groups with different slopes.

DISCUSSION

In terms of flight-associated morphometrics, the two measured families differed from one another in all important parameters considered: body mass, wingbeat frequency and wing loading. These data support the earlier observation concerning distribution of whiteflies and aphids in air columns. Our data also demonstrate that, although closely related, these insects employ different methods of flight.

The relationship between wingbeat frequency and wing loading is of special significance. The finding that whiteflies had a higher wingbeat frequency and a lower wing loading than aphids was unexpected. Other authors have argued that insects with heavy bodies in relation to total wing surface area should beat their wings more rapidly than insects of similar mass, but with larger wing surface areas (Dorsett, 1962; Bartholomew \& Heinrich, 1973). This seems to be theoretically correct as well

D. N. Byrne, S. L. Buchmann and H. G. Spangler

Table 4. Coefficients of determination for the regression equation $y=a+b x$ where $y=$ wingbeat frequency and $x=$ wing loading for all insects

as agreeing with other authors' (Ahmad, 1984; Greenewalt, 1962) statements about birds and bats, which apparently also employ an increased wingbeat frequency tactic.

This study of wingbeat frequency and wing loading in our measured homopterans (as well as other small insects) has helped shed some light on these relationships among insects in general, about which differing conclusions have been drawn. Certain authors have concluded that wing loading and wingbeat frequency are significantly correlated, especially if wing lengths are part of the equation (e.g. May, 1981). Others, such as Bartholomew \& Casey (1978), are less certain of such a relationship and suggest that it is variable. Finally, others (Casey, May \& Morgan, 1985) state no such relationship could be established for insect species they studied.

Our data demonstrate that among groups of larger insects wingbeat frequency and wing loading are significantly correlated, conforming to the hypothesis that animals with high wing loading compensate by using higher wingbeat frequencies. The differences in the steepness of the slopes of regression lines for each group indicate that smaller insects employ increased wingbeat tactic at rates exponentially higher than for larger insects.

Previous authors whose data failed to indicate a correlation between these two parameters may have considered either too few subjects or mixed insect species whose body masses were dramatically different. Casey et al. (1985) measured euglossine bees and showed that their wingbeat frequencies were inversely correlated with wing length and mass, but not with wing loading. We incorporated their data on bees into our larger data set, selecting groups of the same size as those used in our calculations (i.e. 26 ± 2), which included their insects. The correlation between wing loading and wingbeat frequency for the groups was highly significant for each ($P<0 \cdot 001$) (Table 6). Similar incorporations and recalculations were made using the data for members of the Sphingidae and Saturniidae generated by Bartholomew

Table 5. Coefficient of determination for \log transformations where $y=$ wingbeat frequency and $x=$ wing loading

	Coefficient of determination r^{2}	F value	Significance $P<$
Mass range (g)			
3.3×10^{-5} to 2.809 (all insects)	0.0550	9.08	0.003
no transformation	0.0623	10.36	0.002
\log transformation of x	0.3831	26.68	0.001
\log / \log transformation			
$0.03-2.809$ (without smallest insects)	0.2542	43.96	0.001
no transformation	0.3498	69.41	0.001
\log transformation of x	0.6489	135.87	0.001
\log / \log transformation			
3.3×10^{-5} to 0.03 (smallest insects)	0.1030	2.87	0.1
no transformation	0.1227	3.49	0.073
\log transformation of x	0.1294	3.72	0.065
\log / \log transformation			

Table 6. Relationship between wingbeat frequency and wing loading among members of Apidae, Saturniidae and Sphingidae determined after combining referenced data

Family	N	Mass range* (g)	Coefficient of determination r^{2}	F value	Significance $P<$
Apidae	26	0.071-0.144	0.8369	$123 \cdot 11$	$0 \cdot 001$
	26	0.144-0.291	0.8836	$182 \cdot 16$	$0 \cdot 001$
	26	0.298-0.547	0.7212	62.09	0.001
	25	0.557-0.940	0.8392	$120 \cdot 04$	0.001
Saturniidae	28	0.168-0.318	$0 \cdot 8879$	$205 \cdot 86$	$0 \cdot 001$
	27	0.345-0.595	0.7159	$62 \cdot 99$	$0 \cdot 001$
	27	0.597-1.631	0.7573	78.07	$0 \cdot 001$
Sphingidae	27	0.388-0.638	0.7280	66.93	0.001
	26	0.644-2.809	0.5712	$31 \cdot 37$	$0 \cdot 001$

\& Casey (1978). Results were the same, i.e. correlations between wingbeat frequency and wing loading were highly significant $(P<0 \cdot 001)$ (Table 6).

For very small insects, the lack of relationship may be explained by the fact that some minute species solve the problem of staying aloft in unique ways. Some, like whiteflies (Wootton \& Newman, 1979) and Drosophila (Weis-Fogh, 1972), employ a clap and fling mechanism to generate extra lift. This reduces the need for exceptionally high wingbeat frequencies, and agrees with the data presented here. Our data also support Pringle's (1976) correct prediction that, because they have exceptionally low wing loadings, whiteflies would not have the high wingbeat frequencies commonly associated with small insects (e.g. 480 Hz for Aedes aegypti; Table 1). Whitefly wingbeat frequencies are rather more correctly characterized as being mid-range (here $165 \cdot 6-224 \cdot 2 \mathrm{~Hz}$; Table 1). The same strategy may be employed by other insects weighing $<0.03 \mathrm{~g}$. A third possibility is that many small insects accomplish flight in a manner similar to that reported for aphids (Haine, 1955), i.e. by relying to a large extent on an ability to use wind currents passively. Being small, they have low settling velocities because of high drag coefficients. Any of these strategies would help explain why small insects may not conform to the generalization that animals with high wing loading have a high wingbeat frequency (e.g. members of Hymenoptera) and that insects with low wing loading have a low wingbeat frequency (e.g. members of Lepidoptera). Any group of small insects may contain several statistical 'outliers', resulting in a lack of relationship between wingbeat frequency and wing loading.

The authors thank T. S. Bellows and T. R. Unruh of the University of California, Riverside and D. Coudriet of USDA, Riverside for supplying and measuring some insects. We thank P. K. von Bretzel, H. E. DeVries, S. K. Sakaluk, F. G. Werner and R. L. Smith of the University of Arizona for their valuable comments during
manuscript preparation. Finally, we thank E. A. Draeger and D. W. Zeh of the University of Arizona for their invaluable efforts in providing technical assistance during the course of this study. Journal Series No. 4241 of the University of Arizona Agricultural Experimental Station.

REFERENCES

Ahmad, A. (1984). A comparative study on flight surface and aerodynamic parameters of insects, birds and bats. Indian 9 . exp. Biol. 22, 270-278.
Ansari, A. R. \& Bradley, R. A. (1960). Rank-sum tests for dispersions. Ann. Math. Stat. 31, 1174-1189.
Bartholomew, G. A. \& Casey, T. M. (1978). Oxygen consumption of moths during rest, preflight warm-up, and flight in relation to body size and wing morphology. Э. exp. Biol. 76, 11-25.
Bartholomew, G. A. \& Heinrich, B. (1973). A field study of flight temperatures in moths in relation to body weight and wing loading. 7. exp. Biol. 58, 123-135.
Broadbent, L. (1948). Aphis migration and the efficiency of the trapping method. Ann. Appl. Biol. 35, 379-394.
Byrne, D. N., von Bretzel, P. K. \& Hoffman, C. J. (1986). Impact of trap design and placement when monitoring for the bandedwinged whitefly and the sweetpotato whitefly. Environ. Entomol. 15, 300-304.
Casey, T. M. (1981). Energetics and thermoregulation of Malacosoma americanum (Lepidoptera:Lasiocampidae) during hovering flight. Physiol. Zool. 54, 362-371.
Casey, T. M., May, M. L. \& Morgan, K. R. (1985). Flight energetics of euglossine bees in relation to morphology and wing stroke frequency. I. exp. Biol. 116, 271-289.
Dorsett, D. A. (1962). Preparation for flight by hawk-moths. J. exp. Biol. 39, 579-588.
Greenewalt, C. H. (1962). Dimensional relationships for flying animals. Smithson. Misc. Collns. 144, 1-46.
Haine, E. (1955). Aphid take-off in controlled wind speeds. Nature, Lond. 175, 474-475.
Magnan, A. (1934). La Locomotion Chex les Animaux, vol. 1, Le Vol des Insectes. Paris: Hermann \& Co. 183 pp .
Mann, H. B. \& Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statistics. 18, 50-60.
May, M. L. (1981). Wingstroke frequency of dragonflies (Odonata: Anisoptera) in relation of temperature and body size. Э. comp. Physiol. 144, 229-240.
Pringle, J. W. S. (1976). The muscles and sense organs involved in insect flight. In Insect Flight (ed. R. C. Rainey), pp. 3-15. New York: John Wiley \& Sons.
Shapiro, S. S. \& Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika 52, 591-611.
Sotavalta, O. (1952). The essential factor regulating the wing stroke frequency of insects in wing mutilation and loading experiments and in experiments at subatmospheric pressure. Ann. Zool. Soc. "Vanamo" 15, 1-67.
Unwin, D. M. \& Ellington, C. P. (1979). An optical tachometer for measurement of the wingbeat frequency of free-flying insects. J. exp. Biol. 82, 377-378.
Vogel, S. (1966). Flight in Drosophila. I. Flight performance of tethered flies. I. exp. Biol. 44, 567-578.
Weis-Fogh, T. (1972). Energetics of hovering flight in hummingbirds and Drosophila. Y. exp. Biol. 56, 79-104.
Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. F. exp. Biol. 59, 169-230.
Wootton, R. J. \& Newman, D. J. S. (1979). Whitefly have the highest contraction frequencies yet recorded in non-fibrillar muscles. Nature, Lond. 280, 402-403.

