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SUMMARY

The bell of the hydromedusan jellyfish Polvorchis penicillatus (Eschscholtz, 1829)
was modelled as a harmonically forced, damped oscillator. The robustness of the
model was tested and verified by comparing estimates of the work done during the
contraction phase predicted by the model with analogous values measured in
completely independent experiments. Data suggest that the animals swim at a
frequency that is at or near the resonant frequency of the locomotor apparatus. The
implications of this phenomenon for the mechanics and physiology of the system are
discussed. If the swimming muscles force the bell at its resonant frequency, as
opposed to a single contraction at the same rate of deformation, the amplitude of the
oscillation will be increased by about 40%, and the energetic requirement for the
cycle will be reduced by about 24—37 % of the total cost of the cycle. The advantages
of forcing the structure at its resonant frequency seem quite remarkable.

INTRODUCTION

The phenomenon of resonance has profound importance throughout physics. It
can be observed when a physical oscillator is subjected to a periodic driving force by
an external agency. A periodic force of fixed size produces very different amplitudes
of oscillation, depending on its frequency. If the driving frequency is at, or near, the
natural frequency of the driven oscillator, then the amplitude of the oscillation is very
large for repeated applications of a small force. Driving frequencies above or below
the natural frequency of the oscillator produce comparatively small amplitudes of
oscillation for the same force.

The locomotor apparatus in metazoan animals is driven by muscles, the biological
force generators, to obtain the maximum amplitude of oscillation, thus maximizing

•Present address: Department of Pure and Applied Zoology, Baines Wing, The University of
Leeds, Leeds, England, LS2 9JT.

Key words: resonance, jellyfish, locomotion.



348 M. E. DEMONT AND J. M. GOSLINE

their mechanical function to propel the organism. The ability to increase the force
generated by the muscle beyond some maximum value, however, is limited by its
physiology (Alexander, 1985). Animals might therefore design locomotor structures
that couple the frequency of activation of the muscles with the resonant frequency of
the locomotor structure, thus taking advantage of the phenomenon of resonance.
Animals working at the resonant frequency of the locomotor structure could then
obtain a maximum amplitude of oscillation in the locomotor structure with the
minimum mass of muscle to force the oscillator, while keeping the maximum force
generated constant. A locomotor structure working at or near resonance can thus act
as an energy conserving device. This idea is not new. McMahon (1975, 1985) has
proposed that hopping kangaroos and galloping quadrupeds have a stride frequency
that is the resonant frequency of the body. Taylor (1985) suggests that his recent
experiments on human hopping show that the role of elastic strain energy is
maximized and metabolic energy is minimized when subjects hop at their natural
frequency.

This paper models the bell of the hydromedusan Polvorchis pemcillatus as a
moderately damped harmonic oscillator, and shows that the predicted resonant
frequency of the oscillator is at or near the working frequency of the animal. The
structure of the bell has been described in detail (Gladfelter, 1972; DeMont &
Gosline, 1988a), but the information is summarized here. The swimming muscles
line the surface of the subumbrellar mesoglea and are arranged to decrease the
diameter of the bell during contractions. No muscles exist to antagonize this
movement. The bell itself is made of noncellular mesoglea that is traversed by
numerous radially arranged fibres. These fibres are loaded in tension during
contraction of the bell, and rough calculations show that there are enough of the
fibres present in the structure to store all the potential strain energy required to
antagonize the contraction of the swimming muscles (DeMont & Gosline, 1988a).
There is also evidence that the amount of energy required to power the refilling, and
the amount provided by the energy storage system are closely matched, suggesting
that the energy storage system is tuned to work at some optimum (DeMont &
Gosline, 19886). That is, mechanical energy is not wasted by storing more energy in
the elastic storage system than is needed to just power the refilling phase.

MATERIALS AND METHODS

Experimental

Live Polyorchis were collected in Bamfield Inlet, British Columbia, and main-
tained in running seawater aquaria. Free damped oscillations of the locomotor
structure of a single animal were recorded from the free oscillations following single
spontaneous contractions of the swimming muscles. To record these data, a
specimen was tethered to a flat Plexiglas plate at the apex of the bell (with
cyanoacrylate adhesive). The bell is transparent, and it is possible to observe changes
in the internal dimensions of the animal during contractions of the bell. A video
system was used to monitor real time changes in the internal diameter of the tethered
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animal. This system uses a video dimension analyser (Model 303, Instruments for
Physiology and Medicine, San Diego, CA) that provides an electrical signal which is
proportional to the separation of two contrast boundaries on any horizontal line in the
video image. The free damped oscillations were recorded on a Hewlett-Packard
instrumentation tape recorder (Model 3964A) and later printed on a Hewlett-Pack-
ard chart recorder (Model 7402A) for final analysis.

Most of the animals examined during these studies did not give clean, single
spontaneous contractions followed by free damped oscillations, as seen for the
individual observed in this study. This individual contracted in such a manner for
the entire length of these experiments, and allowed adequate time to set up the video
system and to collect very clean records of the free damped oscillations. It
unfortunately did not cooperate by contracting in continuous trains at any time
during the experiment. However, the working frequency of 11 freely swimming
animals was measured by a frame-by-frame analysis of video records taken of other
animals contracting in continuous trains.

Analytical

The locomotor structure of the jellyfish was modelled as a damped harmonic
oscillator (see for example Kleppner & Kolenkow, 1973). The equation of motion for
such an oscillator is:

mX + bX + kX = 0 , (1)

where X is the displacement, and in this experiment, is the inside circumference of
the bell. The other terms are the first (X) and second derivative (X) of the
displacement, and represent, respectively, the velocity and acceleration of the body
wall. Each of the physical constants associated with the three terms in the equation
has a biological analogy. The spring constant, k, is the structural stiffness of the bell.
The damping coefficient, b, accounts for both the internal friction in the tissue itself,
resulting from the viscoelastic properties of the mesoglea, and the external friction in
the water resulting from the shear forces generated during the flow of water out of
and around the bell. The mass of the system, m, is the effective mass of the bell. It
includes both the actual mass of the animal and the mass of any water that is
accelerated by the contraction of the bell.

Values for the three constants were obtained using separate methods. The spring
constant, k, was obtained from an independent study (see below). The damping
coefficient, b, was measured from the free damped oscillations recorded by methods
described above. The mass of the oscillator, m, including the bell itself and any water
entrained during the oscillation, was not known, but this mass could be calculated, as
follows, from standard equations for damped oscillators.

It can be shown that the logarithmic decrement, the ratio of successive maximum
displacements of a free damped oscillator, is defined by:

In (X'/X") = b/4mf , (2)

where X' and X" are the displacements and f is the circular frequency. These
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successive displacement maxima can also be used to calculate the resilience, R, of the
oscillator per half-cycle as (Alexander, 1983):

R=(X"/X')2 . (3)

Now the angular frequency, ft), for a damped harmonic oscillator can be defined as:

O)2 = k / m - b 2 / 4 m 2 . (4)

Solving equation 2 for b and substituting into equation 4 yields an equation defining
the mass of the spring in terms of experimentally measurable quantities:

m = k/{£O2+4f2[ln(X'/X")]2}. (5)

The only unknown is the spring constant, k. However, the dynamic structural
stiffness (E) for the swimming structure, where the strain is defined in terms of
changes in the inside circumference of the bell, was shown in a previous paper
(DeMont & Gosline, 1988a) to be between 400 and 1000 Nm~2. This structural
stiffness can be converted to a spring constant with the following equation:

k=HEt/jrRo, (6)

where H is the height of the bell, t is the resting thickness of the bell, and Ro is the
resting inside radius. The derivation of this equation is shown in Appendix I.

These equations provide enough information to determine the equation of motion
of the locomotor structure, modelled as a harmonic oscillator. One clear advantage of
modelling the locomotor structure in such a manner is that it is possible to predict
how the locomotor structure will respond to an applied driving force of any given
frequency. A forced damped harmonic oscillator has a frequency-dependent
amplitude of oscillation which is defined by:

A(co) = F0/m[(co0
2 - a,2) + (ajy)2] '/2 , (7)

where Fo is the maximum amplitude of the sinusoidal driving force and wo is the
natural frequency of the undamped oscillator, defined by:

a>0=(k/m)'/2 (8)

and y is defined by:

y = b/m. (9)

The assumptions which were made in order to model the locomotor apparatus as a
harmonically forced, damped oscillator cannot be verified experimentally. However,
it is possible to make a specific prediction using the model and compare the
prediction to experimentally measured values of the same quantity. The prediction
made was the work done per cycle by the exciting force. The derivation of the
equation used to make the prediction is summarized in Appendix II. The equation
used was:

W - JTFO Asin [arctan (yaj/col - a,2)] , (10)

where all symbols are as described previously.
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0-65 cm

Fig. 1. A typical free vibration of the inside diameter of the bell of the hydromedusan
Polyorchis. The maximum amplitude of oscillation is 646 mm.

RESULTS

The modelling of any system as a harmonically driven, damped oscillator requires
values for three parameters: (1) the stiffness of the spring providing the elastic
restoring force, (2) the damping in the system, and (3) the mass of the oscillator. The
spring in the locomotor system of this animal is the mesogleal elastic structure
containing a system of radial 'elastic' fibres. Certain morphometric data, and the
estimate of the dynamic structural stiffness of the bell taken from DeMont & Gosline
(1988a), can be used with equation 6 to calculate the spring constant of the elastic
system in the locomotor apparatus. The necessary morphometric data from the
animal used to measure the free damped oscillations include: the height of the bell,
H = 2-0xl0~2m; the resting thickness of the bell, t = 2-5xlO~3m; the resting inside
radius of the subumbrellar cavity, Ro = 8-6x \0~i m. These morphometric data and
the dynamic structural stiffness values given above substituted into equation 6 yield a
spring constant of between 0-74 and 1-85 N m~'.

The measurement of the damping parameters can be made directly from records of
free damped oscillations. A typical free damped oscillation of the inside diameter of
the bell is shown in Fig. 1. Eight such oscillations were recorded. Careful inspection
of Fig. 1 shows that both the frequencies of oscillation and the relative amplitudes of
successive oscillations differ between the first oscillation (shaded) and the sub-
sequent oscillations. This suggests that two distinct processes are occurring, which
become apparent by inspection of the pressure changes that occur during the jet
cycle. Simultaneous measurement of pressure changes in the subumbrellar cavity
and free damped oscillations of the internal diameter of the subumbrellar cavity of
this animal were not made. Pressure-diameter records from DeMont & Gosline
(19886) can, however, be used to infer what processes are occurring during the free
oscillations.
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Table 1. Numerical values of the parameters estimated from Fig. 1 for the first
oscillation (shaded) or derived from the equations

Parameter Value Units

f
w

ln(X,/X2)
m
k
b

1-17 (0-028)
7-35(0-15)
1078 (0073)

O-0123-00306
0-74-1-85

00618-0154

Hz
rads"1

kg
Nm"1

N m " ' s " '

Values in parenthesis are standard deviations of the means, A = 8.

Figs 1 and 2 from DeMont & Gosline (19886) show that pressures are large during
the forced contraction but decay significantly during the refilling. Therefore, we
expect pressure changes during the oscillations that follow the initial forced
oscillation of Fig. 1 to be very small. Thus fluid flow will be large during the first
oscillation (shaded), but comparatively small during the free damped oscillations
that follow. This suggests that during the initial forced contraction in Fig. 1 the
measured damping terms will reflect a complex interaction resulting from both the
frictional losses associated with the flow out of the subumbrellar cavity and around
the exterior of the bell and with mechanical hysteresis associated with the
deformation of the bell mesoglea itself. The damping terms measured from the
second and subsequent oscillations will mostly reflect the mechanical hysteresis
associated with the deformation of the bell mesoglea. Thus, data from the first
oscillation (shaded) will be used to estimate the parameters used in the model. Data
from the second oscillation will be used as an independent measurement of the
material properties of the bell mesoglea.

Data taken from the first oscillation of all eight damped oscillations, as illustrated
in Fig. 1, are summarized in Table 1. All reported parameters that were measured
from these records are averaged values. The errors associated with these measure-
ments are standard deviations of the mean values. The ratio of successive amplitudes
(Xi/X2) can be substituted into equation 2 to give the logarithmic decrement. Eight
of such measurements yield an average logarithmic decrement of 1-078. The circular
frequency of the first oscillation is 1-17 Hz, corresponding to an angular frequency of
7-35 rads"' .

These data can be used in equation 5 to calculate the effective mass of the
oscillator. The numerator on the right side of the equation is the stiffness of the
spring, and is between 074 and 1-85 Nm"1. Substitution of these values into
equation 5 gives an effective mass of between 0-0123 and 0-0306 kg. For comparison,
the real wet mass of the entire animal was 0-005 kg, and the mass of the entire animal
plus the mass of the water contained in the resting subumbrellar cavity is about
0-011 kg.

These data can also be used to measure the damping parameter, b, used in the
equation of motion of the oscillator. Solving equation 2 for b, and substitution of the
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Fig. 2. The frequency-dependent relative amplitude of oscillation for a constant
maximum amplitude of the exciting force. The maximum predicted amplitude was
normalized to the maximum amplitude of oscillation measured in Fig. 1.

appropriate values yields a damping parameter of between 0-062 and
0-154N m~l s~'. These values can be used with equation 7 to predict the frequency
dependence of the amplitude of oscillation for a sinusoidally varying force with some
constant maximum amplitude. Fig. 2 shows this frequency dependence for a
harmonic oscillator with the parameters defined above for the jellyfish. The
maximum amplitude has been normalized to the maximum amplitude measured
from the free damped oscillations from Fig. 1. For a constant maximum force, the
maximum amplitude of oscillation is reached at a frequency of about 7 rad s~ . This
corresponds to a circular frequency of about 1-1 Hz. This, therefore, is the predicted
resonant frequency of the locomotor system for this particular animal.

Continuous trains of contractions were not observed in this animal, and thus the
natural swimming frequency for this individual is not known. However, Fig. 3 shows
the waveform of continuous contractions for two other tethered animals measured
using the video system described above. The working frequencies are about 0-8 Hz
and 1-0 Hz. Free-swimming animals have a mean frequency of 1-1 Hz (s = 0-43)
when contracting in continuous trains.

Data for the free oscillations following the initial forced oscillation (see Fig. 1) can
be used to calculate the resilience of the mesogleal material. The ratio X3/X2

measured from all eight records of the free damped oscillations substituted into
equation 3 give a mean value of 61 % for the resilience of the mesogleal material.

DISCUSSION

The mesogleal bell of the hydromedusan jellyfish Polyorchis was modelled as a
damped, harmonically forced oscillator. Four major assumptions were made in
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Fig. 3. Typical records of the inside diameter of the bell of a jellyfish contracting in
continuous trains.

making this model. First, classical harmonic oscillators are modelled as massless
springs with a known mass attached in series at one end of a spring. The 'spring' in
the jellyfish is the bell mesoglea itself. The spring is therefore not massless, and the
attached mass of the oscillator becomes, in part, the spring itself, as well as the mass
of the rest of the bell and the mass of water entrained by the movement. Second, and
somewhat related to the first assumption, a linear stress—strain curve was assumed to
describe the mechanical properties of the elastic structure. Third, the damping term
in the equation of motion, which includes both the internal damping of the tissue and
the damping due to frictional losses within the moving fluid, was assumed to be
proportional to the velocity of movement, thus ignoring any higher-order terms.
Fourth, when predicting how the oscillator will respond to an applied driving force of
any given frequency, for mathematical simplicity, the driving force was assumed to
be sinusoidal. The force generators in this oscillator are the swimming muscles, and
these do not generate tension sinusoidally (Spencer & Satterlie, 1981). However, the
resulting displacement of the locomotor structure is very nearly a sinusoidal function
(see Fig. 3). The validity of these assumptions is difficult to test, but a specific
prediction made by the model is in excellent agreement with independent measure-
ments made experimentally in a previous paper (DeMont & Gosline, 19886). This
implies that the model is robust and means that its validity is not seriously affected by
moderate deviations from the underlying assumptions.

The robustness of the model was tested by using equation 10 to predict the
frequency-dependent work output per cycle for the animal examined in DeMont &
Gosline (19886). This was then compared directly to the completely independent
experimental measurements made of the same parameter in that paper. Morpho-
metric data used in equation 10 were: the height of the bell, 2-7xlO~2m; the resting
inside radius of the subumbrellar cavity, l-0xl0~2m; the resting thickness of the
bell, 2-5xlO~Jm. These data, along with the damping parameters measured from
Fig. 1, were used in the equations described in Materials and Methods to calculate all
the parameters in equation 10. The amplitude of the oscillation was taken from fig. 1
of DeMont & Gosline (19886) and is the change in the circumference of the bell. It
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was calculated from half of the peak-to-peak change in diameter, and is 7-9x 10~j m.
Fo, measured from equation All.8, has a maximum value of about 0-01 N. The
angular frequency used was the measured frequency from fig. 1 of DeMont &
Gosline (19886), 5 rads"1. These calculations yield a predicted work output per full
cycle of between 7-0xl0~:i and l -8xl0~4J. This represents the energy dissipated
during an entire cycle. For a half-cycle, the predicted energy dissipated will be
between 3-5X10"5 and 78xlO"5J.

This can be compared to data from DeMont & Gosline (19886; see table 1), where
the energy dissipated for the contraction phase was measured experimentally. The
energy dissipated will be equal to the energy dissipated in generating the pressure in
the subumbrellar cavity, 5-4Xl0~DJ, plus the energy dissipated in deforming the
tissue. The latter value cannot be seen directly in table 1 (DeMont & Gosline, 19886)
but can be calculated from the dynamic test data in DeMont & Gosline (1988a).
From the loss modulus of the mesogleal material, the energy dissipated during the
deformation is between 0-4x10"° and 0-9 xlO"0] . The experimentally measured
energy dissipated during the contraction phase of the cycle, therefore, is between
5-8xl0~D and S-SxlO"3.). The predicted energy dissipated for a half-cycle nicely
spans the values measured in independent experiments, implying that the model is
robust; therefore any moderate violations in the assumptions stated previously will
not invalidate the model.

An additional test of the robustness of the model is provided by a comparison of
the measured and predicted force generated by the swimming muscles during the
contraction. The maximum muscle force predicted by equation All.8 used in the
equations to predict the work done per cycle by the animal in DeMont & Gosline
(19886) is 0-01N. This can be compared to the maximum force measured
experimentally for the same animal. The maximum stress generated by the
contraction of the muscle is shown in DeMont & Gosline (19886) to be at least
1-25X10° N m~2. The cross-sectional area of the muscles is approximately
5-4xlO~8m~ . Multiplication of these two values gives a measured force of about
0-007 N. Considering that this measured muscle force is only that which is required
to account for the pressure generated in the bell chamber and that the true muscle
force is probably somewhat larger (the muscles must also provide force to overcome
the viscoelastic loss in the mesogleal material), the measured and predicted values of
the maximum force generated by the muscles are in excellent agreement.

It should be noted that these data can be compared, as described in DeMont &
Gosline (19886), with previous estimates (Daniel, 1985; Bone & Trueman, 1982) of
the power requirements of jet propulsion. Using the methods described in DeMont
& Gosline (19886), the measured power requirements for Polyorchis are between
0-27 and 0-29 \V kg""0'3. These calculations also agree with Daniel's estimates where
the values range from 0-2 to 0-75\Vkg~3/3.

No mention has been made yet of the data collected for the second and following
oscillations seen in the free damped oscillations of Fig. 1. These data are unim-
portant to the mechanics of the locomotor system, especially with regard to the
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phenomenon of resonance, but they can be used to examine the material properties of
the locomotor apparatus. Because pressures are very small in the subumbrellar cavity
during these oscillations, water movement in and around the bell would be expected
to be minimal. Thus, shear stresses in the water will be small, but certainly not zero.
Any measure of damping will mostly reflect viscous damping in the mesoglea, and
data can be used to measure the properties of the material comprising the mesoglea
itself. Equation 3 was used to calculate the resilience of the material, and the mean
value calculated was 61 %. This can be compared to the resilience of isolated
mesoglea measured in dynamic tests in DeMont & Gosline (1988a). The average
resilience of the isolated mesoglea is 58 %. These results are in excellent agreement,
and suggest that the isolation of the mesoglea for the dynamic tests carried out in the
previous study did not alter its mechanical properties.

The predicted resonant frequency of the locomotor structure for the animal used
to collect the damping parameters is 1-1 Hz. The working frequency, i.e. the
frequency of contraction for an animal contracting in a continuous train, was not
measured for the animal described here. However, the mean value of the working
frequency for eight free-swimming animals is 1 -1 Hz. This fortuitous result certainly
suggests that all Polyorchis swim at their respective resonant frequencies. This does
not imply, however, that all these animals swim at exactly that particular frequency.
In fact, variations in this working frequency certainly exist. For instance, the animals
swimming in the trains of contractions shown in Fig. 3 have working frequencies of
about 0-8 and 1 Hz. If the animal with the lower working frequency had a predicted
frequency-dependent amplitude of oscillation as shown in Fig. 2, it would work at a
frequency well to the left of the peak amplitude. But individual variations in the
structural stiffness of the bell, the damping parameters, and the size of the animals
could generate an entire spectrum of resonant curves. We suggest, therefore, that
each individual, when contracting in continuous trains, is functioning at, or near, the
resonant frequency of its locomotor apparatus.

What does the animal gain by forcing the locomotor structure at its resonant
frequency? Taylor (1985) suggests, in human hopping at least, that the role of elastic
energy storage is maximized and that metabolic energy consumption is minimized
when subjects hop at their natural frequency. We did not carry out metabolic studies,
so we cannot address the question of potential metabolic savings incurred by this
animal working at resonance. However, data from DeMont & Gosline (1988a)
suggest that there is a close matching between the quantity of elastic strain energy
stored in the spring system, and the amount of energy needed from this storage
system to power the refilling phase. It is shown that between l-OxlCP3 and
Z^XlCP^J of energy will be available from the energy originally stored in the
system. Other mechanical measurements show that between WxlO" 3 and
2-1 X 10"° J of energy would be required to power the refilling phase. The animal that
was examined was contracting in continuous trains, and presumably at or near the
resonant frequency of its locomotor sys'tem. It would seem, then, that one advantage
of working at resonance is that the animals can maximize the use of their elastic
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energy storage system. Thus, mechanical energy that had been diverted from the
metabolic energy of the contraction of the muscles will not be wasted by an inefficient
storage system. Only that energy that is required to power the refilling will be
diverted from other mechanical energies.

Fig. 2 shows that for a constant maximum force, the animals can increase the
amplitude of the oscillations by about 40% above the amplitude for single
contractions, if they force the bell at the resonant frequency. Increases in the
amplitude of oscillation are important for jet-propelled animals, since larger volumes
of water can be expelled for the same maximum force. It may, however, be more
instructive to examine the work done by the muscles when they are forcing the bell at
and off its resonant frequency.

Equation 10 can be used to calculate the work done by the exciting force for any
frequency. It would seem appropriate then to use equation 10 to predict the work
done near the resonant frequency, and far from the resonant frequency, and then
compare the magnitudes of the predicted values. This comparison, however, cannot
be made using equation 10. The physical model enforces a change in the rate of the
deformation of the bell as the angular frequency varies. This comparison, therefore,
would be quite arbitrary, since predicted changes in the work would mostly reflect
changes in the dissipative forces created by changes in the rates of both deformation
of the body wall and fluid flow. A more physiologically relevant comparison would be
to compare the predicted work done by an animal swimming at resonance with the
work done in completing a single contraction at the same rate of deformation without
resonance.

For any oscillator functioning at resonance, such as a simple mass on a spring,
potential and kinetic energies fluctuate sinusoidally between the energy stored in the
spring, and the energy associated with the movement of the mass of the oscillator. At
any point in time, the sum of the kinetic and potential energies is constant. That is, as
the spring is compressed near the extremes of displacement of the oscillator, it stores
potential energy that has been transferred from the kinetic energy associated with the
movement of the oscillator. All of the energy in the system is stored as potential
energy in the spring. Near the equilibrium position of the displacement, most of the
energy has been transferred into kinetic energy, and little energy is stored in the
spring. At resonance, the external force does work to counter only dissipative
processes. This can be seen qualitatively with a closer examination of data in table 1
(DeMont & Gosline, 19886). If the animal is working at resonance, the kinetic and
potential energies should be about equal in magnitude. This is reflected in the
approximately equal magnitudes of the energy required to deform the tissue and the
energy associated with the inertia of the wall, summed for the contraction and
refilling phase. The energy the swimming muscles generate, therefore, if the
swimming muscles in this animal are forcing the bell to work at its resonant
frequency, can be approximated as the energy to overcome the dissipative forces.
This energy is shown above to be between 5-8x 10"° and 63X10"° J. The energy to
overcome the dissipative forces during the refilling should not be included in this
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summation, since the swimming muscles do not directly do this work. The refilling
phase is powered by the release of energy from the deformation of the tissue.

Off resonance, the kinetic and potential energies are not transferred from one to
the other, and their sum is not constant at any time. For example, below resonance,
where elastic forces dominate, the energy generated by the force can be approxi-
mated as the energy to counter the dissipative forces and the energy required to
deform the spring. This can be measured from data presented in table 1 (DeMont &
Gosline, 19886). The energy required to counter the dissipative forces is between
5-8X10"3 and G'SxlCP3]. The energy required to deform the tissue is between
1-8X10"3 and 4TxlO~;'J. Therefore, off resonance the energy generated by the
swimming muscles is between 7-6x 10~D and l-0xl0~4J. A comparison of these
energies with the energies generated at resonance (58xlO~° and 6-3xlO~;>J) gives
an estimate of the potential energy savings of working at resonance. If the swimming
muscles of these animals force the bell at a frequency that is near the resonant
frequency of the bell, the energetic requirements for the cycle will be reduced by
about 24-37% of the total energy generated by the swimming muscles. The
advantages of forcing the structure at its resonant frequency are therefore quite
remarkable.

We have not examined scaling phenomena related to resonance in this animal,
although size-dependent variation in the resonant frequencies would be expected
because mass is one of the parameters characterizing an oscillator. It is very
interesting that one aspect of the physiology of the swimming muscles, however,
seems to be functionally related to the scaling of the resonant frequencies. A positive
correlation between the size of the animal (measured as the bell diameter) and the
duration of the tension development has been shown to exist (Spencer & Satterlie,
1981). If the model presented here is valid, then it is tempting to infer that the size
dependence of the duration of the tension development is an attempt to adjust the
forcing frequency to accommodate for natural, requisite changes in the resonant
frequency of the locomotor structure as the animal grows. Another physiological
phenomenon potentially related to the idea of resonance is that the swimming
muscles have a refractory period that exactly matches the swimming frequency
(A. N. Spencer, personal communication). This would ensure that the muscles will
not contract at frequencies above the resonant frequency. Thus, aspects of the
animal's physiology appear to be elegantly designed to drive the locomotor system at
its natural resonance (DeMont, 1986).

APPENDIX I

This appendix describes the derivation of equation 6. It is necessary to convert the
dynamic structural stiffness measured from DeMont & Gosline (1988#) into a spring
constant, k, for use in the equations of motion of damped harmonic oscillators.
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The circumferential stress acting on a thin-walled cylinder due to an external
pressure is defined by dividing the force acting on the cylinder by the area over which
the force acts. The circumferential force is given by:

F = 2PRH, (AI.l)

where P is pressure, R is the radius, and H is the length of the cylinder, or in this case
the height of the bell. The area over which this force acts is given by:

A = 2tH,

where t is the wall thickness. The circumferential stress is therefore:

a c = P R / t .

Strain in the bell was defined as the relative change in the circumference of the
inside of the bell:

where X is the circumferential deformation and Ro is the resting bell radius. By
dividing equation AI.3 by equation AI.4 to give a stiffness, E, and rearrangement,
the circumferential deformation becomes:

X = 2jrPRRo/Et .

The spring constant, k, required in this analysis is of the form, k= F/X. Thus,
equation AI.l divided by equation AI.5 will give:

APPENDIX II

This appendix describes the derivation of equation 10 (see Hansen & Chenea,
1952; pp. 96—97). It estimates the work done per cycle by the locomotor muscles
contracting at any frequency. The driving force is assumed to oscillate sinusoidally,
and is given by:

F(t) = Fo cos(ort) , (AII.l)

where Fo is the maximum magnitude of the force, a) is the angular frequency of the
contraction, and t is time. The total work done by such a force, over one period of
oscillation (T), is given by the definite integral:

X ' (Fo cosan)dx , (All.2)
x=o

which can be changed to a time integral and becomes:

W = [' [(Fo cosftJt)dx/dt]dt . (All.3)
J o

For any sinusoidally driven oscillator, the displacement of the mass is given by:

X = Acos(an + <t>) , (All.4)

where A is the maximum amplitude of oscillation, and <t> is the phase shift between
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the applied force and the displacement. This function, and its first derivative,

substituted into equation All.3 yields:

rv
W = -FA£o(cosftrt)[sin(art + <J>)]dt. (All.5)

J o
With trigonometric identities, this equation can be transformed into the following

equation:

W = f ' -FAo>[0-5sin(2«t + <t>) -0-5 sin(O)]dt . (All.6)
J o

Since 0-5sin(2art + <l>)dt is equal to zero, equation All.6 simplifies to:

W = FojrAsin(*) . (All.7)

The maximum force, Fo, is given by:

Fo = A((D0)ma)oy (All.8)

and O by:

<fr = arctan(ya>/a>o
2-to2) . (All.9)

Thus,

W = ^FoAsin[arctan(yw/a;o
2-ft>2)] . (All.10)
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