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SUMMARY

The structure of the wake behind a kestrel in medium-speed flight down a 36 m
length of corridor was analysed qualitatively and quantitatively by stereophoto-
grammetry of multiple flash photographs of the motion of small soap-covered helium
bubbles. The wake consists of a pair of continuous, undulating trailing vortices. The
upstroke is therefore aerodynamically active and the circulation appears to remain
constant along the wing whose geometry is altered during the course of the wing-
stroke. It is argued that the flight kinematics, and so the wake structure, of the kestrel
may be typical of flapping flight at medium speeds and a flight model based on this
wake geometry is presented. Rough estimates of the rate of momentum generated in
the wake balance the weight almost exactly and a direct estimate of the induced
power requirement from the wake measurements is obtained. The significance of
these results for the various alternative aerodynamic descriptions and energetic
predictions of models of flapping animal flight is briefly assessed.

INTRODUCTION

Previous investigations have demonstrated the existence of vortex rings in the
wake of birds flying slowly down the length of an 8 m flight cage (Spedding, Rayner
& Pennycuick, 1984; Spedding, 1986) although some doubts as to the adequacy of
this description were raised by the apparent shortfall in the momentum measured in
this wake compared with that required for weight support. While these conditions
provided a stern test of the flight model under investigation (Rayner, 1979a,b),
where a high degree of unsteadiness in the flow necessitates an accurate aerodynamic
model in order to estimate the induced power requirement, it is perhaps of more
interest to a practical ecologist to obtain information about flight at the higher speeds
commonly used by most birds in migrating or commuting flights. The significance of
two characteristic flight speeds, the minimum power speed, Ump, and the maximum
range speed, Umr, was identified by Pennycuick (1968), derived from the U-shaped
P(U) curves predicted by his actuator-disk flight model (P is the power required to
fly, U is the flight speed). These characteristic speeds persist in the vortex ring model
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calculations (Rayner, 197%) and, while the parasite and profile power requirements
consume a greater fraction of the total power, the induced power contribution
remains significant at these flight speeds.

Although there are well-documented differences in the wing beat kinematics of
birds flying at low and high speeds (e.g. Brown, 1953, 1963) no flight model
explicitly accounts for the different flight styles which may occur. In the flow
visualization experiments which have been performed thus far, vortex rings have
been described in the wake of small passerines (Kokshaysky, 1979) and for a pigeon
and a jackdaw (Spedding et al. 1984; Spedding, 1986) in slow flight, all in flight
cages or tanks. It might reasonably be expected that the lower wing beat amplitudes
and accelerations more typical of cruising flight at higher flight speeds would
significantly alter the distribution of wake vorticity. At the same time, at these lower
reduced frequencies (the reduced frequency, Q — ca>/2U, where c is the wing chord,
CO is the radian frequency and U the mean forward velocity), it may be possible to
considerably simplify some of the assumptions required in the aerodynamic analysis.

In the previous paper (Spedding, 1987), the steady gliding flight of a kestrel was
found to accord well with classical steady-state aerodynamic theory. Here the wake of
the same kestrel under identical conditions, but in flapping flight, will be investigated
to determine the extent to which these properties remain in the domain of small but
finite reduced frequency.

MATERIALS AND METHODS

Generally, the apparatus and methods are identical to those described in Spedding
(1987), the only difference being the flight behaviour of the kestrel as it grew more
accustomed to the experimental conditions and operator 2 was positioned slightly
further away from the cameras to encourage flapping flight through the bubbles. The
flight path is shown schematically in Fig. 1. After an initial drop from take-off at
point 1, the bird would fly level at 400-450 mm from the floor down the length of the
corridor before pulling up and alighting on point 2. The take-off and landing points
were about 1 m in height. Six of these flights were timed with a stopwatch, recording
a mean ground speed of 6ms" 1 from point 1 to point 2. Accounting for acceleration
and deceleration at either end of the flight, the ground speed in mid-flight was
estimated to be around 7ms"1 , in agreement with that calculated from the horizontal
distance between successive tail images on the stereophotographs.

Two stereopairs were digitized and reconstructed as three-dimensional velocity
fields, following previously established procedures (Spedding et al. 1984). Series of
two-dimensional slices were taken through these data, and velocity profiles were
recorded in the plane of the sections. The coordinate system is a right-handed one,
with the origin at the intersection of the left camera lens principal axis with the back
wall. The Z axis is coincident with the lens principal axis, X runs from left to right,
parallel to the line of flight, and vertical distances are measured in Y (see fig. 2 ok
Spedding, 1987).
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Fig. 1. Diagram of the apparatus schematic as in Spedding (1987), but showing the flight
path taken by the kestrel in flapping flight experiments. The average flying height
(425 mm) was slightly above that recorded in gliding flights. The symbols are defined in
the caption to fig. 1 in Spedding (1987).

RESULTS

Qualitative results

At these flight speeds, the wavelength of the wake (the horizontal distance between
wake elements formed by two consecutive instances of a particular point in the wing
beat cycle) is longer than could usually be covered by the cloud of helium bubbles,
and the structure of the wake must be deduced from more than one stereopair.

Figs 2 and 3 are two stereopairs showing partial coverage of the vortex wake
behind a kestrel in flapping flight. In Fig. 2, the bird, flying from right to left, is
near the end of an upstroke during which the primary feathers have been flexed and
inclined downstream of the mean flow. In the last of the four kestrel images, the
primaries are being re-extended out into the flow. The bubbles mark the flow of the
previous downstroke and the beginning of the upstroke, and are situated mainly in
the background so as to visualize the wake behind the starboard wing. Behind a
central induced downward flow, a curved vortex core is visible, marked by an axial
flow along the core and a circulatory flow around it. The axial flow is towards the
wingtip and is therefore a viscous drag wake. The vortex core can be clearly seen
continuing along a straight cylindrical component of the wake, produced during the
upstroke. The continuity between these two sections is unambiguously shown by the
axial core flow, and Fig. 3 shows the upstroke portion of the wake as a straight
cylindrical vortex of larger diameter than that produced by the downstroke. Here,
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bubble tracks show the foreground wake shed by the port wing. The principaf
features of the wake are visible in Fig. 4 which shows, from right to left, a linear
vortex core of large diameter shed during an upstroke, a curved, smaller diameter
core produced by the following downstroke with the flow induced by this vortex
clearly visible towards the centre of the wake, and finally, a continuation of this
vortex core into the next upstroke as demonstrated by the axial flow along the core.
At their lowest extent the wake trailing vortices are about 250 mm from the ground.
The propensity for bubbles to become trapped inside a vortex and move axially along
its length was found to be quite convenient for tracing the core location and Fig. 5
shows the wingtip trailing vortex behind the starboard wing during the first half of a
downstroke marked in this way. In this photograph, the continuity between upstroke
and downstroke wake vortices is clearly visible.

In all stereopairs examined, the observed wake structure was consistent with a
continuous undulating vortex pair without detectable concentrations of transverse,
or cross-stream vorticity joining the two cores. If transverse lines of vorticity are
present, then they are not aggregated into recognizable vortex structures. Fig. 6 is a

Fig. 2. Stereopair of the vortex wake behind a kestrel in medium-speed flight. The
direction of flight was from right to left and the flexed primary feathers can be dis-
tinguished during the upstroke. The mean time between successive flashes was 16 ms.

Fig. 3. As Fig. 2, but the most clearly visible wake structure is a straight line vortex,
apparently shed from the end of the secondary feathers or the folded primary feathers
during the upstroke. Mean time between flashes was 16 ms.
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Fig. 4. Single photograph (the left one of a pair) covering approximately one period of
the wing beat cycle, visualized by bubbles mainly in the background of the flow field. The
upstroke and downstroke core structures may be recognized from Figs 2 and 3 and the
continuity of the trailing vortex into the upstroke is clear from the viscous wake visualized
by bubbles moving axially along the core and towards the bird (flight was again from right
to left). Mean flash interval was 12-5 ms.

diagram of the wake as judged by qualitative inspection of all stereopairs of the wake.
The fitness of such a description of the wake may be tested with some simple
quantitative wake measurements.

Quantitative results

The three-dimensional velocity field was calculated from a full stereophotogram-
metric analysis of two of the kestrel flights. Examples of the reconstructed bubble
field in one of these are shown in Figs 7 and 8, which are elevation and plan views of
the wake produced by half a downstroke followed by half an upstroke. Bubbles are
confined to the foreground in this case and the wake is assumed to be symmetrical
about the vertical plane along the line of flight. The line of flight is an average
estimate from all stereopairs and the standard deviation in Z is ±50 mm. This
corresponds to less than (M5 of the wing semispan, b. Fig. 8 also shows the location
of numbered and lettered sections taken vertically across (spanwise) and along
(streamwise) the length of the wake, respectively.

If, as postulated in the previous section, the trailing vortices in the wake are
continuous and not connected by vortex lines running transversely across the wake,
tfien according to laws of vorticity established for inviscid incompressible fluids by
rlelmholtz and Kelvin (as outlined, for example, by Batchelor, 1967), the circulation



64 G. R. SPEDDING

around each vortex must be invariant along its length. Accordingly, the circulations
measured by integration around the edge of the vortex core should be equal at all
downstream core cross-sections. Figs 9 and 10 show the zc(Y) velocity distributions
in two cross-sections taken across the mid-sections of the downstroke and upstroke
wake vortices (sections 8 and 3 of Fig. 8). The curves have been drawn by eye to
account for the finite thickness of the transects in Z and the width of the core mav be

Fig. 5. The location of the downstroke trailing vortex is marked by axial flow along the
core. Careful inspection of this photograph shows the connection between upstroke and
downstroke trailing vortices. A starting vortex connecting the two sides of the wake would
be here, if present, but was observed in none of the wake photographs. Mean flash
interval was 16 ms.
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estimated from the distance between wmax and wmm. If the vortex core is assumed to
be circular and to contain all the vorticity then the vortex has circulation F,

F = 2nrwt, (1)

where r is the core radius and wt is the tangential velocity at the core edge. From
Figs 9 and 10, the downstroke circulation, Y\ = 0-50m2s~1 and the upstroke circu-
lation, F2 = 0-60 m2 s~'. Results from other wake cross-sections were quite consistent
with this result. The difference between these two values is smaller than the
uncertainty in their calculation and it is concluded that there is no significant
component of spanwise vorticity in the wake.

DISCUSSION

Wing beat kinematics and wake structure

The circulation measurements reported above support the notion that the wake of
a flapping kestrel is composed of a continuous vortex pair of constant circulation
without significant components of cross-stream vorticity connecting the two. The
wake structure is thus quite different from that reported for small passerines
(Kokshaysky, 1979) or for the slow flight of the pigeon or jackdaw (Spedding et al.
1984; Spedding, 1986). In those cases where vortex rings are produced in the wake,

6i

4-

x

2 •

0

- 2

- 4
- 4 - 2 0 2

X (xlC^mm)

Fig. 7. Side view of a bubble field reconstructed from stereophotographs. The leading
bubble is denoted by a circle and the length of the trailing tail is proportional to its
velocity in XY.
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Fig. 8. The same bubble field as in Fig. 7, but viewed from above. Numbered and
lettered sections denote the location of serial sections taken across and along the wake.

the rapid acceleration and deceleration of the wings at the beginning and end of the
downstroke alters the circulation on the wing with the concomitant shedding of
vorticity into the wake, and the trailing vortex lines are closed up into a loop by these
starting and stopping vortices. In the medium-speed flight of the kestrel, these rapid
accelerations of the wings are absent, as are the cross-stream vortices. There is
transverse vorticity (a Z-component) in the wake of course, manifested in the
outward curvature of the downstroke trailing vortex (in the Z direction) when it is
not parallel to the X axis.

During the upstroke of the kestrel, the wings are not folded close to the body, but
the primary feathers are flexed and closed up, parallel to the incident air flow, while
the secondary feathers remain extended into the flow. The secondary feathers remain
loaded and perform aerodynamic work during the upstroke, as confirmed by the
presence of trailing vortices in the wake during this period. Moreover, the circulation
around the secondary feathers appears to be maintained at a constant level and the
fcving beat can be conceived as a cycle of loading and unloading of the primary
leathers as they are extended on the downstroke and flexed during the upstroke.
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3-0 r-

- 1 0 -

- 2 - 0 -

—3-0 I—

Fig. 9. tu(Y) for a section through the downstroke vortex core. The core diameter was
estimated from the distance between the two broken lines.

2-0 r

-2-0

Fig. 10. ui(Y) for a section through the upstroke vortex core, w at the edge of the core is
lower than for the downstroke vortex but the core diameter is larger.



Kestrel flight II 69

During the upstroke, the folding of the primary feathers appears to be such that the
trailing vortex is shed from the end of the secondary feathers, or around the flexed
primaries. This shift in location of the shedding point is consistent with the exper-
imental results of McCormick & Padakannaya (1971) showing that the effect of a
drooped wingtip is to increase the strength of the inner trailing vorticity at the hinge,
causing the wingtip trailing vortex to move inboard towards the hinge.

These results also support the careful observations of Brown (1953, 1963) who
deduced from high-speed cinematography of birds in medium-speed flight that the
secondary feathers provide aerodynamic lift during the upstroke. The flight speed
and wing beat kinematics of the kestrel in this study appear to be similar to those of
free-flying kestrels as recorded by high-speed cine' film (Scholey, 1983) and are quite

Head

Downstroke Upstroke

—^ Side

2b Top

rUT ( 1 - T ) U T

Fig. 11. Diagram of the vortex wake of a kestrel which also forms the basis for the general
model of medium-speed flapping flight. The dashed lines across the wake indicate the
location where weak transverse vortices might appear at slightly lower flight speeds, or
during periods of acceleration, h, wake amplitude; b, wing semispan; (p, stroke ampli-
tude; ip\, \j>2, wake inclination for the downstroke and upstroke, respectively; U, flight
speed; T, stroke period; r, downstroke ratio.
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characteristic of the low-amplitude wing beat cruising flight of many species (Brown,
1953, 1963). This being the case, there is no reason.to suspect that the resulting
wake structures would be substantially different either, and it is proposed that the
continuous undulating vortex pair wake structure, described here for the kestrel, is
the usual pattern in this type of flight.

Flapping flight with constant circulation

The fact that this wake pattern has a simple geometric description with a constant
value of the circulation around the trailing vortex lines allows an aerodynamic
analysis to proceed with several simplifications. The way in which such an analysis
might be conducted is outlined in the following section.

Consider a bird which flies in steady horizontal flight at speed U, flapping its wings
with a frequency f, through an angle, (p, the wing beat amplitude (Fig. 11). The
wingspan is 2b and the wing beat is such that the wing is fully extended on the
downstroke but is gradually flexed and then re-extended during the upstroke so
that, at mid-stroke, the effective wingspan is the distance between the ends of the
secondary feathers in addition to the small spanwise extent of the flexed primary
feathers. Let this distance be denoted 2b2. The result of this upstroke is assumed to
leave a straight section of wake behind, as measured in the kestrel wake, of spanwise
extent R'2b2- R' is a dimensionless wake spacing, which was measured to be 0-76 in
Spedding (1987) for steady-state gliding, close to the value of 0-785 for an elliptically
loaded wingpair. In the absence of a direct experimental measurement, either value
could be used, although somewhat higher R' values of 0-85-0-95 were measured in
the wake in flapping flight. A compromise choice to reflect this higher possibility
might be 0-85, pending further experimental evidence. Similarly, the greatest span-
wise extent of the wake produced on the downstroke is R'2b. For convenience, I
define:

2bi = R'2b,

2b2 = R'2b2,

and B = 2bJ - 2b2. (2)

The wavelength of the wake is UT, where T = l/f is the stroke period, and if T, the
downstroke ratio, is the fraction of T spent on the downstroke, the angles \p\ and rp2

are given by
Vi =tan-'[h/(TUT)]

and T/;2 = tan-1{h/[(l-T)UT]}, (3)

where h = 2bi tan(0/2). (4)

The lengths L^ and L2 (Fig. 11) may be written

L, - [h2 + (rUT)2]1/2

and L2 = { h 2 + [ ( l - r ) U T ] 2 } 1 / 2 . (5)
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The planar areas Aj and A2 of the downstroke and upstroke wakes are

I1/2!A, - 2W • L, +2

and A2 = 2b£-L2, (6)

where 21 = Lj, and the expression for A[ assumes that a circular arc, of maximum
spanwise extent 2bJ on the downstroke, joins the straight line upstroke wake seg-
ments. Now, the momentum normal to the plane of each wake segment can be
written

Qi = prA,

and Q2 = pTA2 . (7)

The sum of the momenta represented by the horizontal projection of areas 1 and 2
on to XZ must balance the weight of the bird minus the contributions due to the
vertical components of the profile and parasite drags, Dpro and Dpar for one wing beat
period, T. Similarly, the rate of change of the horizontal component of momentum,
given by the sum of the vertical projected areas of Ai and A2 (A2 contributes a drag)
times pF/T must balance the drag on the bird. In general form,

I Qi I (jcosVi - isin^i) + I Q21 (jcos^z + isini/>2) = T(M^j - Dpar - Dpr0), (8)

where g is the acceleration due to gravity, M is the mass of the bird and i and j are
unit vectors along the X and Y axes, respectively.

Equation 8 states that the wake momentum must balance the vector sum of the
bird's weight together with the parasite and profile drags for the time T and is seen to
be simply a recasting of equation 24 of Rayner (1979a) appropriate for this wake.
Resolving this into the lift and drag force components (time averaged over T) normal
and parallel to the direction of flight,

L = pIXAjcosVi + A2cosi/>2)/T = (Mg- D ^ s i n ^ - Dparsinar2) (9)

D = pr(A,sinVi - Azsini//2)/T. (10)

D in equation 10 is the vector sum of the horizontal components of the profile and
parasite drags,

D = Dprocosari + Dp3Tcosa2 • (11)

The angles (X\ and a-i depend on angle of the body to the horizontal and the
inclination of the stroke plane. In this mode of flight, az may be assumed to be small,
equivalent to ignoring the lift component of the parasite drag on the body. If T is
specified, ar2 is given by xp\ and U. Alternatively, some reasonable value may be
assigned for a limited range of moderate flight speeds. The calculation of Dpro itself
is fraught with difficulties and uncertainty. It is caused by skin friction and the
resultant viscous losses in the boundary layer which separates before the trailing
edge. The resulting wake exerts a pressure drag force on the aerofoil, and this is the
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wake which can be seen in Figs 4 and 5. The magnitude of Dpro depends on the shape
and smoothness of the surface of the aerofoil, the condition of the boundary layer,
and the flow Reynolds number. Rather than become enmeshed in the intricacies of
this subject, suffice to note that Dpro is usually estimated from some form of

Dpro = ipSU2CD,pro, (12)

where S is the wing area, U is the incident velocity on the aerofoil, and Crj,pro is
calculated or measured by experiment. Both Rayner (1979a) and Ellington (1984)
have discussed this issue in some depth in the context of animal flight. It should be
further noted that, for the wingstroke described here, S varies during the course of
the wing beat cycle, and the calculation of Dpro should take this into account.

Similarly, the parasite drag, Dpj,,. can be written
2 (13)

where A is the equivalent flat plate area presented by the body to the freestream
velocity U, and details of its calculation need not be of further concern in this
discussion.

Parameterization of the model

After a straightforward consideration of the wake geometry and enforcing the
equilibrium condition of force balance on the bird, equations 9 and 10 may be solved
for F and one other unknown wing beat kinematic parameter. If (p and T are given,
together with the wing shape as expressed by 2b and 2b2, then the remaining
unknown is the stroke period T, which must take on a value such that the momenta
represented by areas Ai and A2 satisfy equations 9 and 10. This is not the sole
possible choice of governing parameters however, and equations 9 and 10 could
equally well be solved for the wing beat amplitude 0, given a reasonable value of x.
Note also that the formulation of a solvable model does not depend on a particularly
rigid adherence to the exact geometry of Fig. 11. It is obvious from even the most
casual of observations of birds in cruising flight, that the degree of flexure, or sweep,
of the primary feathers, during both upstroke and downstroke, varies widely ac-
cording to species and according to flight speed, and this can be readily incorporated
via a judicious selection of 2b and 2b2. Similarly, a curved upstroke wake geometry
could be written into equation 6 for A2.

It is interesting to note how the shape of the wing is accounted for directly in the
differing geometries of the downstroke and upstroke wakes, due to this folding of the
wing back to the secondary feathers during the upstroke. This is reflected in the
relative magnitudes of the thrust and lift components of the wake which must satisfy
equation 8 overall. A parametric analysis along these lines might use b2/b as a
controlling parameter.

Calculation of the induced power

Given that the circulation of the wake vortices, and hence, the circulation on the
wing, remain constant, or at least fluctuate only little, the transverse vorticity in the
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wake must therefore be weak, as concluded from the experimental results, and the
induced drag can be quickly derived from a quasi-steady aerodynamic analysis. This
is quite consistent with the low values of the reduced frequency Q = 0*2. Elementary
results from lifting line theory may therefore be applied where the wing is replaced
by a lifting line at the trailing edge which is assumed to be straight and normal to the
flow, and all trailing vortices leave the trailing edge in lines parallel to the direction of
motion. The assumption of a planar near wake is not affected by subsequent roll-up
of the wake vortices further downstream. Moreover, extrapolating from the results of
the gliding experiment reported in Spedding (1987), it seems reasonable to assume
that the spanwise circulation distribution on the wing differs little from the elliptical
loading commonly assumed in classical aerodynamics, and one immediately arrives at
an expression for the induced drag, Dj = iD; (Milne-Thompson, 1966, p. 203)

Di = ^ p r o
2 , (14)

where r o is the circulation at the centre line, which is equal to the circulation of the
vortices in the wake, F. Now the induced power is the work done against induced
drag, equivalent to rate of increase of wake kinetic energy per unit time, and is just

P, = D,-U. (15)

The simple wake model with constant circulation of wake vortices and the neglect
of unsteady terms enables this analysis to be conducted without unduly lengthy or
complex computations, although these assumptions necessarily limit the scope of the
analysis to cruising flight of the type described for the kestrel.

Momentum balance and induced power requirement

In view of the wake momentum deficits measured in experiments involving the
pigeon and the jackdaw in slow flight (Spedding et al. 1984; Spedding, 1986), it is of
some interest to perform a rough check on the wake momentum in the case of the
cruising flight of the kestrel. If one assumes, for the moment, that the vertical
components of the parasite and profile drags are small, then equation 9 reduces to

pr(A1cosi/'i + A2cosV2)/T = Mg. (16)

Table 1 summarizes the wing beat kinematic data for the kestrel, together with
some parameters describing the wake geometry. All quantities are known or are
calculable on the left-hand side of equation 16, which evaluates to 2-15 N. This
compares with the bird's weight, M^= 2-06 N; the rate of generation of the vertical
component of the wake momentum almost exactly balances the weight. This result
further implies that the contributions to weight support from the parasite and profile
drags are small. The inclination of the body axis to the horizontal is small so the Dpar

contribution is low, and the wing does aerodynamic work on both the downstroke
and the upstroke so the net vertical Dpro force over one wing stroke will be cor-
respondingly diminished. It is therefore with some justification then that we now
neglect both and proceed onward to calculate the induced drag on the wings from
equation 14. Substituting the mean value of r = 0-55, Di = 0-14N. Now the
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Table 1. Morphological, kinematic and wake geometric data for the kestrel in
cruising flight

Body mass
Wing semispan
Wing area
Mean chord

Stroke period*
Stroke amplitude*
Flight speed

Downstroke ratio*
Reduced frequency
Chord Reynolds no.f

Wake amplitude
Wake inclination

Wake spacing

Core radius

Planar wake area

Vortex circulation

Symbol

M
b
S
c

T

<P
u
r
Q = c«/2U
Rec = Uc/v
h
Vi

bi
b2
Rl = bi/b
Rz = b2/b
f i

ri = r,/b'i
r2 = r 2 /b 2

A,
A2

r,
r2r = (r,+r2)/2

Units

kg
m
m2

m

s
rad
m s " '

m
rad
rad
m
m

m
m

m2

m2

m2s~'
mV
m 2 s - '

Quantity

0-210
0-338
0052
0076

0-13
0-89
7-0

0-55
0-27
3-SxlO4

0-32
0-58
0-66
0-33
0-17
0-98
0-50
0-032
0066
0-097
0-391
0-33
0-17
0-50
0-60
0-55

• Kinematic parameters marked with asterisk were calculated from wake measurements.
f v is the kinematic viscosity of the fluid.
Subscripts 1 and 2 refer to the downstroke and upstroke, respectively.

induced power can be calculated directly from equation 15 and P,= l-0W. For
comparison, the induced power requirement from actuator disk theory may be
written (Pennycuick, 1975)

P, = kW2/2pUSd , (17)

where Sd = Jtb2 is the wing disk area, W = Mg is the weight, and the factor k ^ 1,
which is included to account for unsteady wake energy losses and is usually set at
around 1-2. Calculated from equation 17, Pi = 0-84 W. The agreement between the
two estimates is good, and the slightly higher value measured directly from the wake
analysis may reflect the more realistic wake geometry upon which it is based. The
consistency of these approximate numerical calculations lends some support to the
flight model formulation outlined in the previous section.

Ground effect

In Spedding (1987), equation 10 was used to estimate the magnitude of ground
effect in gliding flight and it was concluded that ground effect was of limited
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importance at flying height, h, of the order of the semispan, b, but that its effect in
reduction of Dj would increase rapidly as h approaches the mean chord c. The
calculation is not so straightforward in the unsteady case and one can only speculate
as to the possible effects on this wake. The lowest extent of the trailing vortex core in
the wakes which provided material for the quantitative analyses was about 280 mm,
or about six mean core radii from ground level. This is about 3-7 mean chord lengths,
when a 25 % reduction in D, would be expected in steady horizontal flight at this
altitude. The effect on wake kinetic energy and induced drag has been neglected
here as the appropriate unsteady corrections are not known. The fluid dynamics
resulting from the interaction of linear wingtip trailing vortices with the ground were
described by Harvery & Perry (1971), who observed a rebound of the vortex once
it reached a minimum distance from the ground. This lifting of the vortex was
attributed to the formation of a secondary vortex due to boundary layer separation
between the two. Barker & Crow (1977) examined the two-dimensional vortex pair
in ground effect, and Boldes & Ferreri (1973), among others, have investigated the
behaviour of vortex rings near a wall boundary. The unsteady separation of a wall
boundary layer due to its interaction with vortex rings embedded in an impinging jet
has been studied by Didden & Ho (1985). These studies give some pointers as to the
likely fluid dynamics in this case, and in general, it appears that the vortices do not
approach closely enough to the ground for the wake structure to be qualitatively
affected by its presence. No substantial secondary vortices or boundary layer separ-
ation were apparent near the floor in the wake photographs. The qualitative wake
structure reported here is probably not significantly influenced by ground effect
although, at some stages of the wing beat cycle, particularly towards the end of the
downstroke, the induced velocities behind the wing trailing edge may be.

Recent developments

Since the completion of these experiments, preliminary results reported by Rayner
(1986a), using this flow visualization technique, indicate that the wake of the bat
Nyctalus noctula may be composed of closed vortex loops at flight speeds of 4 m s~ ,
while the wake structure at higher speeds of 9ms"1 was interpreted as a continuous
undulating vortex pair, following the pattern observed in the kestrel wake. The
apparent occurrence of this type of wake in a different class of animal lends support
to the foregoing arguments that such a wake structure should be observable in the
wake of many, if not most, flying animals with broadly similar wing beat kinematics.
Rayner (1986a) then goes on to discuss gait changes with flight speed. It is difficult to
infer a distinct gait change (sharp discontinuity in wing beat kinematics in the case of
flapping flight) from observations at just two flight speeds, and consequently this
distinction has been avoided in this discussion. The observed wake structure of the
kestrel in cruising flight is indeed quite different from any previously described but
one can only speculate as to how small changes in flight speed might affect the
qualitative structure. With decreasing flight speed, the strength of cross-stream
vortex elements might gradually increase as the circulation around the wing de-
creases on the upstroke and a correspondingly greater amount of vorticity is shed
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into the wake at each end of the downstroke, consistent with the greater angular
acceleration of the wing at these stages. With further decrease in flight speed, the
limit of the closed vortex loop is approached. If the preceding scenario is both
plausible and consistent with the gradual kinematic changes with flight speed
measured by cin6 film analysis (e.g. Scholey, 1983), it still lacks solid experimental
evidence. We therefore concur with the arguments of Brown (1953, 1963) who ob-
served different flight kinematics at different flight speeds but was careful to remain
equivocal concerning the possible existence of distinct gait changes with speed.

Rayner (19866) has also outlined a flight model which contains some similarities to
that introduced in this paper, based as it is on the same experimental data. There are
some differences in the specification of the wake geometry, here fixed by bj and bx,
whereas his is based on the semispan b, thus ignoring span efficiency. He also
specifies a spanwise circulation distribution which minimizes the wing root bending
moment as given by Jones (1980), but which differs little from the elliptical loading
distribution assumed here in its effect on the calculation of induced drag. His
parameters are fixed to allow calculation of wingbeat amplitude, (p, and circulation,
F, with changing frequency, while the approach here has been to calculate the
downstroke ratio, T, and T for a given wing shape. The two different formulations
exemplify two ways in which knowledge of the simple wake geometry with constant
circulation of the wake vortices enables approximate but elementary calculation to be
made of the effects of changing wing beat kinematics and geometry, respectively.

Implications for flight models

The implications of these results for aerodynamic or energetic models of bird flight
depend on their proposed applications. Clearly, the wake geometry is quite unlike
the closed vortex loop model of Rayner (1979a,b) and the changes in circulation,
both across the span and with time, are different. In this respect, the wake geometry
adopted by Phlips, East & Pratt (1981) is closer to that described here. Their wake
model is split into a far wake consisting of streamwise vortices joined by transverse
elements formed at the ends of each wing stroke, and a near wake consisting of the
surface traced out by the wings on the current wingstroke with transverse vorticity
collected at the wing position at the beginning of the stroke. From lifting line theory,
a first-order unsteady spanwise loading distribution on the wing was deduced for a
simplified wing beat. The results reported here support this line of investigation and
prescription of the wake geometry, which may be readily amended to incorporate
refinements such as changing effective span on the upstroke. As far as including a
more precise description of the variable wing geometry itself, the relatively low
reduced frequencies prevalent in this mode of flight (Q of the order of 10"1 based on
the wing chord c, Q of the order of 1 based on the semispan, b) enable an analytical
solution to the unsteady lifting-line problem to be made by considering small
perturbations of the linearized boundary conditions. A recent example is the asymp-
totic analysis by Cheng & Murillo (1984) of an oscillating lifting surface with curved
centre line and local wing twist, which yields the surface lift distribution on a smooth
planar geometry in small amplitude pitching and heaving motion.
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However, the assumption of a wake structure of the type described for the
medium-speed flight of the kestrel enables a number of simplifications in the
calculation of induced drag and induced power to be made, so that the constant
circulation model introduced in the previous discussion might profitably be used for
quick estimates of these quantities. The unsteadiness of the wake is accounted for by
the accurate description of the wake geometry but the constant circulation on the
wings allows a simple quasi-steady estimate for the magnitude of the induced drag.
On occasions where an estimate of the induced power requirement at moderate flight
speeds, typically around Ump or Umr, is required as a component in the calculation
of energy budget of a flying bird, the added complexity of a more rigorous and
complete aerodynamic model is not justified by the small improvement in accuracy
in estimating one component of the total aerodynamic power requirement, and this
approximate calculation should suffice.

The structure of the vortex wake behind a kestrel in medium-speed flight shows
considerable differences from the wakes previously described for slow flight. The
absence of any significant concentrations of transverse vorticity in the wake implies
a constant circulation on the wing and makes calculation of the induced power
requirement quite a simple matter. If the wing beat kinematics of the kestrel are
taken to be reasonably representative of birds in cruising flight, then their wakes
should also be similar and the flight model based on such a wake can be applied to
predict the flight power requirement. Ground effect has been neglected in the results
reported here, but its effect could be investigated by enforcing a minimum flying
height with obstacles of various heights placed before and after the measurement
area.

It is a pleasure to thank Dr C. J. Pennycuick for his steady supervision during the
course of this research, and for a careful reading of the first version of this paper.
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