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SUMMARY

The wake of a jackdaw in slow forward flight is described. The three-dimensional
velocity field was investigated qualitatively and quantitatively by analysis of
multiple-flash stereophotographs of the motion of neutrally buoyant helium bubbles.
The best description of the wake structure appears to be a chain of planar, near-
circular, discrete, small-cored, vortex loops, each produced by vorticity shed during
a single downstroke.

However, the momentum measured in such a wake is approximately 35 % of
that required for weight support under these flight conditions. Some evidence
is presented that this apparent wake momentum deficit may arise because the
description of the real wake vorticity distribution is too simplistic.

The implications of these results for theoretical models of bird flight are briefly
discussed.

INTRODUCTION

The work described here is a follow-on to an earlier study by Spedding, Rayner &
Pennycuick (1984), in which an attempt was made to estimate the momentum and
energy contained in the wake of a slow-flying pigeon by quantitative analysis of flow
visualization photographs. In that case, the wake was found to consist of a series of
near-circular vortex rings, much as postulated in the theoretical model of Rayner
(1979a,b), but also appeared to contain only three-fifths of the momentum required
to support the weight of the bird in the air. Although this calculation, and some of the
measurements leading up to it, were approximate in nature, no obvious errors or
dubious assumptions, either experimental or theoretical, seemed able to account for
discrepancies of this magnitude. Here, the same techniques and apparatus are used
to investigate the wake of a jackdaw (Corvus monedula) in slow flight, in order to
observe whether this paradoxical result is obtained again and to find out how the
differing morphology and wingbeat kinematics are reflected in the structure of the
wake.
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The procedure and methodology are similar to those of the previous investigation.
The wake structure will be analysed and compared with existing theoretical models
(see Rayner, 1979a,b). If vortex rings are present in the wake, as one might
now expect, approximate, semi-independent measures of the wake momentum and
energy - and, hence, the induced power requirement - of the bird may be made. If
Newton's second law is adhered to and the measured wake momentum is found to be
adequate for weight support, theoretical predictions of the wake energy and induced
power may be compared with the measured quantities, and the previously reported
and unexplained results may be attributed to some unremarked characteristics of the
pigeon flight. If, on the other hand, a large wake momentum deficit is again
measured, more fundamental problems in either the experimental method and
principles or the theory, or both, may be suspected.

MATERIALS AND METHODS

The bird training, experimental technique and apparatus, and photogrammetric
analysis are all as documented by Spedding et al. (1984) and will be described only in
outline here.

Experimental procedure

One jackdaw was trained to fly on a horizontal straight line along the length of a
4X2-7X l-2m wire mesh flight cage, between two take-off platforms standing 1-5 m
above the floor. After about 2 months, regular nights could be elicited by the
alternate switching of two 40-W red light bulbs at either end of the cage. The
experiments themselves also lasted about 2 months. In each flight down the cage, the
bird passed through a cloud of approximately 2 mm diameter bubbles of helium in
soap solution, which are neutrally buoyant in air. As the jackdaw passed through the
bubble cloud, it would interrupt an infra-red light beam which opened the shutters of
a pair of Nikon 35 mm cameras which, in turn, triggered a sequence of four Sunpak
AZ5000 flashguns. In all photographs described in this paper, the delay between
successive flashes was 8-0 ms, as determined by a purpose-built timer. Spedding
et al. (1984) may be consulted for further technical details.

Immediately after completion of the bubble experiments, the jackdaw was filmed
in the same flight cage at 200 frames s"1 by a Photosonics IPL cine camera equipped
with an Agenieux 12-120 mm lens. After filming, the bird was weighed on a Mettler
electronic balance (he would stand quietly on the pan) and wing tracings of the
outstretched wing were taken. The morphological and wing kinematic data are
summarized in Table 1.

Photography

The resulting multiple-image stereo photographs (also referred to as stereopairs)
thus record the three-dimensional flow of air around and behind the bird, down to
scales where the distribution density of the bubbles or the bubble diameter becomes
significant. A total of 31X2 reels of Ilford HP5 film were exposed and developed at an
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Table 1. Morphology and wingbeat kinematics of a jackdaw in slow forward flight

Body mass
Wing semi-span
Wing area
Aspect ratio
Disc loading

Flight speed
Stroke period
Downstroke ratiof
Stroke-plane angle
Stroke amplitude
Body tilt

M(kg)
b(m)
S(m2)
A
Nd(Nm~2)#

V(ms" ')
T(s)
T

y(degrees)

j8 (degrees)

0-216
0-296
0056
6-01
7-80

2-5
0-18
0-44

65-5
approx. 130

25

• Disc loading is defined as Nd = Mg/jzb2, where g is the acceleration due to gravity.
f r is the time spent on the downstroke divided by the stroke period, T.

equivalent speed of 800 ASA, the last five of which successfully recorded the entire
wake structure for one wingbeat cycle, with full stereoscopic coverage. Enlarged
lithographic positives on Ilfolith IH7 paper were made for subsequent photogram-
metric analysis.

Photogrammetry

Given the camera base, B, the distance H between the cameras and the origin of
some three-dimensional real space coordinate system (X, Y, Z), the focal length, f, of
the lenses and (xa,ya), (xa,ya), the left and right photocoordinates of some point A in
real space (Fig. 1), the three-dimensional coordinates (XA, YA, ZA) of that point are
given by the relationships

XA = B(xa/pa),

YA = B(ya/Pa)

ZA = H-B(f/pa), (1)
and

Fig. 1. The normal case geometry of a pair of stereophotographs. The parallax
equations 1 may be derived by inspection of this diagram. See Materials and Methods
for notation.
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where pa = xa—xa is the x-parallax of point A. These parallax equations are funda-
mental to all standard photogrammetric analyses of stereopairs; their derivation and
some common applications are outlined clearly in Wolf (1974). For each point in
object space (i.e. for each bubble image), xa and xa were measured on a stereo-
comparator (a Karl Zeiss Jena Stecometer) using a floating point to locate each
bubble image in stereo (i.e. in a three-dimensional perceptual space). On each
stereopair, up to 2500 bubble images were digitized in this fashion, and their three-
dimensional, real space coordinates were obtained by the application of equations 1.

Error analysis

Any departures from the 'normal case' geometry assumed in the parallax equations
1 (and Fig. 1) (for example, that the lens axes are parallel to each other and normal to
the ground base plane XY, and the lenses are of equal and accurately specified focal
length) will give rise to corresponding errors in the estimates of X, Y and Z. Errors in
the determination of the position of the camera system (the elements of exterior
orientation), the position of the film within the camera relative to the principal axis of
the lens system (the elements of interior orientation), the position of the film in the
enlarger and the orientation of the enlarger optics all affect the fidelity of the result.
Possible sources of nonlinear distortion include lens aberrations, differential film
emulsion shrinkage or expansion and curvature of the recording film in the camera or
enlarger.

Systematic errors in the determination of X, Y and Z were compensated for by
applying the collinearity condition equations to equally spaced subsets of the data
field. These equations are widely used in analytical photogrammetry [see Okamoto
(1981a,b) for a recent and rigorous discussion of their application in close-range
photogrammetry]. On this occasion, one may exploit the fact that the camera
positions are known to a reasonable degree of accuracy (±0-5 mm in H is the largest
uncertainty) and that data points are evenly spread through object space with some
minimum density. An ideal nonlinear correction surface is thus approximated by a
composite grid of local linear corrections given by the collinearity equations. Further
details are given in Spedding et al. (1984) which, in turn, is based entirely on the
principles outlined in Hallert (1960) and Wolf (1974). Independent scalings in X, Y
and Z were calculated from stereopairs of a control cube of known dimensions
subjected to the same treatment. Finally, errors in the determination of bubble
velocities were estimated at less than 10 %.

Calculation of velocity profiles

Generally, it proved convenient to rotate the X, Y, Z coordinate system through
an angle \p, which marked the angle between some major axis of a structure in the
wake and the horizontal, so the equations

X' = Xcos^ + YsinV
and

Y' = Ycosi/> - Xsint// (2)
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rotate the X, Y, Z coordinate system through an angle about Z to produce the X', Y',
Z system where tp is the angle between the horizontal and the new reference plane. In
practice, for a wake composed of vortex rings, this amounts to a rotation of the
original object space coordinates so that X' is parallel, and Y' perpendicular, to the
plane of the vortex ring under observation. The u, v and w components of velocity in
X', Y' and Z were then calculated for the entire data field. The coordinates and
notation are sketched in Fig. 2.

All photogrammetric analysis and computation of velocity fields was performed on
the Honeywell Multics system at Bristol University Computer Centre. Model
calculations and cine film analysis ran on a Research Machines 380Z microcomputer
interfaced to an NAC Film Motion Analyser.

RESULTS

Vortex wake structure

Roughly 1100 stereopairs were taken, 200 of which clearly showed the complete
wake structure for one wingbeat period with full stereo coverage. Simple measure-
ments, such as wake element spacing, were taken from these 200 photographs while
six stereopairs were subjected to the complete photogrammetric analysis. These were
selected for some optimum, uniform bubble distribution in the wake.

X ' , u

Fig. 2. Coordinate system and notation used to describe the wake. The location of the
origin is determined by the left camera position in X, Y and Z(0) is set at the back wall. In
a plane section, the u and v components of velocity are defined as running parallel to X'
and Y', respectively. Note that v is denned as positive downwards.
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Fig. 3. Stereopair showing the wake of a jackdaw in slow flight. The bird is moving from
left to right. Occasionally, bubbles appear as double streaks due to reflection of light off
both front and back surfaces of the surrounding soap solution film. Time between
successive flashes is 8 ms. The background grid is 2 cm square.

Fig. 4. Details as Fig. 3.

Figs 3 and 4 are two examples of the wake structure behind a slow-flying jackdaw
where the area of stereoscopic overlap approximately covers the wake vorticity
produced during one wingbeat cycle, beginning and ending at the top of the
upstroke. Discrete ring-like structures can be distinguished with an induced flow
winding through successive elements, which appear to be well separated. Sum-
marizing 1100 stereopairs of qualitative information: the wake appears to be com-
posed of discrete, planar and near-circular vortex loops and Figs 3 and 4 are examples
of a pattern which is quite characteristic of these films. A closer examination and
quantitative details are required before this assertion can be made with any confi-
dence, however.

From the six stereopairs which were digitized, the data field could be recon-
structed and manipulated in various ways and Fig. 5 shows the bubble field viewed

Fig. 5. Reconstructions of the bubble field: (A) from along the Z axis, and (B) plan view,
from Y'. The leading bubble of each chain is denoted by a circle and the length of the
trailing tail is proportional to the bubble velocity in the plane of the section.
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(A) from the side (along the Z axis) and (B) from above (along the Y axis). Note that
the bubble coverage does not extend across the entire wake. Bubbles nearest the
cameras obscure the view of those in the background and one generally has to choose
which area of the wake to cover. The wake is assumed to be symmetrical about the
vertical plane along the line of flight and views of bubble clouds on the far side of the
wake (away from the cameras) were consistent with this assumption. The lines
labelled 1-4 in Fig. 5B indicate the plane of vertical sections taken through the wake
in which the velocity profiles discussed in the following section were taken.

Velocity profiles

Notation and ideal profiles

Velocity profiles were taken for a number of thin (approximately two-dimensional)
sections through the three-dimensional data field, only a few of which will be
described here. The purpose of these profiles is twofold: first, velocity distributions
in certain sections of the wake may be compared with previously published investi-
gations of the kinematics of vortex rings (e.g. Sallet & Widmayer, 1974; Maxworthy,
1977; Didden, 1979) to test the suitability of such a model for the wake. Second, the
shape of these curves enables the calculation of several higher-order quantities in the
wake for direct comparison with theoretical predictions. Note that the v component
of velocity, which is perpendicular to the plane of the ring, is defined in Fig. 2 as
positive downward. In this coordinate system, Fig. 6 shows three velocity profiles
through an ideal vortex ring, all taken at the supposed plane of symmetry along the
line of flight at Zo- The idealized vortex ring consists of a vortex core with circular
cross section which is in solid-body rotation, and an outer potential flow region where
the tangential velocity is inversely proportional to the radial distance from the centre
of the vortex. Such a vortex is often referred to as a Rankine vortex. Profiles A and B
are the v and u velocity distributions in horizontal and vertical cuts through a vortex
pair and a single circular vortex, respectively, and may be found in many classical
aerodynamics texts; these are from Milne-Thompson (1966). Profile C is the
distribution of v along the line of axisymmetry of a vortex ring and this curve is often
integrated in experimental studies of vortex rings to estimate the total ring circulation
(e.g. Didden, 1979).

Measured wake profiles

All three velocity profile are shown for four different sections through the wake in
Fig. 7.1-4. Those marked A should be compared with the theoretical distributions
in Fig. 6A, and so on. Thus Fig. 7.1-4A describes v(X') for four Z locations across
the wake at YQ, the plane of the ring (the centre of the vortex ring is at Xo, Yo, Zo).
Sections closest to Zo, the mid-plane, have the greatest 3v/3X' across the vortex
core. The X' location of the core is where v(X') = Us = 0-76 ms"1. Us, the mean
ring convection velocity, is measured directly from bubble photographs. The
velocity distribution is much as expected although there is considerable scatter (some
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Y'

Fig. 6. Schematic velocity distributions through a Rankine vortex (B) with irrotational
core and l/r viscous decay outside and (A and C) through a vortex pair composed of two
such vortices.

is to be expected because of the finite thickness of each section) and a noticeable
asymmetry between the left and right core cross-sections. The scatter of points
caused by section thickness is especially noticeable in sections 3 and 4, which cut
obliquely across the core. The ring diameter may be estimated from the distance in
X' between left and right core cross-sections (at v = Us), and having located X^ore,
u(Y') profiles may be taken at this point. The basic shape of the u(Y') curve and its
behaviour in sections 1—4 across the ring are both roughly as outlined in Fig. 6, but
the peaks ± umax, which define the edge of the vortex, are less distinct. It is not clear
whether this is due to the limited accuracy of the experimental technique (for
example, in locating Xcore) or whether it indicates a more disorganized core struc-
ture. There is thus some uncertainty in the vortex core radius Ro, which is measured
from the distance in Y' between umax and umjn. On the other hand, results from other
stereopairs (Table 3) and profile A did not reveal any large inconsistencies.

The bell-shaped profile of Fig. 6C was reproduced satisfactorily near the mid-line
(Fig. 7.1,2C) and velocities far from the plane of the ring tailed off quite rapidly.
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Fig. 7.1-4. Velocity profiles in sections 1-4 of Fig. 5B. Distributions labelled A-C may
be compared with the ideal profiles of Fig. 6A-C. The change in shape of the profiles in
sections 1—4 towards the edge of the wake is consistent with a series of sections cutting
through a vortex ring. Smoothed curves of the form shown in Fig. 6 were fitted by eye
through these data.
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This is an important result which means that one can integrate under this curve to
calculate the circulation from

+ 00

JC=[vdY' (3)

with finite data. The change in shape of v(Y') from section 1 to section 4 is as
expected.

Velocity profiles were mostly taken in sections parallel to the line of flight but
Fig. 8 shows that the v(Z) distribution is also consistent with the results thus far, up
until the mid-line where the data stop, as previously noted.

The vorticity, CO, denned for a two-dimensional section in (X',Y') as

co=du/dY'-dv/dX', (4)

was calculated from smoothed curves drawn through u(Y') and v(X') data and (o(r),
where r is the radial distance from the vortex core centre, is plotted in Fig. 9. There
is much uncertainty in these figures (±30% would be an optimistic error estimate)
and the velocity field data were not clear enough for points around RQ. Conclusions
must therefore be somewhat tentative, but, while u> seems confined largely to the
core of the vortex, its decline away from r = RQ is more gradual than in the classical
vortex ring studies (cf. Didden, 1979, figs 12, 13). It is also less well-defined than in
the previously measured pigeon wake sections.

In summary, the velocity profiles behave approximately as expected for vertical
sections taken through a vortex ring. Although there is some scatter in the data and
some distortion of profiles A and B, the primary and only identifiable large scale
structure in the wake seems to be a vortex ring. To this extent, the results of
Kokshaysky (1979) and Spedding et al. (1984) are confirmed and the theoretical
description of Rayner (1979a) seems appropriate.

Quantitative wake analysis

Although only six stereopairs have been analysed in full, some simple wake
parameters may be measured from a larger number of single wake photographs, once
the full three-dimensional analysis has shown vortex rings to be present in the wake
(Table 2). The stroke period of the wingbeat was measured by cine film analysis
(Table 1) and ring convection velocities can be estimated from the spacing of
successive rings in the wake. Scatter in the data here may be attributed either to the
small sample size (few photographs clearly showed two rings) or to the interaction
between successive rings in the wake as a newly generated ring causes its predecessor
to rotate. Such behaviour was observed, and similar vortex dynamics have been
demonstrated in laboratory and numerical experiments on chains of vortex rings in
axially and orbitally excited jets (Lee & Reynolds, 1985; Leonard, 1985). This effect
is also visible in Table 3, which presents the wake parameters estimated from the full
three-dimensional analysis; the variation in ring momentum angle is much larger
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than for other quantities. Although the core diameter also proved difficult to measure
accurately, the mean non-dimensional core radius (Ro/R = 0-141) is still more than
two standard deviations below the upper limit (0-25) where rings may be treated as
small-cored (Fraenkel, 1970; Norbury, 1973).

2-

•s
Z(xl02mm)

- 2 -

- 3

Fig. 8. v(Z) in a section perpendicular to the line of flight, across the ring centre.
Symmetry about the line of flight is assumed for calculation of the ring length in Z.
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Fig. 9. ft)(r). The curve through the data points has been drawn by eye. Each data point
was taken from smoothed curves drawn through u(Y') and v(X') profiles at varying r.

Comparison with theory

Theoretical predictions of the wake geometry and energy and, hence, the induced
power requirements were generated by an amended version of the original vortex
ring model of Rayner (1979a), as described by Speddinget al. (1984). Briefly, given
the wingbeat kinematics and morphological data of Table 1, and assuming an
elliptical wing loading distribution, the geometry of each vortex loop in the wake may
be calculated. It is stipulated that the momentum of each vortex loop must balance

Table 2. Mean and standard deviation about the mean for quantities measured
directly from single photographs

Wake parameter

Apparent ring diameter
Wake element spacing:

vertical
horizontal

Ring convection velocity
Ring momentum angle

Units

m

m
m

ins"1

degrees

Sample
size (n)

93

13
13
13
93

Mean (x)

0-413

0129
0-631
0-76

15

Standard
deviation (s.D.)

0-035

0033
0-046
0-20
3-9

S.D. as %
of x

8-5

25-6
7-3

26-3
26



Table 3.

Jackdaw 1
Jackdaw 2
Jackdaw 3
Jackdaw 4
Jackdaw 5
Jackdaw 6
X

S
S/xx 100

*R=(R

Jackdaw flight

Ring measurements from the

Ring length
Rx(m)

0-430
0-370
0-386
0-390
0-466
0-430
0-412
0-036
9

x+R,)/2.

301

complete stereophotogrammetric analysis of six
jackdaw stereopairs

Ring width
R,(m)

0-354
0-394
0-384
0-465
0-380
0-395
0-042

11

Core diameter
R0(m)

0-036
0-041
0-068
0-073
0-075
0-058
0-017

29

Ro/R*

0-10 •
0-11
0-17
0-16
0-174
0141
0-032

23

Ring angle
(i/>, degrees)

21-2
10-6
8-9
7-0

15-6
10-0
12-2
5-2

43

K

(mV1)
0-75
0-88
0-69
0-72
0-88
0-98
0-82
O i l

14

the vector sum of the parasite and profile drags of the bird, together with its weight,
for the stroke period, T. The strength and orientation (K and xp) required for each
ring to do this are calculated and the self-energy for an elliptical vortex loop of these
dimensions is given by equation 43 in Rayner (1979a). The induced power is simply
the mean rate of increase of wake kinetic energy,

Pi = Es/T. (5)

The same formula was used to calculate P; from the experimental data but Es was
estimated from the classical equation for the energy of a circular vortex ring (e.g.
Saffman, 1970),

E3 = l/lpx 2R[ln(8R/R0) + A - 2 ] . (6)

The value of the constant A depends on <w(r) across the vortex core. It is not clear
how the measured distribution of Fig. 9 should be expressed in terms of A, so A has
been assigned a value of 0-25 (as for constant (O across the core) for simplicity.
Table 3 shows the eccentricity of the measured rings to be small and the true Es

should be reasonably approximated by equation 6.
The comparison between theory and experiment is detailed in Table 4. The

measured ring dimensions are slightly, but consistently, smaller than predicted by
the model. The ring momentum angle, ip, is significantly greater, at least in part
because of the ring interactions described earlier. The vertical wake element spacing
and ring convection velocity, Us, are both much lower than predicted. These latter
discrepancies may be seen as a consequence of the significantly smaller circulations
measured in the wake: 0-82ms~2 as opposed to the predicted value of l-85ms~2.
The difference in wake momentum is considerable, the ratio of measured momentum
to that required for weight support (as enforced in the theoretical calculations) being
around 0-35. In this light, the experimental estimate of the induced power require-
ment should be interpreted with some caution.
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DISCUSSION

Interpretation of the wake analysis

The momentum deficit in the vortex wake measurements is very large. In the
previous pigeon experiments this same result was attributed mainly to the small size
of the rings in the wake; on this occasion the chief difference lies in the small
circulation of the measured rings, and the resulting wake momentum deficit is even
larger than before. The simpler wingbeat kinematics of the jackdaw have not resulted
in a better agreement between experiment and theory.

Such results would be obtained if the bird was not supporting its weight but
instead was losing height on the downward curve of some quasi-ballistic trajectory.
Such vertical decelerations would be reflected directly in the total impulse of the
wake. Two lines of evidence suggest that this is not the case. Cine film analysis of the
jackdaw flight under nearly identical conditions (continuous bright illumination and
camera noise added) gave no indication of the required parabolic-shaped flight path
on those occasions where the added distractions appeared not to alter the normal
flight pattern. Moreover, it is possible to provide a rough estimate of the flight path
during the experiments themselves by tracing multiple tail images on the bubble
photographs (e.g. Figs 3, 4). From all measurable frames (N = 66), the mean flight
path angle, a, was —0-23° ± 1-76°. At this point, the jackdaw is usually near the end
of the downstroke following the wingbeat which produced the measured vortex wake
structure, and the small depression (and later, elevation) of the tail feathers which
occurs at this stage accounts both for the small negative value of a and for the
relatively large scatter around this value. In the final roll of film, the cameras were
triggered earlier to show details of the flow around the wings and body, and the value

Table 4. Wake vorticity measurements and induced power estimates as predicted by
the vortex flight model and as measured by experiment

Wake parameter

Ring dimensions
Long axis (m)
Short axis (m)
Core radius (m)
Ro/R

Ring momentum angle (degrees)
Wake element spacing

Vertical (m)
Horizontal (m)

Ring convection velocity (ms"')
Circulation (m2s~')
Ring momentum (kgm"1 s~')j"
Ring energy (J)
Induced power (W)

Original
predictions

0-474
0-436

0-141*
0-34

0-443
0-437
2-45
1-85
0-362
1-11
6-26

• Non-dimensional core radius set at measured value.

Measured

0-412
0-395
0029
0-141

12-2

0-129
0-631
0-76
0-82
0-126
0-18
1-00

t An approximate expression for the ring momentum is pKJiR2, where R is the mean ring radius.
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of a was 0-22° ± 1-17° (N= 17). The two values of a are not significantly different
from zero, or from each other, and the evidence available suggests that the jackdaw
flight was indeed horizontal.

There seem to be two alternative explanations to account for the 'missing' wake
momentum. The first is that some other mechanism exists for generating lift and
depositing momentum into the wake. This possibility can be quickly discounted, as
apart from the wings themselves the only likely candidate for such a role would
appear to be the tail. The tail is actively depressed in synchrony with the wingbeat
and a flow moving perpendicularly away from the lower tail surface can occasionally
be distinguished in wake photographs. The tail area is approximately 0-014m2 and if
it accelerates an air volume of 0-014 m3 to a velocity of 3 ms"1 during the course of
one wingbeat (T = 0-18 s), then the rate of change of momentum of this packet of air
would be 1-205X0-014X3-0/0-18 = 0-28N, where the air density is assumed to be
1-205 kgm~3. This is the mean force acting normal to the tail surface over one wing
beat and compares with the bird's weight of 2-06 N. Forces of this magnitude and
orientation are more likely to be useful in stability and pitch control than to
contribute significantly to weight support. They are certainly not able to account for
the large wake momentum deficit, and if they were, one would still expect to detect
the resulting airflow in the wake.

The remaining possibility is that the momentum exists in the wake but eludes
detection. There are several ways this could occur. First, it must be admitted that the
experimental procedures outlined in this and the preceding paper are based on
mental or perceptual abstractions which, at least in part, duplicate the analytical
abstractions of the vortex ring model which is under scrutiny. The test is not
independent but guided strongly by the specific predictions of the model in question.
In an ideal and thorough (and presently unrealizable) experiment the vorticity of the
fluid would be measured throughout the wake, from which the impulse, I, is given
(Batchelor, 1967) by

I= l /2p |xXa>dV, (7)

where (o and x are the vorticity and position vectors measured in a volume element,
dV. Obviously the impulse need only be measured in the fluid where a> is non-zero.
Similarly, the total kinetic energy of the fluid, T, is

T = p|u(xX<»)dV. (8)

These expressions take on simpler forms when lines of vorticity organize themselves
in the fluid into simple geometric shapes, for example, centring on a common axis of
symmetry such as a vortex ring, when expressions like equation 6 can be derived.
The analytical or experimental convenience of these simplifying assumptions is
relinquished with reluctance. The argument that the wake vorticity distribution may
be considerably more complex than assumed is not especially controversial but the
objection might be raised that, nonetheless, no other momentum-bearing structure
can be seen in the wake photographs except for the vortex rings themselves. The
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following arguments suggest that it may be unrealistic to expect to be able to
distinguish qualitatively all such wake structures, whose existence is strongly implied
by the numerical results.

In a series of laboratory experiments on the dynamics of vortex rings, Maxworthy
(1972, 1974, 1977) described how vortex rings moving in a real fluid deposit vorticity
into a wake. The impulse contained within this wake was found to be a significant
fraction of the total fluid impulse and, at ring Reynolds numbers (Re = UsD/u,
where D is the diameter of the generator nozzle, V the kinematic viscosity of the
fluid) of 2X104, the circulation measured around the core of the vortex ring was
about half the total circulation measured down the centreline. For comparison, the
Re of the rings in the jackdaw wake is defined as 2RU/i> and Re = 2-04X104. The
circulation around the vortex core is

Kcore = 2^R0vcore, (9)

where vcore is the tangential velocity at the edge of the core. Calculated this way,
*core = 0-47 cm s~2. Ktot, the total circulation as measured down the centreline, is the
value given in Table 4; Ktot = 0-82cms"2 and *:core/iiftot = 0-58. This result, which is
similar to that reported by Maxworthy (1977, fig. 7), indicates that there may exist a
wake behind the vortex rings which accounts for a large part of the total measured
impulse of the fluid, but which is not obvious from visual inspection of the
photographs where the induced flow through the rings dominates the local flowfield.
In this case, the wake contribution to Jftot has been included by integrating velocities
down the centreline of the ring, but the implication is that the wake may well contain
various undetected complex structures which account for a large proportion of the
total impulse (and so momentum). The results of Table 4 may in fact be interpreted
as strongly supporting this hypothesis. From the data presented in Spedding et al.
(1984) for the pigeon wake, the ratio KcmjKl0X can be calculated as 0-61, and these
arguments are equally applicable to this case.

These observations may be summarized as follows: (i) estimating the ring cir-
culation by integrating down the ring centreline allows the vorticity in the wake of the
vortex ring itself to be included in the calculation of the wake impulse; (ii) this wake
behind the vortex ring accounts for a large fraction of the total measured impulse in
the wake, implying that roughly half of the measured wake vorticity lies outside the
concentrated core regions identified in the wake analysis; (iii) such a failure to
measure the momentum flux in more complex distributions of wake vorticity could
explain the unreasonably low estimates of wake momentum; (iv) whether or not such
a 'wake' behind each vortex ring exists [the distribution of vorticity around the core
of the ring could equally well be anomalous, and <u(r) (Fig. 9) was measured only at
the centreline core cross-section], the real distribution of wake vorticity must be
more complicated than allowed for in a simple vortex ring model; (v) such a model
cannot therefore be applied to the measured wake geometry.

Some indication of the complexity of the flow field is given by a more careful
inspection of Figs 3 and 4 and Fig. 10, which is a larger reproduction of one half
of a stereopair whose features include an axial flow (from left to right in the
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photograph, towards the bird) along the vortex core, which itself is not clearly
defined on the right of the photograph. This region corresponds to the stopping
vortex produced as the wings decelerate at the end of the downstroke; the roll-up of
the trailing vortex sheet at this stage of the wing stroke seems to be delayed or
incomplete. This observation accounts for the previously noted asymmetry of v(X')
profiles across the wake.

From the numerical results, it seems that a simple vortex ring model fails as an
accurate experimental description of the wake. It is concluded that vorticity shed at
the wing tips and trailing edges during the wing stroke does not all roll up into a
closed loop of concentrated vorticity. 'Ring' formation is clearly a complicated
process and there is ample scope for energy reabsorption on the body and wing
surfaces and distortion of the trailing vortex before it is identified as a distinct
structure and analysed in the wake photographs. If a chain of vortex rings is the most
appropriate qualitative description of the wake, it is still a simplified one which, from
an experimental point of view, results in a significant amount of the wake momentum
being ignored.

Applicability of the vortex ring model

In the previous section, it was argued that the vortex ring model does not
adequately represent the real structure of the wake of a bird in slow horizontal flight.
However, the current experiments are unable to provide a better description of the
wake, nor do they indicate how it might be modelled more realistically. If the theory
and experiment are both too simplistic in their approach, it does not follow that the
model predictions of the induced power requirement are necessarily incorrect.
Noting Lighthill's (1973) observation that vortex rings convey the maximum mo-
mentum with the minimum energy [the existence of an energy maximum for an
axisymmetric, steadily propagating, inviscid vortex ring has been elegantly proved
by Benjamin (1975)], deviations from this model pattern might be expected to
increase the total wake energy for any given momentum requirement and the vortex
ring model may represent some optimum minimum induced power requirement.
Incidentally, there are no strong reasons why the bird should be flying with
minimum energy consumption (either per unit time or per unit distance) in the
experiments reported here.

Some tentative conclusions may be drawn. The vortex ring model postulated by
Rayner (19796) seems to be the most appropriate representation available of the wake
of a slow-flying bird. As such, it may also provide the closest theoretical estimates of
the power requirements in this case. As a fluid dynamical description of the wake, it
also seems basically correct but does not accurately describe the complexity of the
flow indicated by experiment. Consequently, experimental procedures which use the
same approach may produce misleading results. On the basis of these experiments,
one cannot judge the accuracy of the model predictions of the induced power
requirement, Pj, nor can one assess the merits of the various alternative model
calculations of Pi (e.g. Pennycuick, 1975), except to point out that the vortex ring
model predictions are generally higher than the alternatives and that realistic
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deviations from this pattern seem likely to increase the predicted value of P; still

further.
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