The Journal of Experimental Biology 207, 449-460
Published by The Company of Biologists 2004
doi:10.1242/jeb.00739

Unsteady forces and flows in low

449

Reynolds number hovering flight:

two-dimensional computationsvsrobotic wing experiments

Z. Jane Wany*, James M. Birchand Michael H. Dickinsoh

ITheoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, A8égrative Biology,
University of California, Berkeley, CA 94720, USAd3Bioengineering, California Institute of Technology,
Pasadena, CA 91125, USA

*Author for correspondence (e-mail: jane.wang@-cornell.edu)

Accepted 3 October 2003

Summary

We compare computational, experimental and quasi-
steady forces in a generic hovering wing undergoing
sinusoidal motion along a horizontal stroke plane.
In particular, we investigate unsteady effects and
compare two-dimensional (2D) computations and three-
dimensional (3D) experiments in several qualitatively
different kinematic patterns. In all cases, the computed
drag compares well with the experiments. The computed
lift agrees in the cases in which the sinusoidal changes in
angle of attack are symmetrical or advanced with respect
to stroke positions, but lags behind the measured 3D lift in
the delayed case.

In the range of amplitudes studied here, 3-5 chords, the

difference between the unsteady forces and the estimates
based on translational velocities, and compare them
against the estimate of the coupling between rotation
and translation, which have simple analytic forms for
sinusoidal motions. The agreement and disagreement
between the computed forces and experiments offer
further insight into when the 3D effects are important.

A main difference between a 3D revolving wing and a
2D translating wing is the absence of vortex shedding by a
revolving wing over a distance much longer than the
typical stroke length of insects. No doubt such a difference
in shedding dynamics is responsible in part for the
differences in steady statdorce coefficients measured in

force coefficients have a weak dependence on stroke 2D and 3D. On the other hand, it is unclear whether such

amplitude. As expected, the forces are sensitive to the

differences would have a significant effect on transient

phase between stroke angle and angle of attack, a result force coefficients before the onset of shedding. While the

that can be explained by the orientation of the wing at
reversal. This dependence on amplitude and phase

2D steady state force coefficients underpredict 3D forces,
the transient 2D forces measured prior to shedding are

suggests a simple maneuver strategy that could be used by much closer to the 3D forces. In the cases studied here, the

a flapping wing device.

In all cases the unsteady forces quickly reach an almost
periodic state with continuous flapping. The fluid forces
are dominated by the pressure contribution. The force
component directly proportional to the linear acceleration
is smaller by a factor proportional to the ratio of wing
thickness and stroke amplitude; its net contribution is
zero in hovering. The ratio of wing inertia and fluid force
is proportional to the product of the ratio of wing and
fluid density and the ratio of wing thickness and stroke
amplitude; it is negligible in the robotic wing experiment,
but need not be in insect flight.

To identify unsteady effects associated with wing
acceleration, and coupling between rotation and
translation, as well as wake capture, we examine the

chord is moving between 3 to 5 chords, typical of hovering

insect stroke length, and the flow does not appear to
separate during each stroke in the cases of advanced and
symmetrical rotation. In these cases, the wing reverses
before the leading edge vortex would have time to separate
even in 2D. This suggests that the time scale for flow
separation in these strokes is dictated by the flapping

frequency, which is dimensionally independent. In such

cases, the 2D unsteady forces turn out to be good
approximations of 3D experiments.

Key words: insect flight, computational fluid dynamics, biofluid
dynamics, vorticity field, two-dimensional force, three-dimensional
force.

Introduction

The demonstrated importance of unsteady effects in insegortical

flows around a flapping wing. In particular,

flight has prompted recent development of better experimentdiynamically scaled robots of both the hawkmoth (Ellington et
and computational tools to investigate unsteady forces aral., 1996) and fruitfly (Dickinson et al., 1999) have been
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developed to perform controlled measurements of flows and Materials and methods
forces. In parallel, researchers have developed direct Experimental method

numerical simulations to probe the detailed vortex dynamics We obtained both force and flow data using a dynamically
and unst.eady forces in flapping f!|ght (Liu etal., 1998; Wangq(5jeq rootic fly, as described in prior studies (Dickinson and
2000a,b; Sun and Tang, 2002; Ramamurti and Sandber@,étz, 1993; Dickinson et al., 1999; Birch and Dickinson,

208.2)' h lexi ¢ delina fluid i in th 2003). At the base of one arm was attached a 2D force sensor
di ven t eLgomp TX'tlyggog_ go € Ir;ng ul 28(\;\'28_ I'Qn three that measured forces parallel and perpendicular to the wing
imensions (Liu et al., » ouh anc tang, ’ amamu@brface. The force sensor at the wing base was designed to be

apd Sandberg, 2002.)’ it would be deswable. to detgrmlne fﬂsensitive to the force moments; thus the force distribution on
simpler models provide results that are consistent with tho§ e wing did not influence overall force magnitude. Lift and

generated in e>_<per|ments. H?re’ we compare two—dlmenglon ag forces were then calculated from the perpendicular shear
(2D) computations of hovering flight against robotic wing ; ;
forces measured by the sensor. The wing consisted of a

experiments._ZD c_ompu_tations are. ‘"’_‘ppea"”g p_artly becau§§25mm thick piece of Plexiglas, cut to the planform of
of their relative simplicity and efficiency. Obviously, 2D a Drosophilawing. When attached to the force sensor, total
computations cannot predict three-dimensional (3D) effectsv'vm lenath was. 02E. The wina and arm a ar’atus
on the other hand, it is almost impossible to attach the 9 9 . o 9 appar:
L . . . Were lowered into a finx1 mx2 m Plexiglas tank filled with
significance of 3D effects without knowing what happens |n1 8m3 of mineral oil (density 0.8610° kgm-3 Kinematic
2D flow. Therefore, in addition to being relevant to cases$’ y o gm=

. : : : iscosity=115cSt). By changing flapping frequency we could
where the flow is approximately 2D, as with large wing aspec\cf)perate the robot at Reynolds num etween 50 and 200.

ratio, when compared with 3D experiments or computationsrhe design of the robotic arms permitted the wing to move

2D computations can offer useful insight into the relative ith three d  freed d trok litud
significance of 3D effects, as we will discuss at the end of the! ree degrees of freedom (measured as stroke amplitude,

paper stroke deviation from horizontal, and wing rotation) and a

Comparing computations and experiments is delicate, part stom program wr.ltten '”,Ma“ak? (Mathworks V'5'.3) aI_Iowed
because it is almost impossible to match any two setu to p'rogram.arbltrary kmematlc. patterps. To swpphfy the
exactly, and partly because it is tempting to present results th§@mparisons with the 2D computational fluid dynamics model,

compare well, thereby biasing the interpretations. Therefore, Y€ created a simple back-and-forth wing beat pattern with no

is essential to test the methods in qualitatively different flowSOKe plane deviation. .
generated by different wing kinematics. We used digital partlcle' image velocimetry (DPIV) to
In additon to comparing the experimental andMeasure the_ flow structure in a 841112 area centered on the _
computational forces, we also evaluate the relativé¥ng- T_he oil was seede_d with air forced thrOl_Jgh a ceramic
importance of unsteady effects. These include Wingvater filter stone, creating a dense bubble flglq. After the
acceleration, both in translation and rotation, and interactiorf@9€r bubbles rose to the surface, the remaining bubbles,
between the wing the existing flow. Most recent work usingtlthough  slightly  positively buoyant, were effectively
a robotic fruit fly focused on kinematics based on tetheredt@tionary for the duration of each exposure pair. A
flight measurements. These kinematics have relativelgommercial software package controlling a dual Nd-YAG
constant translational velocity in the mid-stroke and largéaser system (Insight v.3.2, TSI Inc., St Paul, MN, USA)
accelerations and sharp rotations at the end of strokes. ¢heated two identically positioned light sheets approximately
these strokes, pronounced peaks appear near the end of edéhmm thick separated by 2098. These light sheets were
stroke. These peaks were attributed to either wing rotatioparallel to the wing chord and positioned at ® 6&hereR is
and wake capture (Dickinson et al., 1999; Birch andhe wing span, and timed to fire when the wing chord was
Dickinson, 2003), or rotational and translational acceleratioffirectly in front of the high-speed video camera placed
(Sun and Tang, 2002; Sane and Dickinson, 2002). Theerpendicular to the laser sheet. We choseRda5our point
sinusoidally varying strokes studied here offer a set off measurement because in a prior DPIV study in which the
kinematics where the relative contribution of some of thevake was viewed from the rear, OR6%as the position in
dynamic effects can be theoretically estimated. For exampl#hich the circulation was the greatest (Birch and Dickinson,
we estimate the relative contribution that wing rotation an®003). We captured one image per stroke from en2®9 cm
acceleration make to the quasi-steady forces. We alstrea centered on the wing during each of the four strokes.
estimate the wing inertia relative to the fluid force, as well ag\fter saving the captured images, the trigger for the laser was
the non-inertial forces due to wing acceleration relative t@dvanced and the starting position of the wing was adjusted
the pressure forces associated with vorticity flux. Given thao line up with the camera at the appropriate time before
the free flight kinematics of fruit flies appear to be morestarting the next trial (Birch and Dickinson, 2003). We
sinusoidal than those derived from tethered flight (Fry etepeated this procedure until we had divided each stroke into
al., 2003), our results, though using an idealized kinematicd,0 equally spaced intervals. In this way, we quantified the
may nevertheless relate to the forces generated by the rdhiid flow from the perspective of the wing through four
flies. downstroke/upstroke cycles, although this paper will only
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report on the wake dynamics during the fourth stroke. Forelative to the wing center, and=0. The exact boundary
each image-pair captured, a 2-frame cross-correlation of pixebndition onW can be recovered by solving the Poisson
intensity peaks with 50% overlap of pkelx64pixel  equation twice (Wang, 1999). For this computation, the far
interrogation areas resulted in 9@€locity vectors/image. field boundary condition is correct to the dipole order.
Vector validation resulted in the removal of only 2 of 9000 A fourth-order Runge—Kutta scheme is used for the time
vector values; these were filled by interpolation of a meaiterations, which exhibits a stability domain for this
value from a 3« 3 nearest neighbor matrix. A custom programexplicit scheme. The stability condition includes two
written in Matlab (v.5.0) calculated vorticitgp=% u, from  Courant—Friedrich-Levy (CFL)-like conditions related to the
velocity fields smoothed using using a least-squares finiteonvection and diffusion time scales over a mesh size:

difference scheme. dt1 = Crds?sintRuo/ay 3)

Computational method dtz = Cadssinhuo , 4)

The computation models a thin wing element of elliptic . _ . o
cross section under the same kinematics as performed in é]grgmt:rggéqg gﬁ)c;si;]pfoaéethrenél(lﬁsz)e ' '?k?gt);g:%rie

experiments. The computation of flows around this hoverin ST . . .
wina emolovs a fourth-order finite difference scheme OT%era‘uon in each computation step involves the following
9 ploy sequencew - Wl yn+l_, o+l where superscripts indicate

Navier-Stokes —equation in _vorticity-stream functionthe time-step. To resolve the flow, 10 grid points are typicall
formulation (E and Liu, 1996). The scheme is implemented in P. lve the flow, 1V grid p ypicary
needed along the radial direction in the boundary layer, and at

the elliptic coordinates with appropriate boundary condition?east 30 points in the azimuthal direction around each tip

to account for the wing motion (Wang, 2000a,b). See aIS\(/)vhose length scale is estimated by its radius of curvature.

Russell and Wang (2003) for an alternative method employinghe resolution forRe-100 is 128256 for the following

Cartitian gnd; app.roprlate fgr multiple Wings. . computations. The radius of the computational boundary is
The two-dimensional Navier-Stokes equation governing th? . .
ypically 10 times the chord length.

vorticity in the elliptic coordinates has the following form: The forces on the ellipse can be computed from integrating

(Sw) — the stress tensor along the body. Writing the Navier—Stokes
Fram (\/51J Vw=wWaw, (1) equation in the coordinates fixed to the wing, we have:
- M =P vau— duydt
— 4+ . = —_

v-(/a)=0, (2) o U= v
whereu is the velocity field,w the vorticity field,v is the EHD Q
kinematic viscosity ané is the local scaling facto&(u,0)= - dt Xr + 20U + Qx(er)g' ®)
cosiu—cog8 resulting from coordinates transformation. The
derivatives are with respect to the elliptic coordinaje8)( V-u=0, (6)
whose mesh points are naturally clustered around the tips and o
the body of the ellipse to resolve the boundary layer. It is Ulwing = 0, @)

convenient to express both the vorticity and velocity in termgyhereUg andQ are the translational and rotational velocity of
of the stream functionW: u=—3W¥ and w=0%¥. The the wing, and the pressure. The last three terms corresponds
conformal transformation results in a constant coefficiento the non-inertial force due to rotational acceleration, the
Poisson equation for the stream functi#h which can be Coriolis force, and the centrifugal force. The Coriolis force and
solvedvia Fast Fourier Transform (FFT) efficiently. the centrifugal force disappear in the 2D vorticity equation
The Navier—Stokes equation is solved in a frame fixed t@ecause they can be recast in terms of the gradient of a
the wing. In the 2D vorticity stream function formulation, the potential function.
non-inertial frame introduces only one extra term, the The velocity and vorticity are solved in the non-inertial
rotational acceleration of the wing. Other non-inertial termsgoordinates, which are then transformed into the inertial frame.

can be expressed as a gradient of a potential function. Thgse forces are calculated in the inertial frame by integrating
they can be absorbed into the pressure term. The curl of thige viscous stress:

gradient of pressure is zero. The body motion is reflected i~
the far field boundary conditions, and the no-slip boundary
condition at the wing is enforced explicitly through the
vorticity and stream function boundary conditions. More
specifically, on the wing, we sdt=c, where c is a constant, & .

to satisfy the no-penetration boundary condition,@H®n=0 Fv= pVJ wsds, 9)
to satisfy the no-slip boundary condition. At far field, we set

FW =—(Uot+rxQq), whereUg andQo are the translational and whereFp andFy denote pressure and viscous forgess the
rotational velocity of the wing, respectivelyjs the position fluid density,Aw the total area of the wing, is the tangent

o= o 22 (7, s+ pay 220 ®)
p=pVv W(y,—x)s PAw ra

J
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vector along the ellipse, and the integral is over the surface cbmparing 2D and 3D force coefficients. The lift coefficient

the ellipse. The second term ki is similar to the buoyancy of 1 has different meanings in experiments and computations,

force associated with hydrostatic pressure, i.e. fluids accelerataeless the sectional lift coefficient in a 3D wing is a constant.

with —(dUo/dlt). Strictly speaking, the numbers should only be compared within
the computations or the experiments.

Wing motion, choice of parameters and normalization
The wing follows a sinusoidal flapping and pitching motion. Quasi-steady forces

Specifically, the wing sweeps in the horizontal plane and Before discussing the unsteady forces, we first describe the

pitches about its spanwise axis with a single frequéncy calculation of the quasi-steady forces based on both the
translational and rotational velocity. Because the wing operates

X(t) :& cos(atft) , (10) at a large range of angles of attack, from 0° to 135°, the
2 Kutta—Joukowski lift, which works for attached flow
a(t) = oo + Bsin(2rt + @) , (11) associated with small angles of attack, is clearly inapplicable.

Instead, we determine the quasi-steady coefficients
wherex(t) is the position of the center of the wing, ar¢) is  empirically, using both the robofly experiments and
the wing orientation with respect to tkeaxis. By definition, computation of a steady translating wing at a fixed angle of
the translational and angular velocities are given byttack. The lift and drag coefficients, defined with respect to
Uo(t)=dx(t)/dt and Q(t)=da(t)/dt. The parameters include the the far field flow, are measured at a time when the forces reach
stroke amplitudeAo, the initial angle of attackoo, the atemporary plateau after the initial transients (see for example,
amplitude of pitching angle of attafkthe frequencyand the fig. 2 in Dickinson et al., 1999; fi%. in Wang, 2000a). Forces
phase difference betweenx(t) anda(t). In the experiments, at all angles are measured at a fixed titm2,in dimensionless
such a motion is confined to an arc about the wing root, artime scale.
in the 2D computations, the motion is along a straight line. ~ From the 3D experiments, the lift and drag coefficients are

The translational motion of the wing is completely specifiedvell approximated by:
by two dimensionless parameters, the Reynolds number, _ . o
Re=Umaxc/V=TfAgc/v, andAg/c, where Uhax is the maximum CL=0.225 + 1.58sin(2. 18- 7.2°), (12)
wing velocity, andc the chord. In the subsequent studies, we Cp = 1.92 + 1.55c0s(2.04— 9.82°), (13)
fix f but varyAo/c and study its effect on the flow. For clarity,
we will report the value oAg/c directly instead oRe Ao/c
varies from 2.8 to 4.8, with resultinge from 75 to 115,
appropriate for fruitflies. Other parameters 3 andf are fixed CL = 1.2sin(2r) , (14)
to beTr/2_, 4 gnd 0.25jz, respecti\{ely. ' Cb=1.4—cos(@), (15)

A main variable of interest in this study is the phase delay
between rotation and translatiap, which was shown to be a Wherea is the angle of attack. This fit is shown in Fig.
sensitive parameter in force generation (Dickinson et al., 1999;
Wang, 2000b). Three cases;1v4, 0 and #/4, corresponding
to the advanced, symmetrical and delayed rotation (Dickinsc 25¢
et al., 1999), will be studied for eagb/c.

We normalize the computational and experimental forces b
the maxima of their corresponding quasi-steady forces, ¢
described in the next section. Our choice for the normalizatio
is dimensionally the same as the conventional chgit&, .,
but has the advantage of normalizing away features specific
the wing, such as its thickness and geometry. This is becau
that force dependence of the wing geometry is sometime
relatively simple. For example, the force coefficients of
ellipses of different thickness were shown to have almost th
same functional dependence on the angle of attack but differe
magnitude (see figh in Wang, 2000a). The experimental force
coefficients of the robotic fly wing also show little dependence 0.5 : : : : :
on the wing planform. If the dependence on the geometry i 0 20 40 60 80 100
the steady and unsteady forces is similar, then their ratio do Angle of attack a (degreeg
not depend sensitively on the geometry of the wing. Thigjg 1. Quasi-steady liftC. (circles) and dragCp (crosses)
would allow us to compare wings of different cross sectioncoefficients measured from computation compared to the empirical
and planforms. Although comparing the force coefficientsformulae described by Equatiohd,15 (solid and broken lines,
appears to be a natural thing to do, one must be cautious wktrespectively).

where the angles are expressed in degrees. A similar fit is
obtained using our 2D computed data:

Forcecoefficients




The constants depend on the Reynolds number, details
the wing, etc. Unlike the Kutta—Joukowski lift, which is valid
at small values ofa and is proportional to sin
Equationsl2,13 and 14,15 are valid for all valuescofind

Fig.2. Computational and experimental lift and drag coefficients
during advanced rotationp£174; Ao/c=2.8). (A) Lift (CL) and drag

(Cp) during the first four complete strokes. Red, experimenta
measurements; blue, computations. The time is normalized with tt
flapping period. The force is normalized by the maxima of the
corresponding quasi-steady forces. (B) Experimental and (C
computational force vectors superimposed on wing positions, plotte

at equal time intervals. The green line represents the wing chor:-
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dépend explicitly on @, rather tharo. The 2x dependence
is consistent with the symmetry of a plate. Moreover, it is
consistent with the theoretical prediction of lift and drag of a
stalled wing:

CL = msin(20)/(4 +1sina) ,

Cp = Tsin(a)/(4 + 1sina)

(16)
(17)

which is derived assuming complete flow separation in the
wake (von Karman and Burgers, 1963). The theory
underpredicts the magnitude of the forces, but gives roughly
the right shape of the force curve. In addition, Equatiégh$7
make it apparent that the net force in the stalled case is normal
to the wing, a prediction confirmed by our computations and
experiments (Fig8—4). We refer to the forcespu?C. and

2r A

Stroke R

= e

B T B
LA

Stroke R

—_— =

filled circles, the leading edge; arrows indicate force vectors on thFig. 3. Computational and experimental lift and drag coefficients

wing. R, right; L, left.

during symmetrical rotatiorpEOQ; Ag/c=2.8). Details as in Fi.
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1pu2Cp, as the quasi-steady translational lifir\ and drag the quasi-steady forms should fit in the unsteady case better,
(D), respectively. since both use assumptions that are invalid in unsteady cases.

In the case of a translating and rotating wing, theRecently, revised quasi-steady models have been proposed to
instantaneous velocity of the wing varies along the chord, &# these forces (Sane and Dickinson, 2002). For the purpose of
u(x,t)=uo(t)+Qo(t)xx, wherex is the position on the chord this paper, we simply compakte, Lt andDT with the unsteady
measured from the pitching axis. In the case of constant smétirces. It turns out that for the prescribed motions hiege,
pitching amplitude and constant translating velocity, thedeviates substantially from the unsteady forces, white
potential theory (Munk, 1925) predicts the associated lift t@pproximates the unsteady forces reasonably well. Therefore,
be: in the subsequent discussions, we will useas an estimate

Lr = T02pc2UoQo . (18) for the quasi-steady forces.

Note that Equatiod8 includes both the pressure lift of a
translating and rotating wing in the absence of circulation Results
(Magnus force) and the lift due to circulation given by the Comparison of measured and computed forces
Kutta’s condition. There is na priori reason as to which of  Twelve kinematics are analyzed here: four stroke
amplitudes, 60°, 80°, 100° and 120°, at three phase delays,

2 A ¢=174, 0 and #/4. The range of amplitudes corresponds to the
15} end-to-end amplitude:chord ratios of 2.8, 3.6, 4.2 and 4.8 at
1t 70% span. The computational parameters are chosen to match
o' 05¢ both the Reynolds numb&eand the amplitude:chord ratio,
0 Ad/c. In particular,Ag is estimated to be the projection of the
-05 arc length at 70% span onto a 2D plane. The location at 70%
-1 s s : : : : s ; span was chosen because the sectional circulation is near
0 05 1 52 25 3 35 4 maximal there (J. M. Birch, W. Dickson and M. H. Dickinson,
manuscript submitted for publication) and the interference
from the trailing edge vortex is small. Once we fix the
computational units for time and length, iTel andc=2.0, the

viscosity is also fixed in computational units.

Figs2—4 summarize the results for variation ¢gn Each
figure shows the comparison of experimental and
computational force coefficients over the first four cycles.
In addition, instantaneous force vectors are shown in
superposition with the traveling wing during the second stroke.

The wing motion in these cases differs in the angle of attack
at the end of stroke. The angles of attackiéderv2 and 3v4,
respectively, in the advance¢=v4), symmetrical ¢=172)
and delayed ¢&—1v4) rotation cases, as shown in the force
vector plots. The delayed rotation case is unusual from the
point of view of operating an airfoil. After each reversal, the
wing has angles of attack greater th@8, which leads to a
downward lift (see Figd). However, insects or bio-mimetic
devices may use such a stroke to reduce the force on one wing,
and thus generate a torque to turn. In addition, when the wing
is moving at an angle greater thar2, the flow separates
C _ Strolel quickly, which is qualitatively different from the other two
cases. Thus it also provides a good case for testing
computations and experiments in different scenarios.

In all cases, the forces quickly settle into an almost periodic
state after two strokes. The computational drag follows the

experimental drag closely in all three cases. Lift agrees well in
MW the first two cases (Figs 3), but shows a clear phase delay in
the case of delayed rotation (F). Notice that the shift occurs
Stroke R only after the first stroke. The averaged experimental lift and
drag coefficients are (0.93, 1.28), (0.86, 1.34) and (0.38, 1.10),

Fig. 4. Computational and experimental lift and drag coefficientsfor the advanced, symmetrical and delayed rotation,
during delayed rotationpé—Tv4; Ag/c=2.8). Details as in Fig. respectively. The averaged computational lift and drag
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2 A this range of amplitude variation, the flows are qualitatively
similar for a given choice of. Although we only show the
11 (=174 case, the results are similar {pr—1v4 and@=0.

. The average lift depends sensitively @nas emphasized

o 0 w before (Dickinson et al., 1999; Wang, 2000b). For example, in
the case ofg/c=2.8, the averaged values for experimental lift,
CL are 0.93, 0.86 and 0.38, fpralues of 0.2&, 0 and —0.25,

_12 2,'5 3 3_'5 j, respectively. The comparable quasi-steady lift coefficients are
0.75, 0.95 and 0.75. This dependencepaan be understood
2r intuitively, based on two facts. First, the deviation between the
unsteady forces and quasi-steady forces occurs mostly after the
L flip of each stroke. Second, the instantaneous forces in all these
S o cases are typically normal to the wing, as indicated in the force
vector plots in Fig2—4, and as discussed in Materials and
1L methods. Therefore, the contribution to lift and drag can be
: : : ; correlated with the instantaneous orientation of the wing at the
2 25 _3 3.5 4 end of each strokew4, W2 and 372, for ¢=174, =0 and
Time =114, respectively. One expects an increase in both lift and
2 B drag wheng=174, a decrease of lift and increase of drag when

@=—174, and relatively small change in lift, but a large increase
in drag for@=0. These indeed are consistent with both the

1r ;
. MM experimental and computational forces.
§)

O

Comparison of experimental and computed vorticity fields
As a further comparison between computation and

_12 2.'5 3 3_'5 j, experiments, we show side by side the snapshots of the
vorticity field near the wing from experimental DPIV
27 measurements and computational results @igTen frames
are shown for each period. The colors indicate the strength of
1 the vorticity field. In Fig6, columns A and C are computed
S o vorticity, and B and D are experimental vorticity in a 2D slice.
The simulations appear to capture the major features of vortex
1L dynamics through a complete stroke cycle. Notice that the fluid
momentum is directed downward by pairs of vortices, similar
2 25 3 3.5 4 to those shown in asymmetric strokes that model dragonfly
Time wing kinematics (Wang, 2002b). In 3D, the pairs of vortices

Fig. 5. Force traces for different amplitudes. (A) Experimental forcec@n be cross-sections of a donut-shaped vortex ring. The
coefficients for advanced rotationg=v4) and three stroke Structure of the downward momentum jet, characterized by the

amplitudes, Ag/c=2.8 (red), 3.6 (blue) and 4.2 (green). averaged velocity field over a cycle, is examined elsewhere for
(B) Computational force coefficients for the same parameters. Thboth the symmetric and asymmetric strokes strokes (Z. J.
time is normalized with the flapping period. The force is normalizedyang, manuscript submitted for publication). Also notice that
by the maxima of the corresponding quasi-steady forces. even the kinematics of left and right strokes are identical, but
the flow field differs slightly. This can be seen by comparing
columns A and C in Figs. The wing positions are mirror
coefficients are (1.10, 1.36), (0.82, 1.44) and (0.19, 1.21)mages, but the flows deviate slightly from the mirror
respectively, for the corresponding cases. We will return to theymmetry. Such a deviation may be inconsequential in terms
presence and absence of the phase shift in lift in these threkaverage lift, but worth keeping in mind when interpreting

different cases when we discuss the 3D effects. the precise time course of forces.
The averaged force coefficients depend weakly on stroke _
amplitude, as shown in Fig. In the case aj=1v4, the average Unsteady forcess quasi-steady forces

experimental lift coefficients are 0.93, 0.99, 0.95 and 0.93 at The differences between the unsteady and quasi-steady
Ao/lc=2.8, 3.6, 4.2 and 4.8, respectively. The correspondintprces have been analyzed extensively for fruitfly kinematics,
computational lift coefficients are 1.07, 1.0, 0.9 and 0.9. Théased on results from tethered animals, with relatively constant
drag coefficients are 1.28, 1.19, 1.12 and 0.93 in experimentsanslational velocity in the mid-stroke and large acceleration
and 1.36, 1.34, 1.24 and 1.16 in computation. This indicatemnd sharp rotations at the end of strokes. The unsteady effects
that the total force scales roughly wi, as expected. Within were dominant near the wing reversal, where they contribute
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to the rotational effect and the wake capture (Dickinson et alraises a debate about the physical basis of these unsteady
1999). The discrepancy between experimental measures effects. Here we do not attempt to resolve these discrepancies,
forces and flows (Birch and Dickinson, 2003) and a CFDbut probe the presence of unsteady effects in a different set of
model of nearly identical conditions (Sun and Tang, 2002kinematics. In Fig7, we compare the unsteady forces with the

A B C D

Fig. 6. Vorticity plot in the case ofo/c=4.8,=0. Ten frames are shown in the fourth stroke. Red, counterclockwise rotating vortices; blue,
clockwise rotating vortices. The wing is in black. (A,C) Computed vorticity; (B,D) digital particle image vorticity dat®islieeat 0.6R.

See Materials and methods for details. Each pair in A,B and C,D corresponds to the same time during a stroke. The tinig iselipsade

by the numbers on each plate. The color scale for vorticity of computation and experiments do not correspond to the exaiciisarakies,

so the figure should be viewed as a qualitative comparison.
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Fig. 7. Force comparison between experiment, computation and quasi-steady predictions for (A,D) agwantedR,E) symmetric ¢=0)

and (C,F) delayedpe—1v4) rotations. (A—C) Force traces of four strokes starting from rest. Red, experimental force; blue, computational force;
green, quasi-steady estimates using Equafidrd7. Forces are normalized as in FAgd4. (D—F) Difference trace (red) between the
experimental forces and quasi-steady forces. Linear acceleratipfitdblue), and an estimate of rotational forg®Q(t) (green) are shown

in arbitrary scale since we are only interested in their basic time course. Broken vertical lines mark the wing reversdlldR]rif@atures
associated with rotation (r) and unsteady circulation due to wing acceleration (u), are labelled accordingly.
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steady state forces based on the translational velocity. In tloé flow. One possibility for breaking the symmetry in forces is
case of advanced rotation, the unsteady effects can contribuig the initial condition.
an additional 50% to the total lift, and in the case of delayed While identification of the above features is useful when
rotation, they can reduce the total lift by a factor of 2—3. It iglissecting the unsteady force traces, it is also relevant to
also clear that the quasi-steady forces based on translatiomigtermining their net contributions. The force directly
velocity alone do not predict the time-dependent forces duringroportional to the linear acceleration can have sharp peaks,
a sinusoidal flapping. but it has a zero contribution in reciprocal motions. The

To gauge the relative importance of different unsteadypressure force of a rotating and translating plate, approximated
effects, we examine the difference between unsteady forcéy u(t)Q(t), has a non-zero net contribution in the cases
and estimates based on the translational velocity, as shownwihere @£0, since [sin(2ft)cos(2Tft+@)]sing. The unsteady
Fig. 7D—F. Ideally we wish to decompose, if possible, thevortex force due to wing acceleration has eluded simple
unsteady force approximately into a sum of separate termapalytical expressions, except for power-law start up flow,
which can be related to wing acceleration, the couplingvhere both the added mass term and the vortex force are
between rotation and translation, wing—wake interaction, etcalculated analytically and numerically (Pullin and Wang,
However, in the absence of quantitative prediction of thes2003). The unsteady forces contribute to both lift and drag,
effects, we can only offer a plausible decomposition byboth predicted in theory (Pullin and Wang, 2003) and seen here
correlating the force peaks with the time course of translationah Fig. 7.
and rotational velocity.

The coupling between translation and rotation can be Fluid forces and wing inertia
modeled byCrotQ(t)u(t), a form predicted by classical theory  Among various terms contributing to the fluid forces, the
of a translating and pitching motion (Munk, 1925), and testegressure force dominates. The viscous force is smaller by
in robotic fruitfly experiments (Sane and Dickinson, 2002)roughly a factor proportional toiRe The pressure force due
where Crot is assumed to be a constant that depends on thte non-inertial effects resulting from translational and
center of rotation. Part oEtQ(t)u(t) is the Magnus force rotational acceleration averages to zero in hovering when the
caused by the pressure difference due to velocity differencpitching axis is centered at the chord. The magnitude of the
given by Bernoulli's law, and another part is due to additionainstantaneous non-inertial translational force is also small for
circulation caused by the rotational motion to satisfy the Kuttéghese sinusoidal motions. In particular:
condition (Munk, 1925). In the three kinematic patterns studiec
here, the peaks (labeled ‘r' in Fig) associated with rotation, E :DDpAw(dUO/dt) J 3 (19)
are picked by matching (with a small shift) the force curve tc Fo 0 CripUgc 0 Ao
the maximum ofQ(t)u(t). The positions of these measured ) .
force peaks vary in the three cases, in accordance with the shiffie"e Fw is the pressure force due to vorticifys is the

of the peak positions af(t)Q(t). The variation occurs at the effective buoyancy due to wing acceleratibiis the thickness
same time scale ag)Q(t). of the wing andAo is the amplitude of the stroke. In the

Other unsteady effects occur near the wing reversalerivation of Equatiod9, we have used the fact that
(labeled ‘v’ in Fig.7). The position of these effects occur dU0/dt=2rdUo and Lh2rfAo. .
roughly at the same time in all three kinematics. These force Fi9: 8 illustrates the contribution &, (broken line) to the
peaks do not follow the trace ofi@/dt, thus do not behave total forc_e (solid line). In kinematics where the_re is a fast
as the classical added mass. These force peaks are "k@'gpeleratlon at the end of the stroke, the force vylll havg sharp
related to the unsteady growth of vorticity and wake—wak&€aks at the end of the stroke, but the net contribution is zero,

interaction, which do not have simple analytic expression&S discussed before. o . .

in general. Regardless of its physical basis, the most Finally, we estimate the inertial force associated with
substantial contribution of this unsteady effect is on dra@’i“g acceleration with respect to the fluid force. The inertial
(Fig. 7B,C.E.F). orce in the experiment turns out to be negligible compared

We also note that the peaks alternate in size from stroke {8 the fluid forces, as shown experimentally (Sane and
stroke in the experimental lift, most obvious in Fig,D. One  Dickinson, 2001). Here is a simple estimate to explain why
possible explanation is that this asymmetry reflects thES iS SO:
mechanical artifact due to gear backlash. However a sma Fuing _ Mwingd?Uo/dt2  Pwing b
degree of asymmetry is also observed in the computationi — = 2 e e
data, e.g. the vorticity field as shown in Fig. 6 and the force Fiia SCiPUoAw Piuid Ao
in Figs2—4. At Re=0, the left and right strokes, which are whereCt is the force coefficient, of order h,is the thickness
mirror images about the vertical axis, would generate forcesf the plate andyg the amplitude of the stroke. For the robofly
that have the same symmetry; i.e. the lift from left and righwing, (Pwing/Pruid)~1.3 and f/Ac)<1, hence the wing inertia is
strokes are identical and the drag forces are of equal size megligible. For a real insect wingfing/priuid)~1C3, so that even
in the opposite direction. Here, the Reynolds number is finitthough the wing is very thin, its inertia may not be negligible.
and sufficiently large that the force can depend on the histolWeis-Fogh's early data showed that the ratio is about 30%

(20)
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Fig. 8. Contributions to drag coefficients.

Solid line, total drag; broken line,

contribution due to vorticity flux alone.

0 02 04 06 08 1 1214 16 18 2 The parameters in the wing kinematics
Time are:Ao/c=2.8,¢=174.

(Weis-Fogh, 1973). It will be interesting to check this againsanalogous to that occurring on delta wing aircraft, in which
the biological data. Similar results can be obtained for thepanwise flow through the vortex core maintains the stability.

pitching torque: But as discussed previously (Ellington et al., 1996), the exact
Twing bc conditions for establishing spanwise flow in leading-edge
Thuid OCE (21)  vortex for rotary wings are not completely understood. For

example, a helicopter rotor also experiences a pressure
wherec is the chord. Again, in the experiments the moment ofradient, centrifugal and Coriolis forces, but no large-scale
wing inertia is also negligible during a sinusoidal motion aspanwise flow is observed (Harris, 1966). Recent smoke
studied here. visualization of free-flying butterflies also did not observe
substantial spanwise flow, but reported high variability of 3D
flow patterns (Srygley and Thomas, 2003). DPIV images of
Discussion flow field in a robotic fruitfly experiment, wher@e=150,
Given that flow around real and model insect wings exhibitshowed no substantial spanwise flow inside the core of leading
3D effects such as spanwise flow, it is tempting to concludedge vortex, but instead indicted substantial spanwise flow
that 2D computations have little to offer. Here we see that thieehind the leading edge vortex, which connects to the tip
success and failure of a 2D model in capturing the forces wortex (Birch and Dickinson, 2001). Strictly speaking, there is
3D experiments can provide important insights. In both th@o contradiction among these experiments regarding the
advanced and symmetrical rotation cases, the 2D forces aspanwise flow. It is likely that the spanwise flow within the
very similar to the 3D forces. Why do they agree? In additionyortex core occurs only at sufficiently large Reynolds number
what do we learn from comparisons between the 2[&s in the case of hawkmoth, but not at low Reynolds number,
computation and the 3D experiments? as in the case of fruitflies. The details of the spanwise flow can
First, a notable difference between the experimental andlso depend on the wing shape and kinematics. The high
computational forces is seen in the delayed rotation, whenariability of the 3D flow patterns shown by these different
there is a clear phase shift between the computed and measueggeriments, however, makes it difficult to conclude that
lift. In the canonical example of flow past a 2D cylinder and aspanwise flow is crucial for generating sufficient lift by a
3D sphere, the forces during von Karman vortex shedding al$wvering insect.
show a phase shift, which was argued to be a generic featureAn alternative explanation for why the conventional stall
between 2D and 3D flows (Mittal and Balachandar, 1995). Inloes not seem to affect a flapping insect wing relates to the
view of this, the absence of the phase shift in the advanced atiche scale governing the flow separation that leads to stall. For
symmetrical cases are particularly interesting. The differencexample, a 2D translating wing at an angle of attack of 40°
in flow structure in the three cases may be worth furtheandRe=1000, does not show a drop in time-dependent force
investigation. until the chord travels for about 4 chords, after which the
Second, these results are relevant to recent discussions abfuutes become oscillatory due a von Karman shedding (fig.~6
the role of 3D effects on delayed stall. Insects are known tm Wang, 2000a). Therefore, in theory there is no need for
flap their wings at angles of attack much higher, around 354dditional mechanisms to stabilize the leading edge vortex if
(Ellington, 1984), than the stall angle of a conventional airfoilthe wing travels less than about 4 chords. The early data
about 12°. As suggested by Ellington et al. (1996), the pressucempiled by Weis-Fogh (1973) showed that ratios of stroke-
gradient from root to tip within the vortex core might drivearc to wing-chord of different species during hovering,
spanwise flow that stabilizes the leading edge vortex bincluding bats Rlecotus auritug birds (hummingbirds),
convecting away the vorticity. The spanwise flow was indeetutterfies and moths (Lepidoptera), wasp and bees
seen by smoke visualization in the robotic hawkmoth(Hymenoptera) and flies (Diptera), have values less than 4.
experiment, wher®e=5000 (Ellington et al., 1996; Willmott The beetles (Coleoptera) have values between 5 and 6. A main
et al.,, 1997). This proposed mechanism is thought to beifference between a 3D revolving wing and a 2D translating
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wing, as noted in recent literature, is that a revolving winge, W. and Liu, J. (1996). Essentially compact schemes for unsteady viscous
does not appear to shed its leading edge vortex after a distanc@compressible flows]. Comp. Physioll26 122. .

. . Fllngton, C. P. (1984). The aerodynamics of hovering insect fligbhil.
much longer than the stroke length of a typical insec

Trans. R. Soc. Lond. 805, 1-181.

(Dickinson et al., 1999; Usherwood and Ellington, 2002). Nc&llington, C. P., van den Berg, C., Willmott, A. P. and Thomas, A. L. R.
doubt such a difference would affect the force coefficients (1996). Leading-edge vortices in insect flighature 384, 626-630.

S. N., Sayaman, R. and Dickinson, M. H2003). The aerodynamics of

. . ny,
observed in 2D and 3D in the steady state. On the other handyee fiight maneuvers iprosophila Science300, 495-498.
the difference in terms of vortex shedding may not affect thelarris, F. (1966). Preliminary study of radial flow effects on rotor blades.
transient values. It is worth re-examining the results of 3D Helicopter Socll, 1-21.

experiments on a flapping wing (figD in Dickinson et al.,

Liu, H., Ellington, C., Kawachi, K., van den Berg, C. and Willmott, A. P.
(1998). A computational fluid dynamic study of hawkmoth hovedngxp.

1999), which show that while the 2D steady state lift Biol. 201 461-477.

coefficients underpredict substantially their the

counterparts, the 2D transient values follow closely the 3D

3pMittal, R. and Balachandar, S.(1995). Effect of three-dimensionality on the

lift and drag of nominally two-dimensional cylindePhys. Fluids7, 1841-
1865.

coefficients, up to an angle of attack of about 72°. The 3Munk, M. M. (1925).NACA Tech. Note317, 1-6.
steady force is slightly lower than the unsteady 2pPullin, D. 1. and Wang, Z. J.(2003). Unsteady forces on an accelerating plate

counterpart, due the well-known downwash due to tig

and application to hovering insect flighit. Fluid Mech, in press.
amamurti, R. and Sandberg, W. C(2002). Computational study of three-

vortices. Similarly, in the cases studied here, the chord is dimensional flapping foil flowsl. Exp. Biol.205 1507-1518.
moving between 3 to 5 chords, and the Ieading edge vortdyssell, D. and Wang, Z. J(2003). A Cartesian grid method for modeling

Itiple moving irregular objects in two dimensional incompressible

does not appear to separate during each stroke in the cases Sgcous flow.J. Comp. PhysL91, 177-205.
advanced and symmetrical rotation, as indicated by thgane, S.and Dickinson, M. H2001). The control of flight force by a flapping
absence of phase shift between the 2D and 3D forces. In thes#ing: lift and drag productiorl. Exp. Biol.204, 2607-2626.

cases, the 2D forces are good approximations of 3

experiments.
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