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Introduction
The availability of food resources changes over time and

space, and foraging animals are constantly faced with choices
about how to respond when a resource becomes depleted.
Foragers therefore benefit from employing flexible strategies
for resource exploration and exploitation. Bees are ‘central
place foragers’, exploiting resources by memorising routes from
the nest/hive to profitable floral patches and then repeatedly
visiting those locations. When a floral patch finishes blooming,
or ceases to produce nectar and/or pollen, how do bees feeding
at this site respond? Do they utilise knowledge of the landscape
obtained during previous flights to locate a floral patch (Collett
et al., 2006) or do they start searching anew? In the case of
honeybees (Apis mellifera L.), there is also the option of
returning to the hive and gathering information from other bees
about resource locations, by means of the waggle dance
(Biesmeijer and Seeley, 2005). In reality, the honeybee
responses are likely to be a combination of the above strategies;
Biesmeijer and Seeley showed that scouting and recruiting
behaviour of individual honeybees is flexible such that one bee
is not constrained to be a recruit or a scout but can perform either
role, depending on circumstances (Biesmeijer and Seeley,
2005).

In addition to the resource depletion problem, slight
navigational errors might also result in a bee arriving at a
location slightly different from the actual location of known
forage. In both of these scenarios, we might expect the bee to

perform a search strategy to re-find the known food source, or
to find a new nearby source.

It is now possible to track individual flying bees as they
forage, using harmonic radar (Riley et al., 1999; Riley et al.,
2003; Riley et al., 2005), enabling us to investigate the search
strategies used by bees when a forage source runs out. We
hypothesise that when a food source at a known location ceases
to be available, flying bees will spend some time in an optimised
search of the vicinity for the resource in question before they
(eventually) return to the hive (where they may or may not
gather information on other resource localities from nest mates).
These local search patterns are described mathematically, using
Lévy-flight theory, in this paper.

Lévy-flights are comprised of random sequences of
independent flight segments whose lengths, l, are drawn from a
probability distribution function having a power-law tail,
P(l)~l–�, where 1<�<3 [Bouchaud and Georges (Bouchaud and
Georges, 1990) and references therein]. When ��3, the
distribution of the total length of any number of flight segments
is Gaussian, by virtue of the central limit theorem, whilst ��1
does not correspond to probability distributions that can be
normalised. Lévy-flights have a remarkable statistical property:
namely that distributions of the total length, L, of any number of
flight segments have power-law tails, P(L)~L–�. Consequently,
Lévy-flights are said to be ‘scale-free’ because their statistical
properties do not depend upon the observational scale. This
absence of a characteristic scale makes Lévy-flights scale-
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invariant fractals. Levy-flights may have been observed in the
movement patterns of wandering albatrosses, deer, foraging
bumble bees (Viswanathan et al., 1996; Viswanathan et al.,
1999), a species of African jackal (Atkinson et al., 2002),
foraging spider monkeys (Ramos-Fernández et al., 2004) and
Drosophila flying in a small circular arena (Reynolds and Frye,
2007). These freely roaming Lévy-flight movement patterns are
known to constitute an optimal searching strategy for the location
of randomly and sparsely distributed targets (Viswanathan et al.,
1999). That is, they minimise the mean distance travelled before
first encountering a target. Sub-optimal Lévy-flight searches
with ��2 and Gaussian (diffusive) searches (�=3) can be up to
10 times longer than optimal Lévy-flight searches (Viswanathan
et al., 1999). Recently, Reynolds et al. reported that honeybees
adopt �=2 Lévy-flight looping patterns when attempting to
locate their hive and when deprived of navigational cues
(Reynolds et al., 2007). In contrast to their freely roaming
counterpart, Lévy looping flights extend out from and return
back to a fixed location, around which the search is centred. Lévy
looping flights with �=2 are optimal for the location of a single
target location when the most likely location of the target is
known or is presumed known (A.M.R., manuscript submitted).
The equidistant spiral (Archimedian) search would be another
alternative optimal pattern. If the bees were using this then it
would be visible in the tracked flight patterns.

In this paper, we show how Lévy-flight looping patterns
underlie the flight paths of honeybee foragers searching a local
area for a known food source. These flight patterns can be
associated explicitly with the adoption by the bees of an optimal
scale-free searching strategy for the location of a single target.
The theory of random Lévy-flight searching is advanced by the
formal demonstration that these searches will remain optimal
despite errors due to imperfections in the bees’ navigation system.

Materials and methods
Experimental procedures

The data-set used in the present study comprised 39 tracks
derived from an experiment, carried out in July–August 2003,
to investigate honeybee flights in relation to the manipulation
of landmarks (J. L. Osborne, A. D. Smith, D. R. Reynolds
and N. L. Carreck, manuscript submitted). Consequently, an
experimental arena of mown grass on an airfield at Wyton in
Cambridgeshire, eastern England, was chosen for its lack of
obvious landmarks and its horizon, which contained very few
features that a honeybee’s eye would have been able to resolve
(Giurfa et al., 1996; Giurfa and Menzel, 1997). There was very
little natural forage on the experimental site, and no honeybees
were seen foraging in the vicinity prior to the start of our
experiments. The honeybees to be tracked were foragers from
a small colony of ~5000 workers, housed in a brood box
mounted on a stand. The hive was fitted with a transparent
Perspex® entrance tunnel with removable doors and roofs,
enabling bees to be easily captured or returned to the hive or the
hive to be completely closed. The front of the hive stand and
the hive roof were painted white to aid visibility.

Bees were trained to a feeder, a glass jar containing 70%
sucrose solution, inverted onto a grooved Perspex plate. The
feeder was placed on a small wooden board 46·cm2 in the grass.
A visual resolution of 1–2° is possible for the bee compound

eye (Giurfa and Menzel, 1997) so the board would have been
visible to the bee from a maximum distance of 18.6·m; and
probably a lot less (7·m) since Giurfa et al. (Giurfa et al., 1996)
suggest that 5° is a more realistic approximation of visual
resolution once spectral contrast is taken into account. In the
experiments, the feeder was removed in each of the test
situations so that the bees were not responding to visual or
olfactory cues from the feeder itself.

The feeder was positioned 210·m from the hive. In order to
minimise the effect of navigational cues, such as any distant
features, each evening after the end of the experimental work,
the hive, and hence the entire experimental set-up, was moved
30·m to the east or west. This did not appear to affect the bees’
ability to find the feeder or to find their way home. After moving
the hive, no orientation flights were observed, and no bees were
seen searching around the previous site of the hive or feeder the
following morning.

The observations were carried out on marked bees that had
been observed several times at the feeder and were therefore
regular foragers. When one of these bees was about to leave the
hive, she was captured and fitted with a harmonic radar
transponder, as described by Capaldi et al. (Capaldi et al., 2000).
The feeder (and the bees feeding on it) was removed from the
experimental arena, and the bee with transponder was then
released from the hive entrance. Her flight route was tracked
using scanning harmonic radar (Riley et al., 1996; Riley and
Smith, 2002). Only one such regular forager was tracked at a
time and the transponder was removed when the bee returned
to the hive. The errors in fixing positions of the bees were
approximately ±3·m in range and ±1.3·m in azimuth (at a range
of 300·m). Bees can be detected by the harmonic radar when
flying below about 10·m (depending on range and terrain). We
are unable to determine the precise height of flight but there is
no evidence in this study or in others we have done (Reynolds
et al., 2007) to suggest that bees fly higher when searching.
Rather, the height of flight may be related to the maintenance
of a certain optic flow (Riley et al., 1999).

Some bees were trained to the feeder when a landmark (a
white vehicle approximately 4·m long � 2·m high) was
positioned broadside-on either 150·m from the hive, but offset
from the direct line between the hive and feeder by 12°, or
160·m from the hive on the direct line between the hive and
feeder. In some cases, the landmark was removed when the
feeder was removed.

Each of the 39 tracks used in this study comprised a ‘vector’
flight (Riley et al., 2003) from the hive to the vicinity of the
former position of the feeder (‘virtual feeder’), the ensuing
searching flights and a return flight. A further 12 flights were
excluded from the analysis either because the radar recordings
were incomplete or because the bees flew around the hive rather
than making an immediate vector flight towards the virtual
feeder.

Analysis method for the honeybee search flights
After release, most bees flew immediately to the vicinity of

the virtual feeder before engaging in long, looping flights
indicative of searching. After a period of searching, most bees
returned to the hive (see the example shown in Fig.·1). We
carried out an analysis of the bees’ flight tracks to determine
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how they compared with what is known about optimal search
strategies. To do this, we represented the flight paths as
sequences of straight-line segments between the points at which
significant changes in direction occur (see Fig.·1). A ‘searching’
flight is defined to be the entire flight pattern that arises after
the first significant change in flight orientation and before the
last significant change in flight orientation.

The representations of the searching flights (see Fig.·1) were
analysed in detail by using ‘random walk methods’, which can
detect the presence of long-term correlations. Our first analysis
is based on the fact that the number of turning points occurring
within the time intervals t to t+�t defines a time series, u(t), and
an associated net ‘displacement’:

If the values of u(t) are completely uncorrelated and behave like
‘white noise’, then the root-mean-square displacement
F=���[n�(t)�–��n(�t)��]2��t�, where �=g and where the angular
brackets denote an ensemble average over all flights in the data
set (Peng et al., 1995). Short-term correlations in the data may
cause the initial slope of a plot of log (F)/log(t) to differ from
g, although it will still approach g at longer times. Long-term
power-law correlations, however, will generate � values � g.
Our subsequent analyses consist of a determination of the fractal
dimension of the represented honeybee flight patterns and an

i=0

u(i�t) .n(t) =
N

 	

examination of the lengths and durations of the straight-line
segments in those representations.

Results
Searching flights are consistent with an optimal Lévy flight

search
Fig.·2C shows that, for most bees, the first significant change

in flight orientation occurs in the vicinity of the virtual feeder;
i.e. upon release from the hive most bees follow the expected
beeline vector flights to the virtual feeder location (Riley et al.,
2003). The vector flights to the virtual feeder made by three
groups of bees (i.e. flights with no landmark present, and with
the landmark in one of the two locations) are statistically
indistinguishable. This suggests that the bee’s ‘vector
navigation’ system was accurate over these scales and was
unaffected by removal of the landmark during our experiment.
The mean (± s.d.) duration of the searching flights was
249±164·s. Fig.·2D shows that some, but not all, of the ‘return’
flights to the hive were beeline vector flights that emanated from
the vicinity of the virtual feeder and approximately retraced the
initial outward beeline vector flight. The figure also shows that
some of the return flights over- or undershot the hive location
and that these bees arrived at the hive location only after first
having executed local looping flight manoeuvres.

The beeline vector flights were followed by searching flights
that were centred on the location of the virtual feeder, as shown
in Fig.·3, or were followed by return flights to the hive. There

Fig.·1. (A) A typical flight pattern of a
honeybee trained to an artificial feeder,
which was then removed, resulting in a
localized search around the former
position of the feeder. The location of
the honeybee was recorded every 3·s
unless the radar failed to detect the
radar transponder. The hive was
located at (x, y)=(210·m, 0·m) and the
feeder was located at (x, y)=(0·m, 0·m)
(approximately). The flight begins and
ends in the vicinity of the hive (marked
with an ‘H’). The locations where there
are significant changes in flight
orientation are indicated (�). A
significant change in orientation is
taken to arise when the angle between
the current flight segment (joining two
successive recorded positions) and the
flight segment immediately following
the last change in orientation is less
than 90°, i.e. when the current non-
local flight orientation differs from
proceeding flight orientation by more
than 90° (Reynolds et al., 2006). (B)
Representation of the honeybee flight
in terms of straight-line flights and
changes in flight orientation. The
statistical properties of these
representations do not differ significantly from representations in which local abrupt changes in orientation are taken to arise when the angle
between two successive flight segments (i.e. between three successive recorded positions) is less than 90°. The close correspondence between
these two [local (C) and non-local (D)] representations indicates that most changes in flight orientation occur abruptly rather than through the
accumulation of small changes.
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was more searching along the hive–feeder direction than at 90°
to it. It is possible that the bees’ navigation system was affected
more by errors in range than by errors in angle. The directions,

, of flight segments in the searching flights were, however,
uniformly distributed between 0° and 360° (Fig.·4).

Fig.·5 shows that for our data the index � is equal to 0.85,
and, as explained above, this implies that long-term power-law
correlations exist in the data, or, in other words, the bee flight
patterns were similar on all temporal scales. The presence of
this scale-free characteristic is confirmed by the fractal scaling
property of the ‘represented’ honeybee flights shown in Fig.·6.
Scaling properties of the first and second halves of the searching
flights are statistically indistinguishable. This suggests that the
search pattern does not change with time. The territory covered
does, however, tend to increase with time.

The observed scale invariance of the representations of the
honeybee flights can be understood within the context of a
Lévy-flight (scale-free) model. In this model, the orientations,

, of independent straight-line flights are, in accordance with
observations (Fig.·4), drawn at random from a uniform
distribution P
(
)=1/2� for 0�
<2�. Flight lengths, l, are
drawn at random from a Levy-distribution P=(�–1)l0�–1l–� for
l�l0 and P(l)=0 for l<l0 where 1<�<3. Fig.·6 shows that the
observed fractal scaling D=1.3 is close to the value of 1.2
predicted by the model when �=2 (Reynolds et al., 2007). Note
that the fractal dimension of these finitely long Lévy-flights
differs from the fractal dimension of infinitely long Lévy-
flights, D=�–1 (Reynolds et al., 2007). Viswanathan et al.
showed that such a model also reproduces the observed power-
law scaling (�=0.85) of the root-mean-square displacement, F

A. M. Reynolds and others
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(Viswanathan et al., 1996). The lengths of the straight-line
flights in the representations of the honeybee flights are seen
in Fig.·7 to be distributed according to a Lévy stable
distribution (Cauchy distribution). The tail of this distribution
obeys an inverse-square law. This corresponds to �=2, the
optimal value for the location of a single target (A.M.R.,
manuscript submitted). A Cauchy distribution of flight-
segment lengths would arise if each of the Lévy flight-
segments resolved by the analysis were actually comprised of
many shorter unresolved Lévy flight-segments (Gnedenko and
Kolmogorov, 1954). A Cauchy distribution may also arise if
movement patterns were exclusively associated with the
adoption of an optimal scale-free searching strategy. This is
because a Cauchy distribution constitutes a least-biased choice
for a distribution with an inverse-square-law tail (Alemany and
Zanette, 1994).

Fig.·8 shows that relatively short flight segments tend to be
associated with relatively slow speeds whilst longer flight
segments tend to be associated with faster speeds. This
correlation between flight-segment length and speed cannot be
attributed to the effects of wind speed on flight speed because
short and long flight segments are not executed along distinctly
different directions. As a consequence of this correlation, bees
spend more time searching in the location where the feeder is
expected to be. If the search were to continue indefinitely then
eventually it becomes advantageous to refrain from looping
back to the origin of the search and instead adopt a freely
roaming Lévy-flight searching pattern (A.M.R., manuscript
submitted). The slow, shorter flight segments can then be
associated with an ‘active local searching phase’ whilst the
faster, longer flight segments can be associated with a
‘relocation’ phase where the bee moves to a new centre-of-
search. Such intermittent searching has been observed in a
diverse range of species (e.g. ground foraging birds, crickets,
sea birds, octopi, planktivorous fish) (Kramer and McLaughlin,
2001). Lévy-flight models of intermittent searching predict that
searching is optimal when �=2 and that, when the searching is
optimal, the mean times within the searching and relocation
phases obey the scaling relation tr�tsj (Reynolds, 2006). Fig.·9
shows that the honeybee flight patterns are consistent with this
prediction and with observational data for many other species.

Imprecise Lévy-flight searching strategies
Here, it is shown that the �=2 scale-free searching strategy

remains optimal when the execution of the Lévy-flight patterns
is imprecise. Imprecise execution of a Lévy-flight pattern is an
inevitable consequence of navigational errors. The simplest
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scenario, and the one considered here, is that the intended and
realized lengths of a flight segment are related by l*=l(1+s),
where the random quantity, s, is the proportional error in flight
length. The range of realised flight lengths increases with
increasing length of the intended flight segment, thereby
capturing the expected accumulation of flight errors with
distance flown. The distribution of realised flights is determined
by the convolution, Pl*(l*)=�Pl(l)Ps(s)�[l*–l(1+s)]dlds, where
Pl(l) is the distribution of intended flight lengths and Ps(s) is the
distribution of proportional errors, s. If a bee seeks to adopt a
scale-free searching strategy, then the distribution of intended
flight lengths must have a power-law tail, l–�. The tail of the
distribution of realised flight lengths is then determined by
Pl*(l*)=l–��(1+s)–�Ps(s)ds�l–�. This tail coincides with the tail
of the distribution of intended flights. It follows that the realised
scale-free searching strategy will be optimal when the intended,
perfectly executed, searching strategy is optimal.

Discussion
In our experiment, foraging honeybees were trained to an

artificial feeder that was then removed, and the subsequent flight
patterns of the bees were recorded using harmonic radar. After
release, most bees flew immediately to the vicinity of the virtual
feeder in straight, compass-directed ‘vector’ flights (Riley et al.,
2003). Some of the vector flights took place in strong (5·m·s–1)
and blustery cross-winds, which displaced the bees from a direct
‘bee-line’ flight path between hive and feeder. Nonetheless, the
bees usually managed to get ‘back on track’ as they approached
the hive or feeder location, demonstrating the impressive
accuracy of the bees’ path-integration system, at least on the
landscape scale used in the present experiment. Cumulative

navigational errors are inevitable, however, and they could
become large in long-distance foraging excursions. So, despite
the use of other navigational aids, particularly landmarks
(Collett, 1996; Collett et al., 2002; Chittka et al., 1995), it is
quite conceivable that a foraging bee might initially arrive at a
marginally incorrect location. The search strategies studied here
would facilitate the relocation of a floral patch if the error was
slight and the resource was close by. Moreover, if in the mean
time the flowers in the patch had dropped or ceased to produce
nectar and pollen, then the described strategy might also
facilitate the finding of other resources in the vicinity. As with
our tracked bees, foragers will give up searching after a time
and return to the hive. Under normal circumstances, the bee may
then start to gather information from other foragers dancing on
the comb: Biesmeijer and Seeley showed that bees were more
likely to follow dances after they had returned from a failed trip
(without nectar and pollen) (Biesmeijer and Seeley, 2005).
Local searching may also be required when honeybees are
directed by the waggle dance to a new food source, because the
dance communication system will not specify a food location
with pinpoint accuracy (Riley et al., 2005).

We turn now to the precise nature of the search strategy as
revealed by our experiments. At the end of its vector flight, the
bee adopted a stereotypical flight pattern comprised of loops of
ever-increasing size that start and end at the origin of its search
and point in different azimuthal directions. This strategy ensures
that the central area where the feeder is most likely to be is
searched most extensively. We have shown that the looping
flight patterns made by honeybees are consistent with their
having adopted an optimal Lévy-looping searching strategy for
the location of a single target when the most likely location of
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the target is known or is presumed known (A.M.R., manuscript
submitted). This was done using a ‘random walk analysis’ of the
turning points in the honeybee flight patterns, an examination of
the fractal scaling properties of the flight patterns and a
determination of the distribution of flight-segment lengths
(Figs·5–7). The results of these independent analyses yield a
consistent picture; namely that �=2 Lévy-flights underlie our
recorded honeybee flight patterns. Some other reported instances
of Lévy-flight animal movement patterns, most notably that of
the wandering albatross (Viswanathan et al., 1999), are perhaps
less secure because they are founded solely on the results of a
single analysis. We also showed that the strategy remains
optimal when the execution of Lévy-flights is imprecise due to
the accumulation of navigational errors and unpredictable
displacements by gusts of wind, i.e. when the execution of an
optimal isotropic scale-free searching pattern is being
compromised by flight errors (see section on Imprecise Lévy-
flight searching strategies). In a Lévy-looping search, a searcher
travels out from the origin of its search along a randomly
orientated straight line whose length is drawn at random from a
distribution with an inverse-square power-law tail. If the target
is detected, the search ends – otherwise the searcher returns to
the origin and then randomly chooses a new direction and
distance before travelling out again. As a search progresses
without success, the probability of finding the target at the origin
decreases. Eventually it will become more profitable to desist
from repeated returns to the original location and instead adopt
a freely roaming Lévy-flight searching pattern. Such a strategy
is not only optimal for the location of the original single target

(i.e. the hive or nest or nectaring plants), it is optimal for the
location of sparsely and randomly distributed targets (i.e. food
sources) that, once visited, are not depleted but instead remain
targets for future searches (Viswanathan et al., 1999). This
strategy minimizes the mean distance travelled, and so
presumably the mean energy expenditure, before first
encountering a target. Freely roaming Lévy-flight movement
patterns may have been observed in a diverse range of organisms
that includes the wandering albatross, an African jackal, spider
monkeys and Drosophila fruit flies (Viswanathan et al., 1996;
Viswanathan et al., 1999; Atkinson et al., 2002; Bartumeus et
al., 2003; Reynolds and Frye, 2007).

The random Lévy-looping searching strategy is clearly less
efficient than an equidistant spiral search pattern. A spiral search
could, however, work only if the bees’ navigation were precise
enough and their visual detection ability reliable enough to
ensure that all areas are explored and that no intervening regions
escape scrutiny. Should the objective be missed there would be
no possibility of encountering it a second time because the flight
path is an ever-expanding spiral. Relying on a spiral search
pattern when attempting to locate the hive would therefore be
disastrous where navigational systems are less than ideal; even
then, this method could be used only for short searches before
the inevitable cumulative navigational error became too large to
allow a true spiral to be maintained. Switching from spiral to
random looping search paths has been observed in the desert
isopod Hemilepistus reaumuri when it gets lost after an
excursion from its burrow (Hoffman, 1983), in male ladybird
beetles (Adalia bipunctata) after they encounter a conspecific
female (Hemptinne et al., 1996) and in desert ants (Cataglyphis)
returning to their nest after foraging beyond the range of their
known landmark map (Wehner and Srinivasan, 1981) and if
they are displaced by strong winds that have blown them off the
ground (Wehner et al., 2002).

The case of Cataglyphis ants returning from foraging trips is
interesting because it mirrors closely that of the honeybees
searching at the end of their vector flights. In the Cataglyphis
case, foragers that have moved beyond the range of their
landmark map return to their nest using a path-integration (dead-
reckoning) strategy (Wehner and Srinivasan, 1981). When
adopting this strategy, an ant must continuously monitor its
motion during foraging so that the mean vector pointing from its
current position to its nest can be computed. Even small
inaccuracies in this mode of navigation can result in large
discrepancies between the end of the homing vector and the
actual location of the nest. If a homing ant gets lost, it adopts a
stereotypical search strategy that is comprised of loops of ever-
increasing size that start and end at the origin of its search and
point in different azimuthal directions (Wehner and Srinivasan,
1981). This strategy ensures that the central area where the nest
is most likely to be located is searched most extensively. Müller
and Wehner suggested that underlying the ant’s searching
strategy is a spiral search programme that gets transformed into
the observed pattern of loops by the ant’s idiosyncratic path
integration system (Müller and Wehner, 1994). This search
programme was described as a sequence of ever-expanding
spiral movement patterns interspersed with reset episodes during
which the ant returns to the origin. Our results for honeybees
suggest that the searching patterns of homing desert ants are, in

Fig.·9. Mean times in the local active searching phase, ts, comprising
short flight-segments having length L<10·m, and in the relocation
phase, tr, comprising long flight-segments having length L>10·m (X).
Mean times do not change significantly when the length scale L is
increased or decreased by a factor of 2. Mean times for a diverse range
of intermittent foragers (�) [copepod nauplius, phorid fly, cricket,
octopus, Arctic grayling fish (foraging for large and small prey) and
freely flying Drosophila fruit flies] (Kramer and McLaughlin, 2001;
Bénichou et al., 2005; Reynolds and Frye, 2007). The scaling relation
tr�tsj, predicted by the Levy-flight model of optimal searching
(Reynolds, 2006), is shown (solid line).
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fact, consistent with their having adopted an optimal ‘Lévy-loop’
searching strategy. Lévy-loop searches may also be adopted by
other insects, including, for example, Formica schaufussi worker
ants. Upon returning to a site at which food had previously been
found, F. schaufussi workers adopt a fractal (i.e. Lévy-like)
searching pattern and repeatedly return to the origin of their
search (Fourcassié et al., 1992; Fourcassié and Traniello, 1994).
Their searching patterns, like those of desert ants, become
progressively more expansive. F. schaufussi show a greater
tendency to return to, and search at, a site of a prior food find
when offered a source of carbohydrate (sucrose solution) than
when offered a source of protein (insect prey). That is, they
search more persistently for resources that are renewed at a more
or less regular rate (honeydew produced by homopterans),
whereas they do not return as frequently to a rewarding site or
give up their search rapidly when exploiting resources (e.g. dead
arthropods) that have a high unpredictability in space and time
(Fourcassié and Traniello, 1994). Our results with honeybees call
for a re-examination of the movement patterns of these and other
species as part of the development of a unifying theory of
foraging patterns in animals. Indeed, our analysis (Fig.·9)
suggests that this unification may extend well beyond insects and
embrace a large class of animals. This is because the results
presented in Fig.·9 support the conjecture that scale-free and
intermittent behaviours are not manifestations of two distinctly
different kinds of searching strategy but rather are constituent
parts of a single, complex, widely adopted searching strategy
(Reynolds, 2006; Reynolds and Frye, 2007).
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