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Mosaic physiology from developmental noise: within-organism
physiological diversity as an alternative to phenotypic plasticity

and phenotypic flexibility

H. Arthur Woods*

ABSTRACT

A key problem in organismal biology is to explain the origins of
functional diversity. In the context of organismal biology, functional
diversity describes the set of phenotypes, across scales of biological
organization and through time, that a single genotype, or genome, or
organism, can produce. Functional diversity encompasses many
phenomena: differences in cell types within organisms; physiological
and morphological differences among tissues and organs; differences
in performance; morphological shifts in external phenotype; and
changes in behavior. How can single genomes produce so many
different phenotypes? Modern biology proposes two general
mechanisms. The first is developmental programs, by which single
cells and their single genomes diversify, via relatively deterministic
processes, into the sets of cell types, tissues and organs that we see
in most multicellular organisms. The second general mechanism is
phenotypic modification stemming from interactions between
organisms and their environments — modifications known either as
phenotypic plasticity or as phenotypic flexibility, depending on the
time scale of the response and the degree of reversibility. These two
diversity-generating mechanisms are related because phenotypic
modifications may sometimes arise as a consequence of
environments influencing developmental programs. Here, | propose
that functional diversity also arises via a third fundamental
mechanism: stochastic developmental events giving rise to mosaics
of physiological diversity within individual organisms. In biological
systems, stochasticity stems from the inherently random actions of
small numbers of molecules interacting with one another. Although
stochastic effects occur in many biological contexts, available
evidence suggests that they can be especially important in gene
networks, specifically as a consequence of low transcript numbers in
individual cells. | briefly review known mechanisms by which
organisms control such stochasticity, and how they may use it to
create adaptive functional diversity. | then fold this idea into modern
thinking on phenotypic plasticity and flexibility, proposing that
multicellular organisms exhibit ‘mosaic physiology’. Mosaic
physiology refers to sets of diversified phenotypes, within individual
organisms, that carry out related functions at the same time, but that
are distributed in space. Mosaic physiology arises from stochasticity-
driven differentiation of cells, early during cell diversification, which is
then amplified by cell division and growth into macroscopic
phenotypic modules (cells, tissues, organs) making up the
physiological systems of later life stages. Mosaic physiology provides
a set of standing, diversified phenotypes, within single organisms,
that raise the likelihood of the organism coping well with novel
environmental challenges. These diversified phenotypes can be
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distinct, akin to polyphenisms at the organismal level; or they can be
continuously distributed, creating a kind of standing, simultaneously
expressed reaction norm of physiological capacities.
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error, Physiological systems, Noise, Homeostasis, Evolution,
Development, Functional diversity, Cell size, Multicellularity,
Canalization, Ergodic principle

Introduction

A defining characteristic of multicellular organisms is functional
diversity. Functional diversity among individuals is obvious, almost
regardless of relatedness: it’s easy to see when comparing
individuals from one species with those from another, and it’s almost
as easy to see among individuals from within given populations.
Less obvious are the origins of those differences, and over the past
150 years this problem has attracted significant attention from
geneticists and evolutionary biologists (Darwin, 1859; Dobzhansky,
1937; Mayr, 1963; West-Eberhard, 2003).

The fact of functional diversity within individuals, the topic of
this paper, is obvious too, although it can be less apparent to the
casual observer. Intra-individual diversity appears in two ways. The
first is spatial: individuals have sets of modules — cells, tissues and
organs — that differ from one another chemically, morphologically
and physiologically. This kind of diversity is simultaneous but
spatially distributed; in effect, organisms exhibit multiple lower-
level phenotypes at the same time but in different places. Such
modular diversity provides key divisions of labor, and it expands the
range of organismal capacities. These effects likely played important
roles in the evolutionary origins of multicellular organisms from
unicellular ancestors (Bonner, 2000; Buss, 1987; Knoll, 2011).

The second way functional diversity appears within individuals
is temporal: individuals have different phenotypes at different
times in their lives. Clearly, phenotypes of individuals change as
they age. Adults usually don’t look, act or function like they did
when they were embryos or juveniles, and the collective set of
changes over a lifetime describes the organism’s ontogenetic
trajectory. Individuals also dynamically alter their phenotypes in
response to environments they encounter, which can differ
profoundly from one individual to the next, even if those
individuals start out with similar genotypes and with similar
maternal and epigenetic legacies. The classification of such
temporal effects has been contentious (Debat and David, 2001),
and here I will simply use the terms phenotypic plasticity
(Bradshaw, 1965; Pigliucci, 2001; West-Eberhard, 2003) and
phenotypic flexibility (Piersma and Lindstrom, 1997; Piersma and
van Gils, 2010). Phenotypic plasticity refers to genotype-specific
changes in phenotype as functions of the developmental
environment, and these changes usually are irreversible. By
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contrast, phenotypic flexibility specifies more labile and reversible
changes of phenotype in response to new environments.

A first synthetic claim, which I state, justify briefly and then use
as a bridge to what follows: most functional diversity within
organisms emerges from deterministic processes. That is, functional
diversity emerges under the direction of identifiable actors — genes,
the networks they form, the differentiated cells they produce, and
the physiological processes those networks build. For example, the
diversity of cell types, arising in animals during development, comes
from stereotyped interactions among gene networks interacting
within and among cells and tissues, and from the interaction of those
networks with stereotyped sets of physical and chemical conditions
inside and outside the embryo (MacNeil and Walhout, 2011).
Likewise, the functional (phenotypic) diversity generated by
phenotypic plasticity reflects evolved, repeatable and sometimes
stereotyped responses of developing organisms to differences in the
environments they experience; the reaction norm is a meta-property
of the networks and physiology underlying development. Likewise
for phenotypic flexibility: organisms reversibly adjust their
physiology and behavior, but those changes emerge from pre-built
sensory and physiological systems, which themselves reflect
something more deterministic built from genetic and epigenetic
actors. I am not suggesting that all functional diversity is
deterministic (Losick and Desplan, 2008), nor do I think that others
think so. Similarly, I do not claim that the environment itself varies
in deterministic ways when it drives plasticity and flexibility.
Nevertheless, the prevailing view of the mechanistic origins of
diversity is largely deterministic.

Below, I propose an alternative explanation of the origins of intra-
individual functional diversity — an alternative that invokes
stochasticity. I first discuss the biology of stochasticity, drawing on
several important reviews from the past 15 years (Karn et al., 2005;
Kilfoil et al., 2009; Losick and Desplan, 2008; MacNeil and
Walhout, 2011; McAdams and Arkin, 1999; Paulsson, 2004; Raj and
van Oudenaarden, 2008; Rao et al., 2002), including brief
summaries of how organisms control stochastic noise and how, in
some circumstances, they may use it to their benefit. Building from
ideas discussed recently by MacNeil and Walhout (MacNeil and
Walhout, 2011), I then propose that stochastic events in cells can,
via development, generate functional diversity at higher levels of
biological organization within multicellular organisms. This
functional diversity constitutes a new kind of phenotypic, or
functional, diversity, which I call ‘mosaic physiology’. Mosaic
physiology describe simultaneous, spatially distributed diversity in
cell- and tissue-level functions arising from stochastic processes, and
I propose that it plays roles in the ecology and evolution of
organisms that are just as important as the roles imagined both for
deterministic differentiation during the developmental program and
for the environmentally dependent phenotypes described by
phenotypic plasticity and flexibility (Bradshaw, 1965; Ghalambor et
al., 2007; Piersma and Drent, 2003; Pigliucci, 2001).

Noise and the physiology of finite numbers

Physiological noise can be partitioned into two kinds: extrinsic and
intrinsic (Blomberg, 2006; Horsthemke et al., 1992). The first arises
from variation in physiological factors normally under tight
homeostatic control, which usually is driven by variation in some
environmental (extrinsic) factor. The main physiological factors
under control have been known since the late 19th and early 20th
centuries (Bernard, 1865; Bernard, 1878; Cannon, 1929; Cannon,
1932) and include pH, osmolality, concentrations of calcium and
glucose, and others. Their control has been studied intensively
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because they are so important to human health and to organismal
performance generally. A recent paper (Woods and Wilson, 2013)
cast variation in these factors as key sources of global physiological
noise — in the sense that variation in the factors has strong and
inescapable effects on all other physiological parts and
communication systems in organisms. In this view, physiological
homeostasis is a way of reducing the background noise so that intra-
individual communication of all kinds is faster and less prone to
error.

The second source, intrinsic noise — the focus of this paper —
stems from the molecular stochasticity that accompanies processes
containing small numbers of entities, also known as finite-number
effects (Kern et al., 2005). Our knowledge of these effects can be
traced to the classic work of Erwin Schrodinger. In his book What
is Life?, Schrodinger (Schrodinger, 1944) asked: how small could
a living thing be? His answer was framed in terms of how many
atoms or molecules the smallest living entity could contain. He
concluded that there was a lower limit: that living entities must be
large enough so that statistical noise, arising from the random
walks taken and collisions experienced by individual atoms and
molecules, disappears into the net behaviors of large ensembles.
In Schrodinger’s words (Schrodinger, 1944), ‘An organism must
have a comparatively gross structure in order to enjoy the benefit
of fairly accurate laws, both for its internal life and for its interplay
with the external world.’ In other words, determinism arises from
large numbers, implying conversely that small numbers can erode
it. The argument below is a physiological generalization of
Schrédinger’s.

Physiologists often think of organisms as having continuous,
analog traits, because we measure concentrations, voltages, rates of
transcription or flow, etc. But organisms and their components
depend on finite numbers of discrete entities, including individual
free protons, ions, proteins, transcription factors, etc. In this sense,
organisms are digital, and noise in such systems can be stochastic.
The distinction between digital and analog physiology reflects, in
part, Schrodinger’s observations on the statistics governing
ensembles of events, in that physiological functions that seem
analog are supported by a large number of digital events, in the same
way that digital music sounds smooth (analog) even though it is the
net outcome of many fast binary events, or that a binomial
distribution becomes normal as the number of trials becomes large.
In addition to being digital, physiology can also be viewed as binary:
abstracted, physiological processes mostly concern entities in either
of two states, such that we can represent analog states as collections
of binary digits (bits). For example, the main energy currency in
organisms — adenosine and its coupled phosphate groups — takes on
high- or low-energy forms (ATP and ADP, respectively). These
states could be represented by ones and zeros (bits). Ligands and
transcription factors are free or bound, again binary. Likewise, one
could describe ions in analog terms — as concentrations, or osmotic
pressures, or potential differences across membranes. But those
same analog traits can be recast as ions existing on one side of a
membrane or the other, a binary distinction. At higher levels of
control, in gene regulatory circuits for example, the directionality
can be reversed: analog inputs can be converted to binary outputs
(all or none rates of transcription) by positive feedback (Becskei et
al., 2001).

There are reasonable similarities between the behaviors of
physiological systems containing small numbers of particles and the
statistics of small sample sizes (Liao et al., 2012a). Here, I examine
these similarities both by simulating binomial distributions and then
by constructing and analyzing a somewhat more complicated, and
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perhaps more realistic, simulation of ligands interacting with
receptors.

It is intuitive that parameter estimates improve as we sample more
data. Although the statement implies ‘an observer’, it could equally
well describe a physical or physiological situation in which one kind
of device or system interacts with some other particle or chemical.
Schrodinger (Schrodinger, 1944) wrote: ‘If I tell you that a certain
gas under certain conditions of pressure and temperature has a
certain density, and if I expressed this by saying that within a certain
volume (of a size relevant for some experiment) there are under
these conditions just N molecules of the gas, then you might be sure
that if you could test my statement in a particular moment of time,
you would find it inaccurate, the departure being on the order of VN.
Hence if the number N=100, you would find a departure of about
10, thus relative error=10%. But if =1 million, you would be likely
to find a departure of about 1000, thus relative error=1/10%.” This
kind of sampling error has been discussed more recently by others
(Kaern et al., 2005; Thattai and van Oudenaarden, 2001). Another
way to examine this idea is by sampling simulated data, which I do
for a binomial process in Fig. 1. In this example, the error in
estimating the true binomial probability (P=0.5) was very large
when observing fewer than 10 events and was non-trivial even for
100.

The examples above could be rejected on the grounds that
physiology is more complicated than gas molecules in defined
volumes, or than coin flipping and other binomial processes. To
examine finite-number effects in a somewhat more realistic context,
I simulated ligands interacting with receptors using the Smoldyn
software package (http:// www.smoldyn.org/) (Andrews et al., 2010)
(Fig. 2). The fluctuations over time, in the fraction of receptors
occupied, depended on the size of the space, the diffusion
coefficients of the ligands, and the probabilities of binding and
unbinding. However, the qualitative pattern turned out as expected:
the probability densities of the fraction of receptors occupied (a
graphical view of the sample variance) were substantially broader
when there were 24 ligands and 24 receptors, compared with when
there were 100 or 1000 of each. Qualitatively similar results were
obtained from a different simulation model by Karn and colleagues
(Kern et al., 2005). The caveats to such an approach are many:
reactions can occur in macromolecular complexes, in which
substrates and products are handed sequentially from one reaction
to the next (Ovadi and Srere, 2000; Srere, 1981); macromolecular
crowding and compartmentalization can strongly affect molecular
movements and reaction dynamics (Ellis, 2001; Turner et al., 2004;
Zhou et al., 2008); and noise can propagate in interesting ways
through signal cascades involving small numbers of molecules
(Morishita et al., 2006; Thattai and van Oudenaarden, 2001).
Nevertheless, the simulation in Fig. 2 captures the magnitude of the
potential stochasticity problem.

In real physiological systems, do small numbers give rise to
stochasticity? Increasingly, across a range of systems, we know that
the answer is ‘yes’. As Bialek (Bialek, 2012) summarizes in his
book on biophysics, many systems operate close to the limits
allowed by basic physics and chemistry — because they are using, or
responding to, individual molecular events: human retinal cells and
fly ommatidia can produce distinct electrical responses to single
photons, individual transcripts in cells can occur in one or a few
copies, bacteria can count individual molecules during the process
of chemotaxis, and proofreading machinery steps through DNA base
pair by base pair.

For my purposes below, however, the key problem is to determine
whether cells, and more generally, development, show observable
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Fig. 1. Error from small numbers. (A) Variation in binomial sampling
distribution as a function of the number of observations. Each data point is
the mean of N observations drawn from a binomial distribution with P=0.5,
and for each value of N the ‘experiment’ was replicated 50 times. To avoid
complete over-plotting of points, they were jittered in both x and y directions.
Less variation was expected in the sampling distribution as the number of
observations increased, and indeed this was the case. (B) The standard
deviation of the simulated data (o;), plotted as a function of 1IN, closely
matches the expected value shown by the dashed line (i.e. the dashed line is
not a fit to the simulated data, but a theoretical expectation). The equation
describing the expected value of the sampling distribution is 0,;=\/[p(1—p)/N].

stochasticity. I frame this problem as two smaller questions, both
focused on cells because there are relatively plentiful data available
on cellular systems. First, within single cells, how few particles
actually interact? Second, do cells show observable stochasticity?
Answering the first question is straightforward for some biological
molecules (transcripts, proteins) but not others (microcomponents
of the membrane and cytoplasm). The second question has also been
answered, in the affirmative, by a large set of empirical studies,
discussed below.

In cell systems, how few particles interact? Generally biologists
do not count ions or molecules directly but infer them from their
effects [there are exceptions; e.g. it is possible to count mRNA
transcripts directly (Raj et al., 2006)]. I analyze this problem with
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Fig. 2. Simulation of ligand-receptor interactions in a three-dimensional space. Simulations were run using Smoldyn (Andrews et al., 2010). In all panels,
the diffusion and reaction kinetics were identical, and the receptors and receptor—ligand complexes were bound to the walls of the simulated volume (a cube).
Ligands underwent isotropic diffusion in the simulated space and were reflected whenever they struck a wall. What varies left to right is the total number of
ligands (=number of receptors): 24 in A, 100 in B and 1000 in C. In addition, the volume of the simulated space was scaled to the number of ligands so that
ligand density was constant. The green line represents the rolling mean calculated using a window 2 s wide and the red line the rolling mean with a window 8 s
wide. D—F show density plots associated with the simulations in A-C. In all cases, the first 12 s of the simulation was omitted, because there were artifacts

arising from the initial conditions.

reference to the average number of free protons in a single cell of
Escherichia coli. Assuming a cytoplasmic pH of 7, there are 10~
moles of free protons per liter, or about 6x10'® protons per liter. A
typical E. coli is cylindrical with a radius of about 0.5 um and length
2.5 um, which gives it a volume of 2 um® (=2x107'*1). Thus, in a
single cell, there are only about 118 (=6x10'®protons ™! x 2x1071°1)
free protons at any instant. This number lies near the noise cut-off
suggested by the simple simulations above. More generally, this
calculation suggests that any biological compound less concentrated
than 107" mol I"! (=100 nmol "), occurring in a cell the size of E.
coli — or of higher concentrations in cells smaller than E. coli — may
exist in a range where stochastic noise starts to become important.
The key caveat is that the frequency with which those compounds
interact with other compounds matters a lot, a point to which I return
in the next section. In fact, many biological molecules occur at
lower concentrations (McAdams and Arkin, 1999; Wodicka et al.,
1997) (see Table 1). For example, more than 80% of the genes on
the chromosome of E. coli produce fewer than 100 copies per cell
of their protein products (Guptasarma, 1995). Likewise, in a
eukaryote, protein copy numbers in the yeast Saccharomyces
cerevisiae range from <50 to more than 1 million (Ghaemmaghami
et al., 2003). Transcript levels are even lower, with most expressed
genes having expression levels of, on average, 1 or fewer copies per
cell (Holland, 2002; Wodicka et al., 1997).

Furthermore, E. coli is not particularly small. In a survey of
bacteria naturally occurring in seawater, Lee and Furhman (Lee and
Fuhrman, 1987) found cell volumes of 0.036 to 0.073 um?
(=femtoliters, 1), which is 3.6x107'7 to 7.3x107'71, or nearly 100-
fold smaller than E. coli. Based on protein copy numbers in E. coli,
these small marine cells must contain many proteins with copy
numbers in the single digits. By comparison, cells of vertebrates
generally are much larger. Volumes of nucleated erythrocytes from
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159 species of vertebrates had volumes of 100-10,000 pm?
(Gregory, 2001) and, in mammals specifically, volumes of 20—
3000 um? (Savage et al., 2007). These large cells are therefore much
less likely to contain very small numbers of proteins or other
molecules (Raj and van Oudenaarden, 2008), although slow
diffusion, compartmentalization and macromolecular crowding can
subdivide the spaces into domains where finite-number effects may
loom large (van Zon et al., 2006; Zhou et al., 2008).

The second question, whether cellular stochasticity has been
confirmed empirically, has an easy answer: it is extremely common
and perhaps ubiquitous (Balazsi et al., 2011). Table 1 summarizes a
non-exhaustive set of examples showing stochasticity in the number
of molecules and in cell phenotypes. Collectively, the examples can
be characterized in three ways. The first is that almost all involve
differences between cells, rather than between entities at higher or
lower levels of organization. Second, stochasticity in cell phenotypes
appears to arise from noise in gene-regulatory networks, or in the
machinery that produces and destroys transcripts and proteins
(Newman et al., 2006; Salari et al., 2012), but not from noise in non-
genetic components. Third, in studies of multicellular organisms,
stochasticity in cell states largely reflects developmental switching:
early regulatory stochasticity sends cells down one of several
pathways of differentiation, after which their states are fixed.

Such a gene-centered view differs substantially from the
foundational ideas of Schrodinger (Schrodinger, 1944), whose
argument invoked biological particles generally, and it differs from
the finite-protons example developed above. This mismatch reflects
either of two interesting possibilities. One is that transcription
factors, transcripts and proteins are the only biological molecules
rare enough to show finite-number effects. Perhaps most other cell
components — protons, ions, lipids, ATP, neurotransmitters, etc. — are
so numerous that their individual actions disappear completely into
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Table 1. Selected examples of finite numbers and phenotypic stochasticity in biological systems

Reference Taxon Result
Unicellular
Banerjee et al., 2004 Bacteria Lac operon state fluctuations across bacterial life cycle.
Becskei and Serrano, 2000 Bacteria Constructed gene circuits with negative feedback show lower noise in transcription factors.
Guptasarma, 1995 Bacteria Over 80% of E. coli genes expressed at <100 copies of protein products per cell.
Elowitz et al., 2002 Bacteria Variation in single-gene expression; contributions of both intrinsic and extrinsic noise.
Isaacs et al., 2003 Bacteria Noise in gene autoregulatory networks necessary for reproducing observed distributions of
phenotypes.
Korobkova et al., 2004 Bacteria Noise in the intracellular networks generates behavioral noise in single-cell chemotaxis.
Ozbudak et al., 2002 Bacteria Significant phenotypic noise in gfp-linked proteins in populations of Bacillus subtilis.
Acar et al., 2008 Yeast Stochastic switching among phenotypes enhances population growth in variable
environments.
Becskei et al., 2005 Yeast Significant noise introduced by low-frequency, random gene activation.
Blake et al., 2003 Yeast Different levels of noise associated with transcriptional efficiency and control; increased
noise can lead to bi-stable output phenotypes in cells.
Blake et al., 2006 Yeast Higher noise in protein levels permits populations to perform better during extreme
environmental stress.
Colman-Lerner et al., 2005 Yeast Large variation in phenotypic response to mating pheromone; most variation associated
with pathway capacity and expression capacity, not expression noise.
Ghaemmaghami et al., 2003 Yeast Yeast proteome contains proteins in numbers ranging from 50 to 1,000,000 per cell.
Holland, 2002 Yeast Many mRNAs present on average at <1 copy per cell.
Newman et al., 2006 Yeast Over 2500 proteins assessed on cell-by-cell basis; significant differences in noise based on
mode of transcription and gene function.
Raser and O’Shea, 2004 Yeast Gene-specific, noisy differences in expression between alleles at the same locus.
Wodicka et al., 1997 Yeast Expression levels range from 0.1 to several hundred copies per cell; 50% <1 copy per cell.
Multicellular
Bengtsson et al., 2005 Mice Stochastic gene expression in mouse pancreatic cells.
Boettiger and Levine, 2009 Flies Stochastic and synchronous gene activation in Drosophila embryos depending on pre-
loading by RNA polymerase Il
Chang et al., 2008 Mouse In blood stem cells, spontaneous outliers containing a stem cell marker shift distributions of
cell types; differences affect subsequent cell fate.
Jimenez-Gomez et al., 2011 Arabidopsis Quantitative trait loci that control variation in stochastic noise of glucosinolates.
Perc et al., 2009 Mice Stochasticity in response of pancreas cells (in tissue slices) to acetylcholine.
Raj et al., 2006 Hamsters Massive variation in total number of MRNA molecules in clonal ovary cells.
Raj et al., 2010 Nematodes Stochastic variation in expression patterns in intestinal cells of mutant C. elegans, caused
by loss of network elements.
Sigal et al., 2006 Humans Long-term stochastic changes in protein levels in populations of lung carcinoma cell line.
Tsuboi et al., 1999 Mice In sensory neurons, random but mutually exclusive expression of different odorant
receptors.
Wernet et al., 2006 Flies Stochastic expression of Spineless drives random expression of photoreceptors with

different color receptors.

the statistics of large ensembles. Alternatively, perhaps these other
components are also stochastic, but we (biologists) have not had the
tools for looking at them, or the interest in doing so. Finally, the
studies so far on animals, with their bodies divided into germline
and soma, indicate that stochastically driven variation in phenotypes
in the soma reflects the developmental legacy of multicellular tissues
having developed from just one or a few cells.

Controlling stochastic noise...

Stochastic noise in cells can be performance depressing, if not
outright dangerous. Not surprisingly, cells have evolved diverse
ways of controlling it (Balazsi et al., 2011). Noise dampening can
be especially important early in development (of multicellular
organisms), when the total numbers of cells and molecules are low,
and the effects of noise may be amplified via cell lineage
diversification and growth (Arias and Hayward, 2006; Balazsi et al.,
2011). One of the most important mechanisms is negative feedback
(Yu et al., 2008), which in eukaryotes can involve interactions
between microRNAs derived from introns and the promoters of
those genes (Singh, 2011). Other processes and factors that modulate
intracellular noise include: redundancy in gene networks (McAdams
and Arkin, 1999; Raj et al., 2010), interactions between proteins and

other background molecules and perhaps macromolecular crowding
generally (Morishita and Aihara, 2004), the dynamics of signaling
cascades (Morishita et al., 2006), alignment of dose-response
kinetics (Yu et al., 2008), communication and spatial averaging
among cells or nuclei (Gregor et al., 2007; Tanouchi et al., 2008),
and aspects of DNA macro-structure, such as looping structure
(Vilar and Leibler, 2003), methylation patterns and chromatin
composition (Baji¢ and Poyatos, 2012; Vifiuelas et al., 2012).
There is another process, temporal averaging, which may be
broadly applicable in biology, and which may explain why
stochastic effects so far have been observed mostly in gene—protein
networks. In temporal averaging, biological entities integrate more
rapid interactions over time, a process that averages out noise in the
rapid events (equivalent to experimenters reducing variance in their
estimate of a mean value by taking more samples over time; also
equivalent to sliding-window averaging over time, as exemplified
by the green and red lines in Fig. 2). This is a biological
manifestation of the ‘ergodic principle’ from physics, which posits
that the behavior of a single particle over time is similar to the
ensemble behavior of many particles at a particular moment (see
Kapanidis and Strick, 2009) [for a different view, see Blomberg
(Blomberg, 2006)]. In other words, just a few biological particles (or
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molecules) whose activities are integrated over a long time, by slow-
acting partners, are similar to many particles interacting with fast-
acting partners over a short period of time. This principle underlies
some modes of noise reduction in gene networks. For example, Kar
and colleagues (Kar et al., 2009) modeled stochastic effects in the
control system regulating the cell cycle in yeast, which is of
particular interest because some cell cycle transcripts occur at about
1 copy per cell (see also Table 1). Such low copy numbers should
inject enormous stochastic noise into the cell cycle. In their model,
however, they did obtain stable cell cycling, but only when two key
cell cycle transcripts had half-lives of <1 min. Such short transcript
lifetimes in effect forced the translation machinery to average
transcript numbers over time, resulting in significantly less noise
than expected from transcript numbers alone.

The conclusion is that rapid interactions make up for small
numbers, an effect that profoundly amends the finite-proton
example above. Based on reasonable assumptions, I calculated that
an average cell of E. coli contains about 118 free protons, a
number so low that it should generate significant local noise in
charge and acid-base status. However, protons interact with their
surroundings enormously more rapidly than do proteins. One
measure of this interaction speed is the diffusion coefficient, which
for protons in water at 25°C is 762x107" cm?s ™' (Lee and Rasaiah,
2011), for lysozyme is 11.1x1077 cm?s™! (Brune and Kim, 1993)
and for green fluorescent protein is 8.7x10 7 cm?s ' (Swaminathan
et al., 1997). Thus, the protein diffusion coefficients are 75-95
times lower, and the ratio may expand even more in cytoplasmic
spaces crowded with macromolecules. The microscopic details of
proton movement in water, and between acids and bases in water,
are increasingly well known (Marx et al., 1999; Mohammed et al.,
2005). Proton movements can be ultrafast, and may involve
protons ‘hopping’ via water bridges or by the delocalization of
local structural defects in hydrogen-bonded networks. These
observations together suggest that a given proton has many more
interactions with its macromolecular surroundings, per unit time,
than does any given protein — i.e. the effects of a finite number of
protons are spread out in space by their rapidity in time. This
ergodic effect may be quite general, such that small cellular
components (anything smaller than a small protein) both occur in
larger numbers and have more rapid interactions. In this way, the
ergodic effect reinforces the tendency of small particles not to
produce stochasticity on time scales relevant to macromolecular
processes in cells.

A final method of combatting noise may be larger size. All else
being equal (a dubious assumption), larger cells will contain more
of everything, which may partially mitigate small-numbers
stochasticity. A useful way to conceive of the problem is in terms of
counteracting evolutionary tendencies. The first is that evolution
should push for smaller, simpler systems, because useless
redundancy wastes materials and energy. But a key counterbalancing
factor is statistical noise. If physiological systems (most often cells)
become small enough, and depend on the actions of too few entities,
statistical noise inherent in the systems will overwhelm their analog
functions. This competing process should push for the evolution of
larger, more redundant physiological systems. There are of course
many other factors, including genome size, that affect the evolution
of cell size (Gregory, 2001). However, the stochasticity problem is
particularly stimulating, both because it is so general and because
cell sizes range so widely (<0.1-10,000 1), as summarized above,
with eukaryotic cells generally being much larger than prokaryotic.
This observation suggests that prokaryotic and eukaryotic cells differ
fundamentally in their relationships to noise. Those differences can
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take on two forms — either prokaryotic cells are more tolerant of
noise than are eukaryotic cells, or prokaryotic cells control noise
more closely. This is an area ripe for scaling studies, which could
examine the cell-size allometry of molecular feedback loops,
transcriptional and translational dynamics, half-lives of transcripts
and proteins, etc. In addition, it would be revealing to examine the
correlated evolution of noise-control mechanisms in cell lineages
that have evolved a larger or smaller size (Mongold and Lenski,
1996).

...but not too closely

The diversity of noise-reducing mechanisms discussed above
implies that noise often depresses performance. Nevertheless, there
are at least three broad reasons for organisms not to control noise
too closely.

It costs too much

For organisms, positive action generally incurs costs. Homeostatic
systems incur costs in the currencies of energy and materials
devoted to constructing and maintaining tissues and organs. In
addition, combatting one kind of noise may disrupt other
homeostatic systems, via their linked information processing
pathways. To combat intrinsic noise, organisms may contain greater
numbers of larger cells, each with higher standing numbers of each
component. Yet, such a mechanism may increase the energy and
materials needed for support (Balazsi et al., 2011), or it may result
simply in a larger body size, which may be maladaptive. These costs
may not be worth paying when space is at a premium, or when the
energy, materials or information-processing capacity could be put
more profitably to other uses. The literature on canalization and
plasticity provides well-developed frameworks for analyzing costs
(Auld et al., 2010; DeWitt et al., 1998), which could be applied to
estimating costs of noise dampening, and I follow this thread no
further here.

Noise can be information

Just as one person’s music is another’s noise, extrinsic
environmental conditions and sensory inputs can constitute
information or noise, depending on whether the input is detectable
and relevant to the organism’s performance. In this regard, there is
an important distinction between stochastic noise (intrinsic) and
incomplete homeostasis (extrinsic). Stochasticity is a kind of white
noise, containing no information. Incomplete homeostasis, however,
can generate variation (noise) that nevertheless contains information
about the environment. For example, in humans, systems devoted to
salt and water balance regulate blood osmolality within narrow
limits, and we do not have major systems that interpret our
surroundings based on the variation within those limits. In this
sense, large variation in blood osmolality, were it to occur, would be
potentially dangerous noise that would affect the performance of
many other systems (Woods and Wilson, 2013). By contrast, many
organisms do not regulate their blood osmolality nearly as closely.
For example, the blue crab Callinectes sapidus inhabits bays and
estuaries along the east coast of North America. During their
lifetime, individual crabs undergo a complicated set of migrations
between full strength seawater and nearly fresh water, which poses
significant problems for their osmoregulatory systems (Mangum and
Towle, 1977). In these crabs, changes in blood osmolality appear to
play a role in coordinating changes in multiple other physiological
systems (oxygen transport, pH regulation) so that crab physiology
as a whole is retooled to perform well in the various salinities it
encounters (Mangum and Towle, 1977).
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Noise can enhance performance

Different kinds of noise are known to play constructive roles in
organismal development and performance (Losick and Desplan,
2008; MacNeil and Walhout, 2011; McDonnell and Abbott, 2009;
Samoilov et al., 2006). One interesting phenomenon is stochastic
resonance, in which intermediate levels of background noise allow
systems to perform better than systems with either no or lots of
noise (McDonnell and Abbott, 2009). In cell biology, known
beneficial effects of noise stem from the diversifying effects that
noise has on cellular differentiation and function. For example, noise
in transcription factors creates the stochastic array of ommatidial
sensitivities in Drosophila eyes, which collectively make the full
range of color vision possible (Wernet et al., 2006), and generate the
specific but diverse set of olfactory neurons in mammals
(Mombaerts, 1999). Noise in yeast, which generates differential
proteins levels among individual cells, can enhance the probability
of populations surviving bouts of extreme environmental stress
(Blake et al., 2006) or in oscillating environments (Acar et al.,
2008). Likewise, noise in bacteria can generate populations of
dormant persister phenotypes, which survive environmental insults
better than do active cells. This kind of noise-induced variation may
represent a kind of bet hedging by bacterial populations (Losick and
Desplan, 2008). In other gene circuits, noise can facilitate the
emergence of oscillations (Steuer et al., 2003; Vilar et al., 2002), and
noise has similar effects in neural networks (Buhmann and Schulten,
1987). Collectively, these benefits seem to derive from the net
positive effects of closely associated collections of functional types
(Samoilov et al., 2006), an observation which I use below to develop
the idea of mosaic physiology.

Mosaic physiology

To summarize the preceding: stochastic developmental noise in
multicellular organisms arises from noise in gene networks, and this
noise can be transmitted into later life stages by the growth and
differentiation of the cell lineages that give rise to later tissues and
organs. Cells appear to have sophisticated and evolvable
mechanisms for controlling noise (MacNeil and Walhout, 2011);
nevertheless, some noise in some gene networks (or among some
cells) may be beneficial. Below, I integrate these conclusions into
modern ideas about the roles of phenotypic plasticity and flexibility
in organisms. From this integration, I derive a new hypothesis about
the benefits of developmental noise to the performance of
physiological systems in multicellular organisms.

Phenotypic plasticity describes the set of phenotypes produced by
a genotype across environments (Pigliucci, 2001). Although it has
often been used to denote irreversible phenotypic differences that
arise when genotypes are subjected to different environments during
development (West-Eberhard, 2003; Wilson and Franklin, 2002), the
concept has been broadened in various ways to include a set of
short-term, reversible changes in physiology. Piersma and colleagues
(Piersma and Drent, 2003; Piersma and van Gils, 2010) have called
these sorts of physiological changes ‘phenotypic flexibility’.

There is, however, a serious and misleading consequence of
viewing functional diversity in the light of developmental plasticity,
a problem which stems from the number of phenotypes per trait that
a single organism is assumed to take on. In developmental plasticity,
that number is one — i.e. an organism and its genotype interact with
some environmental history to produce ‘a phenotype’. The
phenotype may differ according to environmental history, in which
case it is plastic and displays a reaction norm; or it does not and is
said not to show plasticity. In phenotypic flexibility too, the number
of phenotypes at a given moment is one, although those phenotypes

can change (more rapidly and reversibly) during the lifetime of an
organism.

In many physiological systems, however, there is no a priori
reason to assign one phenotype per genotype at a given moment.
This is because physiological systems themselves consist of
modules (manifest as collections of tissues, which themselves are
collections of cells), and different modules can take on somewhat
different phenotypes simultaneously. This observation leads to the
new hypothesis: that physiological systems show adaptive mosaic
physiology, in which the different modular units, distributed in space
inside any organism, exhibit different phenotypes at the same time.
The idea of mosaic physiology is also related to ‘homeostatic
heterogeneity’, recently proposed by Liao and colleagues (Liao et
al., 2012a; Liao et al., 2012b), which characterizes phenotypic
differences within populations of human cancer cells. Mosaic
physiology can also be thought of as a kind of multicellular version
of the phenotypic diversity already known to arise from stochasticity
in unicellular populations (Fedoroff and Fontana, 2002; Heinemann
and Zenobi, 2011; Raj and van Oudenaarden, 2008).

In multicellular organisms, mosaic physiology can conceivably
generate phenotypic diversity having two qualitatively different
patterns. The first is analogous to polyphenisms at the level of the
whole organism. Polyphenisms describe discrete sets of phenotypes
arising from genotypes interacting with environments (Simpson et
al., 2011): an organism has phenotype A or B (or C, etc.), they are
distinct and there are no intermediates between them. In mosaic
physiology, this type of variation describes situations where
stochastic noise leads to discrete cell- or tissue-level phenotypes
operating in the same physiological system, e.g. the stochastically
driven diversity of fly ommatidia described by Wernet and
colleagues (Wernet et al., 2006) or populations of different fiber
types in vertebrate muscle (Hughes and Salinas, 1999). This pattern
could be particularly likely if gene regulatory networks have
alternative, discrete stable states, and some form of stochasticity
drives initial entry into one of the states. This pattern of variation
could be called ‘mosaic polyphenism’. The contrasting pattern of
variation, in mosaic physiology, is analogous to continuous forms of
plasticity in whole organisms. In this form, genotypes interact with
their environments to produce phenotypes, and there is a more-or-
less continuous mapping of environments on to phenotypes (for a
particular genotype); that map is called a ‘reaction norm’. In mosaic
physiology, this kind of variation describes situations in which
developmental stochasticity broadens the distributions of cell and
tissue functions across some continuous range of possibilities.

What is the function of mosaic physiology? I propose that it
builds adaptive diversity into physiological systems — if it occurs at
the right levels and in the right systems. A key problem, for any
organism, is to modify its set of phenotypes in response to rapidly
changing, complex, multivariate environments. The kinds of
phenotypic plasticity examined in the past 50 years reflect in large
part thinking along two conceptual axes: reversibility and time scale.
However, it is likely that organisms are subject to environmental
challenges that lie off these axes: (1) novel kinds of multivariate
environmental variation that neither they nor their evolutionary
lineage have ever experienced; and (2) rapid, multivariate challenges
that threaten to overwhelm what would otherwise be well-adapted
systems. I propose that mosaic physiology provides a set of
standing, diversified phenotypes that provide a greater likelihood of
seeing the organism through novel challenges with at least adequate
performance (Fig. 3).

It is also important to state what mosaic physiology is not, and to
identify constraints on its action. Multicellular organisms having

41

>
(@2}
o
ie
m
®©
-
(=
()
£
o
(V)
o
X
L
Y
(@)
©
c
fum
>
o
=
()
e
|_




REVIEW

The Journal of Experimental Biology (2014) doi:10.1242/jeb.089698

A Non-plastic development and typical homeostasis

Single cell Development Tissue or organ

Homeostatic pattern

Consequences of exposure to
novel or extreme environments later

O — &%

Organismal level of A

Death

Death

Not typically considered; novel environments
interacting with A, or extremes of A, are potentially
catastrophic.

Environmental level of A

B Developmental plasticity in homeostasis

O Env. 1 i %
O Env. 2 %

Organismal level of A

Dev. 2, current 2

Monotypic traits within individuals but differences
among individuals, leading to reduced
performance in response to novel sets of
multivariate environmental variation, or to
anticipated but extreme variation.

Dev. 2, current 3

Dev. 1, current 4

O Env3 %

C Phenotypic flexibility in homeostasis

Env. 1
Env. 2
— S

Organismal level of A

Past 2, current 2

Past 1, current 4

Environmental level of A

Monotypic traits within individuals at any

one time but can change over time in response
to new environments. Instantaneous

monotypy gives reduced performance in
response to rapid environmental change into
novel sets of multivariate variation.

Past 2, current 3

D Mosaic physiology and homeostasis

7\
O > S
N

Survival

Organismal level of A

Environmental level of A

Survival  Mosaic physiology generates diversity of
phenotypes even within single physiological
systems (e.g. diversity among cells), which
provides the organism with the ability to
respond appropriately to a greater diversity
of future environments, even novel ones, and
to be more likely to survive environmental
extremes.

Different environments + noise

Environmental level of A

Fig. 3. Homeostasis, phenotypes and mosaic physiology. (A) A typical conception of the development of a homeostatic system. A single cell, or group of
cells, gives rise to tissues and organs devoted to controlling some particular factor. The system carries out homeostasis whenever it regulates levels of the
factor (here called A) inside the organism, such that internal fluctuations are dampened compared with external or environmental variation in the factor. Often
such systems fail at environmental extremes. (B) Developmental plasticity describes particular genotypes giving ranges of phenotypes depending on the
environment experienced during development. Developmental plasticity can be adaptive (where the phenotype generated performs better in the current
environment than would some other phenotype) or non-adaptive. Importantly, a phenotype, generated by a genotype interacting with an environment, is
considered to be monotypic — an individual exhibits ‘a phenotype’. If this were the case, we would expect significant mismatches, for some fraction of
organisms, between physiological phenotypes produced and environments experienced, such that they had very low fitness. (C) Phenotypic flexibility partially
solves the problem of potentially long lag times (between developmental and adult environments) by recognizing that organisms also generate shorter-term,
reversible plasticity within their lifetimes. Nevertheless, phenotypic flexibility still views phenotypes as monotypic, which makes organisms vulnerable to novel

combinations of environments, or extremely rapid change. (D) Mosaic physiology solves these problems by proposing that individual physiological systems
contain multiple phenotypes simultaneously, and that intra-organismal phenotypic diversity is generated in part by stochastic events.

different cell types could be thought of as ‘mosaics’ — but this
description does not capture the essence of mosaic physiology.
Whereas the stereotyped differences between one cell type and
another often reflect deterministic developmental programs (but see
Losick and Desplan, 2008), mosaic physiology focuses on subtler,
stochastically driven differences among cells (and tissues and
organs) of a particular type. Mosaic physiology is also not conceived
as an organismal panacea that could, in excess, solve any functional
problem. In this respect, a useful analogy could be drawn between
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mosaic physiology and specialist-generalist trade-offs in the context
of performance curves (Gilchrist, 1995). Specialists have high
performance over some narrow range of environments but low
performance in others. By contrast, generalists are relatively good
across many environments but great in none of them. Neither is
necessarily best, and the outcome for any lineage at any point in its
evolutionary history will depend on its environments, its genetic
variation for performance, etc. In this same way, mosaic physiology
could exhibit specialist-generalist trade-offs. A specialist phenotype
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would involve very little stochastically driven phenotypic
differentiation; such a set of cells may have high performance in
well-controlled or anticipated environments. By contrast, a
generalist phenotype would perform adequately in many
environments, but perhaps not particularly well in any given
environment. Here too, the actual outcome in any particular lineage
would depend on the relative advantages of specialized versus
generalized capabilities, the genetic variation available to selection,
etc.

How does mosaic physiology arise in organisms? It stems from
stochastic developmental noise, which generates differences among
modules (tissues, cells) within systems (Fig. 3D). This idea does not
supersede developmental plasticity or phenotypic flexibility (Fig.
3B,C), nor does it suggest that noise fundamentally alters
developmental programs by causing cells to differentiate into
fundamentally different types; rather, it provides an automatic
mechanism for broadening their capabilities and for generating
mosaics of phenotypic diversity (Acar et al., 2008; Balazsi et al.,
2011; Samoilov et al., 2006) that help organisms cope with extreme
or unanticipated environments.

The hypothesis of mosaic physiology is a generalization of
several key studies emerging from work on mammals, Drosophila
and Saccharomyces. Wernet and colleagues (Wernet et al., 2006)
found that stochasticity — in the expression of a single transcription
factor (Spineless) in Drosophila ommatidia during pupation —
generates the retinal mosaic necessary for adult flies to have full
color vision. Similarly, stochasticity in the expression of olfactory
receptors in mammals generates the full suite of olfactory sensory
neurons (Mombaerts, 1999). Using engineered strains of S.
cerevisiae, Blake and colleagues (Blake et al., 2006) showed that
populations in which stochasticity generated variable patterns of
gene transcription survived environmental stresses better than did
non-noisy populations. Also in yeast, Raser and O’Shea (Raser and
O’Shea, 2004) demonstrated noise in the relative expression levels
of the two alleles at particular loci, and they suggested that this
variability may be beneficial by providing the cell population with
a greater range of phenotypes. Mosaic physiology should play
analogous roles in physiological systems in all multicellular
organisms: cell-level stochasticity should generate diversity in gene
expression patterns, giving differences in cell physiological
phenotypes, which cascade into different phenotypes among the
modules making up any particular system. That diversity then (as in
the fly and mammal examples) provides a greater range of
functional abilities within any larger unit, and (as in the yeast
example) may help organisms perform and survive better during
extreme stress.

The concept of mosaic physiology also points to a close
functional relationship between extrinsic and intrinsic noise.
Extrinsic sources are controlled by negative feedback implemented
in homeostatic systems (Cannon, 1932; Woods and Wilson, 2013).
Like extrinsic noise, intrinsic noise is dampened by a variety of
negative-feedback mechanisms, but in sub-cellular spaces. Mosaic
physiology, however, emphasizes that intrinsic noise can be used to
construct more effective systems for combatting external noise. The
phenotypic diversity present in physiological systems makes them
better able to respond appropriately to a variety of external
disturbances.

Finally, there is good reason to believe that the degree of mosaic
physiology is evolvable — because several known, simple factors
affect the stochasticity of expression of messages and proteins. In
yeast, for example, Newman and colleagues (Newman et al., 2006)
used high-throughput flow cytometry to assess levels of noise in

over 2500 different proteins. They found very large differences in
levels of noise among proteins, which were associated with the kind
of promoter the gene had (which in turn affected how burst-like its
transcription was). In addition, different levels of noise were
associated with location within the cell. Proteins associated with the
Golgi had low variation whereas those associated with mitochondria
and peroxisomes had comparatively high variation. Also in yeast,
essential genes, compared with randomly chosen genes, were
produced by comparatively high rates of transcription and low
translational efficiency (Fraser et al., 2004) — which makes them less
likely to go through periods of very low copy number. In a third
study (Becskei et al., 2005), noise levels were associated with the
position of the gene along the chromosome. In multicellular
organisms too, there is recent evidence that levels of noise in
different loci are under genetic control [in Arabidopsis (Jimenez-
Gomez et al., 2011)]. Together, this disparate set of results implies
that multicellular lineages could evolve optimal levels of noise for
particular loci, or particular physiological systems.

Testing the mosaic physiology hypothesis will be non-trivial. So
far, the functional diversification of clonal lineages has simply been
observed, and, in some unicellular studies, has been related to fitness
(Samoilov et al., 2006). To test whether mosaic physiology really
occurs in multicellular organisms and, further, whether it can be
adaptive, will require a new research program. The first step should
be to assess levels of functional diversity among cells within tissues
and organs, and whether that diversity affects tissue- and organ-level
function. Such an effort will require substantial advances in
experimental techniques for measuring organ phenotypes at multiple
levels — e.g. among multiple cells and for whole organs —
simultaneously. The second step will be to determine whether
functional diversity within tissues and organs actually stems from
developmental stochasticity or from other, more deterministic
developmental events. There are now well-established methods for
unicells that allow one to visualize stochasticity in the expression
levels of individual messages and proteins, and these are beginning
to be applied to metazoans. The next steps will be to apply these
techniques to multicellular organisms across multiple developmental
stages. In addition, there is the recurring problem of linking up
stochasticity in individual molecules to stochasticity in function.
Third, we need to be able to experimentally manipulate levels of
stochasticity, and thereby degrees of functional diversity, in tissues.
Such an approach likely will work best when levels of stochasticity
in individual genes can be manipulated, e.g. by modifying their
promoters or locations in the genome. Finally, established methods
for manipulating stochasticity will allow us to examine links
between mosaic physiology and fitness. In particular, levels of
mosaic plasticity should be altered and effects on fitness measured,
especially across environments having different magnitudes and
kinds of variation. In general, the steps outlined above probably will
be possible soonest in model metazoans such as flies and nematodes,
for which the broadest array of molecular and genetic tools are
available.

Conclusions

Biological systems contain two kinds of noise: extrinsic noise driven
by fluctuations in the environment that propagate into the organism,
and intrinsic noise arising from the finite numbers of entities and
interactions inside cells and tissues (Blomberg, 2006). Intrinsic noise
is often but not always destructive, and organisms and their cells
have evolved sophisticated feedback mechanisms for dampening its
effects. However, intrinsic noise also creates biological diversity that
acts as a kind of simultaneous, spatially distributed plasticity, which
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I propose to call mosaic physiology. Mosaic physiology may play
adaptive roles in organisms — because it establishes the cellular
foundations for broadening the set of phenotypes expressed by cells,
tissues and organs. This kind of variation provides a set of functional
phenotypes that may complement other diversity-generating
mechanisms like phenotypic plasticity and phenotypic flexibility.
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