
Understanding how the shape and motion of an aquatic
animal affects the performance of swimming requires
knowledge of the fluid forces that generate thrust and drag.
Despite recent advances towards understanding the
biomechanics of locomotion (see Dickinson et al., 2000 for a
review), these forces are poorly understood in swimming
animals that are a few millimeters in length. The large diversity
of larval fish and marine invertebrates at this scale generate
hydrodynamic force that is dependent on both the viscosity and
the inertia of the surrounding water. To understand the relative
contribution of inertial and viscous forces to the generation of
thrust and drag, theoretical models have been developed for the
hydrodynamics of swimming at this scale (e.g. Jordan, 1992;
Vlyman, 1974; Weihs, 1980). However, little experimental
work has attempted to test or refine these theories (exceptions
include Fuiman and Batty, 1997; Jordan, 1992). The goal
of the present study was to test hydrodynamic theory by
comparing the predictions of theoretical models with

measurements of the speed of freely swimming animals and
the forces generated by tethered animals.

Swimmers that are millimeters in length generally operate
in a hydrodynamic regime characterized by Reynolds numbers
(Re) between 100 and 103, which is a range referred to as the
intermediate Re in the biological literature (e.g. Daniel et al.,
1992). Re(Re=ρūL/µ, where ū is mean swimming speed, L is
body length, ρ is density of water, andµ is dynamic viscosity
of water) approximates the ratio of inertial to viscous forces
and suggests how much different fluid forces contribute
to propulsion. At intermediate Re, a swimming body may
experience three types of fluid force: skin friction, form force
and the acceleration reaction. Skin friction and form force are
quasi-steady and therefore vary with the speed of flow. In
previous studies on intermediate Re swimming, these forces
have collectively been referred to as the ‘resistive force’ (e.g.
Jordan, 1992). However, we will consider these forces
separately because the present study is concerned with how
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Understanding how the shape and motion of an aquatic
animal affects the performance of swimming requires
knowledge of the fluid forces that generate thrust and
drag. These forces are poorly understood for the large
diversity of animals that swim at Reynolds numbers (Re)
between 100 and 102. We experimentally tested quasi-
steady and unsteady blade-element models of the
hydrodynamics of undulatory swimming in the larvae of
the ascidian Botrylloides sp. by comparing the forces
predicted by these models with measured forces generated
by tethered larvae and by comparing the swimming
speeds predicted with measurements of the speed of freely
swimming larvae. Although both models predicted mean
forces that were statistically indistinguishable from
measurements, the quasi-steady model predicted the
timing of force production and mean swimming speed
more accurately than the unsteady model. This suggests
that unsteady force (i.e. the acceleration reaction) does

not play a role in the dynamics of steady undulatory
swimming at Re≈102. We explored the relative
contribution of viscous and inertial force to the generation
of thrust and drag at 100<Re<102 by running a series of
mathematical simulations with the quasi-steady model.
These simulations predicted that thrust and drag are
dominated by viscous force (i.e. skin friction) at Re≈100

and that inertial force (i.e. form force) generates a greater
proportion of thrust and drag at higher Re than at lower
Re. However, thrust was predicted to be generated
primarily by inertial force, while drag was predicted to be
generated more by viscous than inertial force at Re≈102.
Unlike swimming at high (>102) and low (<100) Re, the
fluid forces that generate thrust cannot be assumed to be
the same as those that generate drag at intermediate Re. 
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they individually contribute to the generation of thrust and
drag.

Skin friction is generated by the resistance of fluid to
shearing. This is a viscous force, which means that it increases
in proportion to the speed of flow. Skin friction (also called the
‘resistive force’ by Gray and Hancock, 1955) dominates the
undulatory swimming of spermatozoa (Re!100; Gray and
Hancock, 1955) and nematodes (Gray and Lissmann, 1964)
and has been hypothesized to contribute to thrust and drag in
the intermediate Re swimming of larval fish (Vlyman, 1974;
Weihs, 1980) and chaetognaths (Jordan, 1992).

The form force is generated by differences in pressure on the
surface of the body and it varies with the square of flow speed
(Granger, 1995). This inviscid force is equivalent to the resultant
of steady-state lift and drag acting on a body at Re>103. The
form force is thought to contribute to the generation of thrust
and drag forces at the intermediate Reswimming of larval fish
(Vlyman, 1974; Weihs, 1980) and may dominate force
generation by the fins of adult fish (Dickinson, 1996). 

The acceleration reaction [also referred to as the ‘reactive
force’ (Lighthill, 1975), the ‘added mass’ (Nauen and
Shadwick, 1999) and the ‘added mass inertia’ (Sane and
Dickinson, 2001)] is generated by accelerating a mass of water
around the body and is therefore an unsteady force (Daniel,
1984). This force plays a negligible role in the hydrodynamics
of swimming by paired appendages at Re<101 (Williams,
1994) but is considered to be important to undulatory
swimming at intermediate Re (Brackenbury, 2002; Jordan,
1992; Vlyman, 1974) and dominant in some forms of
undulatory swimming at Re>103 (Lighthill, 1975; Wu, 1971).
Although it is assumed that the acceleration reaction does not
play a role in undulatory swimming at Re<100 (Gray and
Hancock, 1955), it is not understood how the magnitude of the
acceleration reaction varies across intermediate Re.

Weihs (1980) proposed a hydrodynamic model that
predicted differences in the hydrodynamics of undulatory
swimming in larval fish at different intermediate Re. He
proposed a viscous regime at Re<101, where viscous skin
friction dominates propulsion, and an inertial regime at
Re>2×102, where inertial form force and the acceleration
reaction are dominant (also see Weihs, 1974). For the range of
Rebetween these domains, thrust and drag were hypothesized
to be generated by a combination of skin friction, form force
and the acceleration reaction. Although frequently cited in
research on ontogenetic changes in the form and function of
larval fish (e.g. Muller and Videler, 1996; Webb and Weihs,
1986), it remains unclear whether Weihs’ (1980) theory, which
is founded on measurements of force on rigid physical models,
accurately characterizes the forces that act on an undulating
body (Fuiman and Batty, 1997).

The present study used a combination of empirical
measurements and mathematical modeling of the larvae of the
ascidian Botrylloidessp. to test whether the hydrodynamics of
swimming in these animals is better characterized by a quasi-
steady or an unsteady model. By taking into account the
acceleration reaction, skin friction and form force generated

during swimming, models were used to formulate predictions
in terms of the speed of freely swimming larvae and
force generation. By comparing these predictions with
measurements of force and speed, we were able to determine
whether larvae generate thrust and drag by acceleration
reaction (the unsteady model) or strictly by form force and skin
friction (the quasi-steady model). Ascidians are an ideal group
for exploring these hydrodynamics because the larvae of
different species span nearly two orders of magnitude in Re
[e.g. ≈5×100 in Ciona intestinalis(Bone, 1992); Re≈102 in
Distaplia occidentalis(McHenry, 2001)].

Materials and methods
Colonies of Botrylloidessp. were collected in the months of

August and September from floating docks (Spud Point Marina,
Bodega Bay, CA, USA) in water that was between 14°C and
17°C. Colonies were transported in coolers and placed in a
recirculating seawater tank at 16°C within 2 h of collection. To
stimulate release of larvae, colonies were exposed to bright
incandescent light after being kept in darkness overnight
(Cloney, 1987). Released larvae were used in either force
measurement experiments, free-swimming experiments or for
morphometric analysis. In all cases, observation tanks were
equipped with a separate outer chamber into which chilled
water flowed from a water bath equipped with a thermostat
(1166, VWR Scientific) that kept larvae at 16°C.

Force measurements

Larvae were individually attached to a calibrated glass
micropipette tether in order to measure the forces that they
generated during swimming. Each larva was held at the tip of
the tether using light suction (Fig. 1) from a modified mouth
pipette. This micropipette was anchored at its base with a rubber
stopper that provided a flexible pivot. No bending in the
micropipette was visible under a dissecting microscope when
loaded at the tip of the tether. We therefore assumed that the
micropipette was rigid and that deflections at the tip were due
entirely to flexion at the pivot. The small deflections by the
tether were recorded during calibration and larval swimming by
a high-speed video camera (Redlake Imaging PCI Mono/1000S
Motionscope, 156 pixels×320 pixels, 1000 frames s–1) mounted
on a compound microscope (Olympus, CHA), which was
placed on its side at a right angle to the micropipette (Fig. 1).
Video recordings of tether deflections made at the objective of
the compound microscope were translated into radial
deflections at the pivot of the micropipette (ϕ) using the
following trigonometric relationship:

where δ is the linear deflection (away from its resting position)
of the tether measured at the objective, and hobjective is the
distance from the tether pivot to the objective (Fig. 1A). In
order to avoid changing the mechanical properties of the tether,
room temperature was held at 22.2°C throughout experiments.

(1)








δ
hobjective

ϕ = arctan ,
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The tether was modeled as a pendulum, with input force
generated by the tail of a swimming larva (F) at the end and a
damped spring at the pivot (Fig. 2). According to this model,
the moments acting at the pivot were described by the
following equation of motion (based on the equation for a
damped pendulum; Meriam and Kraige, 1997a):

where t is time, kdamp and kspring are the damping coefficient

(with units of Nms rad–1) and spring coefficient (with units
of Nm rad–1), respectively, I tether is the moment of inertia of
the tether, mtetherand mbody are the mass of the tether and the
body of the larva, respectively, g is the acceleration due to
gravity, hcm is the distance from the pivot to the center of
mass of the tether, and htip is the distance from the pivot
to the tip of the pipette. I tether was calculated using the
standard equation for a hollow cylinder (Meriam and Kraige,
1997a):

where rtether is the inner radius of the micropipette. We
calculated the force generated by tethered larvae by solving
equation 2 for F, using the measurements of tether deflections.
We found that adding second- and third-order terms to
equation 2 had a negligible effect (<0.5% difference) on force
measurements. This suggests that any variation in stiffness
or damping with strain or strain rate did not influence our
measurements. 

To calibrate the tether, we measured its stiffness and
damping constants in a dynamic mechanical test. This test
consisted of pulling and releasing the tether and then recording
its passive movement over time (Fig. 2A). The tether oscillated
like an underdamped pendulum (Meriam and Kraige, 1997a)
with a natural frequency (101 Hz) well outside the range of tail-
beat frequencies expected for ascidian larvae (McHenry,
2001). Using the equation of motion for the tether (equation 2,
with F=0), its oscillations were predictable if the mass and the
stiffness and damping coefficients were known. Conversely,
we solved for the stiffness and damping coefficients from
recordings of position and a measurement of the mass of the
tether (see Appendix for details). 

We examined how errors in our measurement of stiffness
and damping coefficients were predicted to affect
calculations of the force generated by larvae (Fig. 2C–H).
By simulating the input force generated by a larva as a sine
wave with an amplitude of 20µN, we numerically solved
equation 2 (using MATLAB, version 6.0, Mathworks) for
the position of the tether over time at 1000 Hz (the sampling
rate of our recordings). From these simulated recordings of
tether position, we then solved equation 2 for F, the force
generated by the larva. This circular series of calculations
demonstrated that our sampling rate was sufficient to follow
rapid changes in input force (Fig. 2C). Furthermore, we
found that a minimum of 92% of the instantaneous moments
resisting the input force were generated by the stiffness of the
tether (i.e. the weight and damping of the tether provided a
maximal 8% of the resistance to input force). If the values
of stiffness and damping coefficients used in force
measurements differed from those used to simulate tether
deflections, then measured force did not accurately reflect the
timing or magnitude of simulated force (Fig. 2D). This
situation is comparable with using inaccurate values of
stiffness and damping coefficients for measurements of force
in an experiment. 

Itether= mtetherrtether2 + mtetherhtip2 ,
1

2

1

12
(3)

Itether + kdamp + kspringϕ

+ (mtetherhcm + mbodyhtip)gsin(ϕ) + Fhtip = 0 ,  (2)
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Fig. 1. The experimental set-up for tethering experiments. (A) We
recorded the tail motion of a larva and the deflections of the tether to
which a larva was attached. The larva is illustrated with the
orientation that allowed for the recording of lateral forces: the
longitudinal axis of the body is perpendicular to the direction of
deflections. To measure thrust, the longitudinal axis was aligned
parallel to the deflections of the tether. (B) The ventral perspective of
a larva was recorded with video camera #1 mounted to a dissecting
microscope mounted beneath the glass tank. (C) Deflections of the
glass tether (δ) were recorded by video camera #2 mounted to a
compound microscope. 
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By varying the difference between the stiffness and damping
coefficients used to simulate changes in tether position over
time (i.e. the actual coefficients) and those used for force
measurements (i.e. the measured coefficients), we explored
how inaccuracy in measured coefficients was predicted to alter
the timing and magnitude of measured force (Fig. 2E–H). We
simulated changes in force at 18 Hz, to mimic oscillations in
force at the tail-beat frequency (McHenry, 2001), and at
180 Hz, to simulate rapid changes in force. Within the level of
precision (i.e. ±2 S.D.) of our measurements of stiffness and
damping coefficients, measured force was not predicted to
precede or lag behind simulated force by more than 1 ms,
which is just 1.8% of an 18 Hz tail-beat period (Fig. 2E,F).
Error in the damping coefficient may have caused
measurements to overestimate rapidly changing force by as
much as 7.5% (Fig. 2G). Within the precision of measured
stiffness coefficients, measured forces may have differed from
actual values by as much as 2.0% (Fig. 2H). These findings
suggest that our measurements accurately reflect the timing of

force generated by larvae, but the magnitude of force may be
inaccurate by as much as 7.5%. 

Midline kinematics

The ventral surface of the body was recorded during
tethered swimming (Fig. 1A) with a high-speed video
camera (Redlake Imaging PCI Mono/1000S Motionscope,
320 pixels×280 pixels, 500 frames s–1) mounted to a dissecting
microscope (Wild, M5A) beneath the glass tank containing the
tethered larva. The video signal from this camera was recorded
by the same computer (Dell Precision 410, with Motionscope
2.14 software, Redlake Imaging) as was used to record
micropipette deflections, which allowed the recordings to be
synchronized.

Coordinates describing the shape of the midline of the tail
were acquired from video recordings, and the motion of the tail
of larvae of Botrylloides sp. was characterized using the
methodology presented by McHenry (2001). A macro program
(on an Apple PowerMac G3 with NIH Image, version 1.62)
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Fig. 2. The precision and accuracy of force measurements. (A) An example of the measurements of the passive movement of the tether after
being pulled and released. These data were used to measure the coefficients of stiffness and damping (see Materials and methods). (B) A free-
body diagram illustrates the forces acting on the tether during an experiment. The input force generated by a swimming larva is resisted by a
component of the weight of the tether and the stiffness (illustrated by the spring) and damping of the pivot (illustrated by the dashpot).
(C,D) Measurements of input force (filled circles) at 1000 Hz from the deflections of a tether (not shown) calculated from the simulated changes
in force (red lines). (C) The input force measured from deflection measurements using accurate values for the stiffness and damping
coefficients. (D) The input force measured using a damping coefficient that is less than the actual value (by 2×10–6Nms rad–1). (E,F) The time
lag between simulated and measured input force for varying degrees of error in the damping (E) and stiffness (F) coefficients. (G,H) The ratio
of maximum measured to maximum simulated input force for varying degrees of error in the damping (G) and stiffness (H) coefficients.
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found 20 midline coordinates that were evenly distributed
along its length (see McHenry, 2001 for details). In order to
use the measured kinematics in our hydrodynamic models at
any body length, we normalized all kinematic parameters to
the body length of larvae (L, the distance from the anterior to
posterior margins of the body) and the tail-beat period of their
swimming (P; note that asterisks are used to denote non-
dimensionality). According to McHenry (2001), the following
equations describe the temporal variation in the change in the
position of the inflection point along the length of the tail (z*),
the curvature of the tail between inflection points (κ*), and the
trunk angle (θ, the angle between the longitudinal axis of the
trunk and the third midline coordinate, located at 0.15 tail
lengths posterior to the intersection point of the trunk and tail):

z*( t*) = ε* t* , (4)

θ = χsin(2πt*) , (6)

where t* is non-dimensional time, ε* is the wave speed of
inflection point, α* is the amplitude of changes in curvature,
γ* is the period of change in curvature, and χ is the amplitude
of change in trunk angle. Propagation initiates at the base of
the tail after a phase lag of ζ* from the time when the trunk
angle passes through a position of zero.

Morphology and mechanics of the body

We measured the shape of the body to provide parameter
values for our calculations of fluid forces and to estimate the
body mass, center of mass and its moment of inertia. The
peripheral shape of the body was measured (with NIH Image
version 1.62 on an Apple PowerMac G3) using digital still
images of larvae from dorsal and lateral views that were
captured on computer (7100/80 PowerPC Macintosh with
Rasterops 24XLTV frame grabber) using a video camera
(Sony, DXC-151A) mounted on a dissecting microscope
(Nikon, SMZ-10A). These images had a spatial resolution
of 640 pixels×480 pixels, with each pixel representing
approximately a 6µm square with an 8-bit grayscale intensity
value. Coordinates along the peripheral shape of the body were
isolated by thresholding the image (i.e. converting from
grayscale to binary; Russ, 1999). We found coordinates at 50
points evenly spaced along the length of the trunk and 50 points
evenly spaced along the length of the tail (using MATLAB).
From images of the lateral view, we used the same method to
measure the dorso-ventral margins of the trunk, cellular tail
and tail element. By the same method, we measured the width
of the trunk from the dorsal view.

By assuming that the trunk was elliptical in cross-section
and that the cellular region of the tail was circular in cross-
section, we calculated the body mass, center of mass and
moment of inertia using a program written in MATLAB from
reconstructions of the body’s volume. These calculations
divided the volume of the body into small volumetric elements

(each having a volume of ∆wi, where i is the element number)
with the position of each element’s center located at xi andyi

coordinates with respect to the body’s coordinate system. This
system has its origin at the intersection between the trunk and
tail, its x-axis running through the anterior-most point on the
trunk, and its orthogonal y-axis oriented to the left of the body,
on the frontal plane (as in McHenry, 2001). The tail fin was
assumed to be rectangular in cross-section, with a thickness of
0.002 body lengths (measured from camera lucida drawings of
tail cross-sections; Grave, 1934; Grave and Woodbridge,
1924). The mass of the body was calculated as the product of
the tissue density (ρbody) and the sum of volumetric elements
that comprise the body:

where q is the total number of volumetric elements. The
position of the center of mass (B) was calculated as (Meriam
and Kraige, 1997a):

The moment of inertia for the body about any arbitrary axis of
rotation was described by the inertia tensor (I), calculated with
the following equation (Meriam and Kraige, 1997a):

We calculated the forces generated by accelerating the mass of
the tail in tethered swimming. This tail inertia force (Finertia)
was calculated with the following equation:

where V i is the velocity of the tail element. In order to remove
from the measurements any force not generated by fluid forces,
we subtracted the tail inertia force from the measured force in
our comparisons with predicted forces.

In order to test the effect of tissue density, we ran
simulations (see ‘Modeling free swimming’ below) with the
mean kinematics and morphometrics at high tissue density
(ρbody=1.250 g ml–1, the density of an echinopluteus larva of an
echinoid with calcareous spicules; Pennington and Emlet,
1986) and low tissue density (ρbody=1.024 g ml–1, the density
of seawater at 20°C; Vogel, 1981). All other simulations were
run with a tissue density typical of marine invertebrate larvae
not possessing a rigid skeleton (ρbody=1.100 g ml–1;
Pennington and Emlet, 1986).

Kinematics of freely swimming larvae

Freely swimming larvae were filmed simultaneously with two
digital high-speed video cameras (recording at 500 framess–1)

(10)Finertia= ρbody ∆wi^
q

i=1

dV i

dt
,

(9)I = ρbody ∆wi .^
q

i=1


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
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− xiyi
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using the methodology described by McHenry and Strother (in
press). These cameras (Redlake PCI Mono/100S Motionscope,
320pixels×280pixels per camera, each equipped with a 50mm
macro lens, Sigma) were directed orthogonally and both were
focused on a small volume (1cm3) of water in the center of an
aquarium (with inner dimensions of 3cm width × 3cm depth ×
6cm height). Larvae were illuminated from the side with two
fiberoptic lamps (Cole Parmer 9741-50). 

We recorded the swimming speed of larvae by tracking, in
three dimensions, the movement of the intersection between
the trunk and tail during swimming sequences. From the mean
values of swimming speed (ū ), we calculated aRe of the body
for freely swimming larvae using the following equation:

Hydrodynamic forces and moments generated by the tail

We modeled the hydrodynamics of the tail using a blade-
element approach that divided the length of the tail into 50 tail
elements and calculated the force generated by each of these
elements. Each element was dorso-ventrally oriented, meaning
that the length of each element ran from the dorsal to the
ventral margins of the fin. For each instant of time in a
swimming sequence, the force acting on each element (Ej,
where j is the tail element number) was calculated by assuming
that it generated the same force as a comparably sized flat plate
moving with the same kinematics. Our models assume that
each tail element generates force that is independent of
neighboring elements. This neglects any influence that flow
generated along the length of the body may have on force
generation. The total force generated by such a plate is the sum
of as many as three forces: the acceleration reaction (Eja), skin
friction (Ejs) and the form force (Ejf; Fig. 3). The contribution
of each of these forces to the total force and moment
instantaneously generated by the tail was calculated by taking
the sum of forces and moments generated by all elements (see
Appendix). Dividing the tail into 75 and 100 tail elements did
not generate predictions of forces or moments that were
noticeably different from predictions generated with 50 tail
elements, but models with 25 tail elements did generate
predictions different from models with 50 elements. Therefore,
we ran all simulations with 50 tail elements.

We modeled the swimming of larvae with both quasi-steady
and unsteady models. In the quasi-steady model, the force
generated by the tail (F) was calculated as the sum of skin
friction (Fs) and the form force (Ff; F=Ff+Fs), and the total
moment (M ) was calculated as the sum of moments generated
by skin friction (Ms) and the form force (M f; M=M f+Ms).
According to this model, the force acting on a tail element is
equal to the sum of the form force and skin friction acting on
the element (Ej=Ejf+Ejs; Fig. 3B). In the unsteady model, the
force generated by the tail was calculated as the sum of all three
forces (F=Ff+Fs+Fa, where Fa is the acceleration reaction
generated by the tail), and the total moment was calculated
as the sum of moments generated by all three forces

(11)Re= .
ρLū

µ
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Fig. 3. Schematic drawing of the quasi-steady and unsteady
hydrodynamic models. (A) The force generated by a single tail
element (Ej) is drawn on the silhouette of the body of a larva from a
dorsal perspective. The force generated by this element has
components acting towards thrust and laterally. The force generated
by the whole tail was calculated instantaneously as the sum of force
generated by all tail elements. The position vector of the element (Rj)
with respect to the center of mass describes the lever arm used by the
tail element to generate a moment about the center of mass.
(B,C) Each of the models is illustrated by the vectors that comprise
the force generated by the tail element. (B) The force acting on tail
elements (Ej) in the quasi-steady model was calculated as the sum of
the form force (Ejf) and skin friction (Ejs). (C) The force acting on tail
elements in the unsteady model was the sum of the quasi-steady
forces and the acceleration reaction (Eja). (D) The coefficient of force
acting normal to the surface of a flat plate (cj norm) oriented normal to
flow. The form force (in green; see equation 21) is found as the
difference between the total force (in black; see equation 18) and the
force generated by skin friction (in violet; see equation 19). The total
force is generated primarily by form force at height-specific Reynolds
numbers (Rejl) of ≈103, skin friction is dominant at Rejl<100, but the
normal force is a combination of the two at intermediate Revalues.
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(M=M f+Ms+Ma, where Ma is the moment generated by the
acceleration reaction). According to the unsteady model, the
force acting on a tail element is equal to the sum of the form
force, skin friction and acceleration reaction (Ej=Ejf+Ejs+Eja;
Fig. 3C). 

The acceleration reaction

The acceleration reaction generated by a tail element was
calculated as the product of the added mass coefficient (cja),
the density of water (ρ) and the component of the rate of
change in the velocity of the element that acts in the direction
normal to the element’s surface and lies on the frontal plane of
the body (V j norm; Lighthill, 1975):

The added mass coefficient was estimated as (Lighthill, 1975):

where lj is the distance between dorsal and ventral margins of
the fin (height of a tail element), and ∆s is the width of the tail
element. Note that this is the added mass coefficient for
inviscid flow and is assumed not to vary with Re. 

Skin friction

At Re<102, skin friction may generate force that is both
normal and tangent to a surface. Therefore, the equation
for skin friction on a tail element combines analytical
approximations for skin friction acting tangent (Schlichting,
1979) and normal (Hoerner, 1965) to the surface of a flat
plate:

where V j tan is the tangent component of the velocity of the
element, s is the distance along the tail from the tail base to the
element, and Rejs is the position-specific Reynolds number for
a tail element. This Reynolds number was calculated as:

where sj is the position of the element down the length of the
tail, v̄j is the time-averaged value for tail element speed over
the tail-beat cycle. 

Form force

The form force acts normal to a surface and varies with the
square of flow speed, as expressed by the following equation
(Batchelor, 1967):

where vj norm is the magnitude (or speed) of the normal

component of the velocity of the tail element, and cjf is the
force coefficient for the form force. At Re≥102, the force acting
normal to the surface of a plate is dominated by the form force
(Granger, 1995; Sane and Dickinson, 2002), so cjf may be
considered equivalent to the coefficient of force measured
normal to the surface of the plate, cj norm. This coefficient may
be calculated from measurements of force on a flat plate with
the following equation:

where Fnorm is the force measured on the plate in the normal
direction, cj norm=3.42 is an appropriate approximation for tail
elements at high Re(Dickinson et al., 1999).

The contribution of the form force to the total force acting
on a flat plate is predicted to change with Re (Fig. 3D). Using
the form of the curve-fit equation for changes in the force
coefficient on a sphere at different Regiven by White (1991),
the following equation gives the force coefficient generated by
both form force and skin friction (cj s+f norm) over intermediate
Re(100<Re<103):

where Rejl is the height-specific Reynolds number of the tail
element (described below). The first and last terms in this
equation describe the force generated at high (Rejl<102) and
low (Rejl<100) Reynolds numbers, respectively, and the second
term is an intermediary fit to the experimental data reviewed
by Hoerner (1965). In the viscous regime (Rejl<100), skin
friction dominates the force acting on a plate. The force
coefficient in the normal direction for a tail element generated
entirely by skin friction is given by the following equation
(Lamb, 1945):

The height-specific Reynolds number of a tail element was
calculated as:

Subtracting the contribution of skin friction (equation 19) from
the coefficient for the total normal force (equation 18) yields
the coefficient for the form force for a tail element:

Hydrodynamic forces and moments generated by the trunk

The force acting on the trunk (T) was assumed to be the
same as that acting on a sphere with the same kinematics and
a diameter equal to the length of the trunk. At intermediate Re,
this force is equal to the sum of skin friction (Ts) and the form

(21)cjf = 3.42 − .
1

1 + Rejl!

(20)Rejl = .
ρljv̄j

µ

(19)cjs norm= .
64

πRejl

(18)cj s+f norm= 3.42 − ,+
1 64

πRejl1 + Rejl!

(17)cj norm=
2Fnorm

ρljvj normV j norm∆s

(16)Ejf = − ρljcjfvj normV j norm∆s ,
1

2

(15)Rejs = ,
ρsjv̄j

µ

(14)Ejs = − µ∆s ,V j norm+ 0.32
32

π
lj

sj









RejsV j tan!

(13)cja = πlj2∆s ,
1

4

(12)Eja = −cjaρ .
dV j norm

dt
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force (Tf). The form force varies with the square of the velocity
of the trunk (P; Batchelor, 1967):

whereρ is the density of water, S is the projected area of the
trunk, p is the speed of the trunk and kf is the coefficient of the
form force on a sphere, which varies with Re in the following
way (with skin friction subtracted; White, 1991):

where Rea is the Reynolds number of the trunk (calculated
using equation 11 with the length of the trunk, a, used as the
characteristic length). The skin friction acting on a sphere is
predicted by Stokes law (Batchelor, 1967):

Ts = 3πaµP . (24)

Given the relatively low value for the added mass coefficient
of a sphere (0.5) and the low accelerations expected by the
trunk during steady swimming, we assumed negligible force
generation by the acceleration reaction acting on the trunk. The
trunk generated a moment (O) about the center of mass, which
was the sum of moments generated by the form force and skin
friction acting on the trunk:

O = D × Tf + D × Ts, (25)

where D is the position vector for the center of volume of the
trunk with respect to the body’s center of mass.

Modeling free swimming

Using the equations that describe the hydrodynamics of
swimming, we modeled the dynamics of free swimming to
calculate predicted movement by the center of mass of a
swimming ascidian larva. The acceleration of the body (A) was
calculated as the sum of hydrodynamic forces acting on the
body, divided by body mass:

The angular acceleration about the center of mass was
calculated using the following equation (based on Symon,
1960):

where V is the rate of rotation vector about the center of
mass, and IB is the inertia tensor given in the body’s coordinate
system (with the center of mass as its origin). The velocity and
position of the body’s center of mass were calculated in two
dimensions from the respective first and second time integrals
of equation 26, and the rate of rotation and orientation of
the body were calculated from the respective first and second
time integrals of equation 27. In order to calculate these

integrals, models were programmed in MATLAB using a
variable-order Adams–Bashforth–Moulton solver for
integration (Shampine and Gordon, 1975). This is a non-stiff
multistep solver, which means that it uses the solutions at a
variable number of preceding time points to compute the current
solution.

We calculated the percentage of thrust and drag generated
by the form force and skin friction in order to evaluate the
relative importance of these forces to propulsion. This
percentage was calculated individually for the trunk and tail
and for both thrust and drag. For example, the following
equation was used to calculate the percentage of thrust
generated by the form force on the tail (Hf tail):

where Ff′ and Fs′ are the form force and skin friction,
respectively, generated by the tail in the direction of thrust (i.e.
towards the anterior of the trunk). Similar calculations were
also made for the percentage of skin friction generated by the
tail, form force generated by the trunk, and skin friction
generated by the trunk. 

In order to examine how the relative magnitude of form
force and skin friction changes with the Re of the body, we ran
a series of simulations using model larvae of different body
lengths. Each simulation used the mean morphometrics
and kinematic parameter values. The non-dimensional
morphometrics and kinematics were scaled to the mean
measured tail-beat period and the body length used in the
simulation. This means that animations of the body movements
in the model appeared identical for all simulations (i.e. models
were kinematically and geometrically similar), despite being
different sizes.

Statistical comparisons between measurements and
predictions

We tested our mathematical models by comparing the
measured forces and swimming speeds of larvae with model
predictions. We measured the mean thrust (force directed
towards the anterior) and lateral force generated by a tethered
larva and used our model to predict those forces using the same
kinematics as measured for the tethered larva and the mean
body dimensions. Such measurements and model predictions
were made for a number of larvae, and a paired Student’s t-
test (Sokal and Rohlf, 1995) was used to compare measured
and predicted forces. Such comparisons were made with
predictions from both the quasi-steady model and the unsteady
model. 

Predictions of mean swimming speeds from both models
were compared with measurements of speed. Model
predictions of swimming speed were generated using
the mean body dimensions and the tail kinematics of
individual larvae measured during tethered swimming. This
assumes that the midline kinematics of freely swimming
larvae were not dramatically different from that of tethered

(28)Hf tail = × 100% ,
Ff′

Fs′ + Ff′ + Fs′ + Ff′

(27)








dIB

dt
= I–1 ,(M + O) − V(IB ·V) − ·V

dV

dt

(26)A = .
F + T

mbody

(23)kf = + 0.4 ,
6

1 + Rea!

(22)Tf = − ρSkfpP ,
1

2
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larvae. Mean swimming speeds were measured on a different
sample of freely swimming larvae, and an unpaired t-test
(Sokal and Rohlf, 1995) was used to compare predictions of
swimming speed with measurements. We verified that
samples did not violate the assumption of a normal
distribution by testing samples with a Kolomogorov–
Smirnov test (samples with P>0.05 were considered to be
normally distributed).

Results
Hydrodynamics at Re≈102

Tethered larvae

Using measured kinematics (Fig. 4, Table 1), we tested the
ability of hydrodynamic models to predict both the timing and
mean values of forces generated by larvae. The magnitude of
predictions of form force and the acceleration reaction
(Fig. 5A–C) were approximately two orders of magnitude
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greater than the predictions for the tail inertia and skin friction
forces (Fig. 5D,E). Due to the low magnitude of skin friction,
the tail force predicted in the lateral direction by the quasi-
steady model (F=Ff+Fs) was qualitatively indistinguishable
from the prediction of form force (Fig. 5F). The prediction for
the tail force in the lateral direction by the unsteady model had
the addition of the acceleration reaction (F=Ff+Fs+Fa), which
generated peaks of force when the form force was low in
magnitude (Fig. 5F). These force peaks were not reflected in
the measurements of lateral force (Fig. 5G). This measured
force oscillated in phase with trunk angle (θ; phase lag mean
± 1 S.D.=0.03±0.02 tail-beat periods,P=0.230, N=11; Figs 5H,
6), unlike the acceleration reaction, which was predicted to be
out of phase with trunk angle. Both quasi-steady and unsteady
models predicted mean thrust and mean lateral force that was
statistically indistinguishable from measurements (Table 2).

The force predictions by the quasi-steady model more
closely matched the timing of measurements than those of the
unsteady model (Fig. 7). The force predicted by the quasi-

steady model (F=Ff+Fs) oscillated in phase with measured
lateral forces. However, the unsteady model (F=Ff+Fs+Fa)
predicted peaks of force generation by the acceleration reaction
acting in the direction opposite to the measured force (Figs 5,
7). At instants of high tail speed, the form force was large and
was followed by the acceleration reaction acting in the opposite
direction as the tail decelerated and reversed direction.
Although both models accurately predicted mean forces (Table
2), the timing of force production suggests that the acceleration
reaction does not generate propulsive force in the swimming
of ascidian larvae.

Freely swimming larvae

Simulations of free swimming allowed the body of larvae to
rotate and translate in response to the hydrodynamic forces
generated by the body. As such movement could contribute
to the flow encountered by a swimming larva, the forces
generated by freely swimming larvae were not assumed to be
the same as those generated by tethered larvae. Therefore,

M. J. McHenry, E. Azizi and J. A. Strother

Table 1.Swimming kinematics of tethered larvae

L P ε∗ α∗ γ∗ χ
Individual (mm) (ms) (body lengths per tail-beat period) (rad per body length) (tail-beat periods) (rad)

1 1.91 41.7 1.18 0.77 1.25 0.08
2 1.93 44.5 1.13 0.87 1.11 0.28
3 2.07 41.0 1.14 1.16 1.29 0.20
4 1.93 41.8 1.27 1.06 1.18 0.27
5 2.10 50.0 1.13 1.13 1.04 0.32
6 1.90 47.6 1.39 0.99 1.19 0.16
7 1.76 41.8 1.17 0.81 1.25 0.16
8 1.72 43.6 1.26 0.93 1.03 0.34
9 1.90 39.4 1.10 1.07 1.04 0.28
10 1.71 40.2 1.30 0.94 1.37 0.28
11 2.07 41.8 1.12 1.04 1.40 0.14
12 1.85 40.2 1.47 0.84 1.26 0.11
13 2.02 41.8 1.03 0.86 1.22 0.16
14 2.09 42.7 1.31 1.07 1.37 0.16

Mean ± 1 S.D.= 1.93±0.13 42.7±2.9 1.21±0.12 0.97±0.12 1.21±0.12 0.21±0.08

L, body length; P, tail-beat period; ε, wave speed of inflection point; α, amplitude of tail curvature;γ, period of tail curvature; χ, amplitude of
trunk angle. 

All data are time-averaged values for the duration of at least three tail beats.

Table 2.Model verification in tethered and freely-swimming larvae

Model predictions

Quasi-steady Unsteady
Measurements (F=Ff+Fs) P (F=Ff+Fs+Fa) P N

Lateral force (µN) 5.11±2.31 4.09±1.59 0.181 4.74±1.45 0.600 11
Thrust (µN) 6.07±1.93 3.72±1.36 0.297 4.56±1.29 0.450 3
Swimming speed (mm s–1) 31.36±5.17 27.63±7.09 0.123 41.29±6.09 <0.001 14

All values are means ± 1 S.D. P values are the results of a Student’s t-test that compared measurements with predictions. These were paired
comparisions of force and unpaired comparisons of speed.
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simulations of free swimming were a closer approximation of
the dynamics of freely swimming larvae and provided a test
for whether the results of tethering experiments apply to freely
swimming larvae. 

The results of these simulations support the
result from tethering experiments that the
acceleration reaction does not play a role in the
hydrodynamics of swimming. The quasi-steady
model (F=Ff+Fs) predicted a mean swimming
speed that was statistically indistinguishable from
measured mean swimming speed. By contrast, the
unsteady model (F=Ff+Fs+Fa) predicted a mean
swimming speed that was significantly different
from measurements (Table 2). We found small
(<4%) differences in predicted mean speed
between models using a high (ρbody=1.250 g ml–1)
and low (ρbody=1.024 g ml–1) tissue density,
suggesting that any inaccuracy in the tissue density

used for simulations (ρbody=1.100 g ml–1) had a negligible
effect on predictions.

Reynolds number values varied among different regions of
the body (Table 3). The mean Reynolds number for the whole
body (Re=7.7×101) was larger than the Reynolds number for
the trunk (Rea=2.8×101) because the whole body is greater in
length than the length of just the trunk. The mean height-
specific Reynolds number (Rejl) and the mean position-specific
Reynolds number (Rejs) were larger towards the posterior
(Table 3).
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Hydrodynamics at 100<Re<102

Predictions by the quasi-steady model showed how thrust
and drag may be generated differently by form force and skin
friction at different Re. At Re≈100, both thrust and drag were
predicted to be dominated (>95%) by skin friction acting on
the trunk and tail (Fig. 8A,B). At Re≈101, most drag (63%) was
generated by skin friction acting on the trunk, and most thrust
(69%) was generated by skin friction acting on the tail
(Fig. 8C,D). At Re≈102, drag was generated by a combination
of skin friction and form force, but thrust was generated
almost entirely by form force acting on the tail (Fig. 8E,F). By
running simulations throughout the intermediate Re range
(100<Re<102), we found that form force gradually dominates
thrust generation (up to 98%) with increasing Re. Although the
proportion of drag generated by form force increases with Re,
skin friction generates a greater proportion of drag (>62%) than
does form force, even at Re≈102.

Discussion
The acceleration reaction

It is surprising that our results suggest that the acceleration
reaction does not contribute to thrust and drag in the steady
undulatory swimming of Botrylloides sp. larvae. Vyman’s
(1974) model for the energetics of steady swimming in fish
larvae assumes that the acceleration reaction should operate at
the Reynolds number at which these larvae swim (Re≈102).
Although the energetic costs of locomotion predicted by
Vyman (1974) show good agreement with measurements,
these predictions from an unsteady model have not been
compared with the predictions of a quasi-steady model.
Furthermore, the hydrodynamics assumed by Vyman (1974)
have yet to be experimentally tested. By contrast, Jordan
(1992) did compare quasi-steady and unsteady predictions
with measurements of the startle response behavior of the
chaetognath Sagitta elegans. This study found that the
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unsteady model better predicted the trajectory of swimming
than did the quasi-steady model, which suggests that the
acceleration reaction is important to undulatory swimming at
intermediate Re.

This discrepancy between our results and Jordan (1992) on
the relative importance of the acceleration reaction may be
reconciled if the acceleration reaction coefficient varies with
Re. The acceleration reaction is the product of the acceleration
reaction coefficient (which depends on the height of the tail
element), the density of water and the acceleration of a tail
element (equation 12). Both Jordan (1992) and the present
study used the standard inviscid approximation (equation 13)

for the acceleration reaction coefficient (used in elongated
body theory; Lighthill, 1975). However, chaetognaths attain
Re≈103 and more rapid tail accelerations than ascidian larvae.
If the actual acceleration reaction coefficient is lower than the
inviscid approximation at the Re of ascidian larvae (Re≈102),
then predictions of the acceleration reaction would be smaller
in magnitude. The chaetognath may still generate sizeable
acceleration reaction in this regime by beating its tail with
relatively high accelerations.

Although swimming at Re>102 has not been reported among
ascidian larvae, numerous vertebrate and invertebrate species
do swim in this regime. We predict that as Reapproaches 103,
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the acceleration reaction contributes more to the generation of
thrust in undulatory swimming. Although it remains unclear
how the magnitude of the acceleration reaction changes with
Re, the unsteady models proposed here (F=Ff+Fs+Fa) and
elsewhere (Jordan, 1992; Vlyman, 1974) should approximate
the hydrodynamics of undulatory swimming at Re≈103.

Skin friction and form force

In support of prior work (e.g. Fuiman and Batty, 1997;
Jordan, 1992; Vlyman, 1974; Webb and Weihs, 1986; Weihs,
1980), our quasi-steady model (F=Ff+Fs) predicted that the
relative magnitude of inertial and viscous forces is different at
different Re. At Re≈100, skin friction (acting on both the trunk
and tail; Fig. 8) dominated the generation of thrust and drag
(Fig. 9). This result is consistent with the viscous regime
proposed by Weihs (1980) for swimming at Re<101. Also in
accordance with Weihs (1980) are the findings that form force
contributes more to thrust and drag at high Rethan at low Re
(Fig. 9) and that thrust (Fig. 8) is dominated by form force at
Re≈102. However, it is surprising that drag was generated more
by skin friction than form force at Re≈102 (Figs 8, 9). Contrary
to Weihs’ (1980) proposal for an inertial regime at Re>2×102,
this result suggests that the fluid forces that contribute to thrust
are not necessarily the same forces that generate drag. This is
unlike swimming in spermatozoa (at Re!100), where both
thrust and drag are dominated by skin friction acting on both
the trunk and flagellum (Gray and Hancock, 1955), or some
adult fish (at Re@102), where thrust and drag are both
dominated by the acceleration reaction (Lighthill, 1975; Wu,
1971).

Our results suggest that ontogenetic or behavioral changes
in Recause gradual changes in the relative contribution of skin
friction and form force to thrust and drag. As pointed out by
Weihs (1980), differences in intermediate Rewithin an order
of magnitude generally do not suggest large hydrodynamic
differences. Although it has been heuristically useful to

consider the differences between viscous and inertial
regimes (e.g. Webb and Weihs, 1986), it is valuable
to recognize that these domains are at opposite ends
of a continuum spanning three orders of magnitude
in Re. This distinction makes it unlikely that larval
fish grow through a hydrodynamic ‘threshold’ where
inertial forces come to dominate the hydrodynamics
of swimming in an abrupt transition with changing
Re (e.g. Muller and Videler, 1996).

In summary, our results suggest that the
acceleration reaction does not play a large role in the

hydrodynamics of steady undulatory swimming at intermediate
Re(100<Re<102). Our quasi-steady model predicted that thrust
and drag are generated primarily by skin friction at low Re
(Re≈100) and that form force generates a greater proportion of
thrust and drag at high Re than at low Re. Although thrust is
generated primarily by form force at Re≈102, drag is generated
more by skin friction than form force in this regime. Unlike
swimming at Re>102 and Re<100, the fluid forces that generate
thrust cannot be assumed to be the same as those that generate
drag at intermediate Reynolds numbers. 

M. J. McHenry, E. Azizi and J. A. Strother

Table 3.Reynolds numbers

Characteristic 
length (mm) Reynolds number 

Whole body L=3.03±0.27 Re=7.7×101±2.3×101

Trunk a=1.09±0.15 Rea=2.8×101±1.0×101

Tail elements
s=0.10L s=0.23±0.01 Rejs=1.1×100±0.4×100

l=0.41±0.02 Rejl=1.9×100±0.7×100

s=0.30L s=0.70±0.03 Rejs=1.5×101±0.5×101

l=0.37±0.02 Rejl=7.8×100±2.5×100

s=0.50L s=1.18±0.06 Rejs=5.7×101±1.5×101

l=0.29±0.02 Rejl=1.4×101±0.4×101

s=0.70L s=1.66±0.08 Rejs=1.4×102±0.3×102

l=0.21±0.01 Rejl=1.7×101±0.4×101

s=0.90L s=2.16±0.10 Rejs=2.4×102±0.4×102

l=0.12±0.01 Rejl=1.4×101±0.2×101

L, body length; a, trunk length; s, distance along the tail from the
tail base to the element; l, height of tail element; Rea, Reynolds
number of the trunk; Re, Reynolds number of the whole body; Rejl,
height-specific Reynolds number of a tail element; Rejs, position-
specific Reynolds number of a tail element. N=14 for all
measurements.
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Fig. 9. The percentage of thrust and drag generated by
skin friction and form force predicted by the quasi-steady
model. Reynolds number of the whole body (Re) was
varied by running a series of simulations over a range of
body lengths. Lines show the percentage of (A) thrust
and (B) drag generated by skin friction (violet) and form
force (green).
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Appendix
Tether calibration

We used a least-squares method (described by Hill, 1996) to
find the stiffness and damping constants of the tether from
recordings of its position when allowed to oscillate without any
larva attached. This method uses the equation of motion for the
tether given any position measurement (ϕe):

Moments generated at the pivot of the tether may be calculated
with a version of this equation with different parameter values
for each instant of time in a series of e position recordings.
Such a time series of equations may be represented by the
linear expression:

Aq = r , (30)

where

Best fits for values of c and k were found by solving the
following equation:

q = (ATA)–1ATr , (32)

where (ATA)–1 is the inverse of the product of A and the
transpose of A. Solutions to this equation were found using
MATLAB. This method was verified by analyzing fabricated
position data that were generated by numerical solutions to
equation 2 (a fourth-order Runge–Kutta in MATLAB) with
known values of k and c.

Calculating tail force

The total force generated by the tail of a larva was calculated
as the sum of forces acting on all elements of the tail. For

example, the total acceleration reaction generated by the tail
was found as the sum of acceleration reaction forces acting on
tail elements:

where n is the total number of tail elements. Similarly, the
moment generated by these forces was calculated as the sum
of cross products between the vector of the position of the tail
element with respect to the body’s center of mass (Rj) and the
acceleration reaction acting on tail elements (Meriam and
Kraige, 1997b):

The same calculations were used to determine the total force
and moment generated by skin friction and form force for each
instant of time in a swimming sequence.

List of symbols
a length of the trunk
A acceleration of the body
B position of the center of mass
cja added mass coefficient
cjf coefficient of force on tail element due to form 

force
cj norm coefficient of total force on tail element in the 

normal direction
cjs coefficient of force on tail element due to skin 

friction
cj s+f norm coefficient of force on tail element in the normal 

direction due to form force and skin friction
D position of the center of volume of the trunk
Ej total force acting on a tail element
Eja acceleration reaction on a tail element
Ejf form force on a tail element
Ejs skin friction on a tail element
F total force generated by the tail
Fa tail force generated by acceleration reaction
Ff tail force generated by form force
Ff′ tail force generated by form force in the direction 

of thrust
Finertia tail inertia force
Fnorm force in the normal direction measured on a plate 
Fs tail force generated by skin friction
Fs′ tail force generated by skin friction in the 

direction of thrust
g acceleration due to gravity
hcm distance from the tether pivot to the center of 

mass of the tether
Hf tail percentage of thrust generated by form force on 

the tail
hobjective distance from the tether pivot to the objective

(34)Ma = Rj × Eja .^
n

j=1

(33)Fa = Eja ,^
n

j=1

A = ϕ2 ,   q = .,  r =   −mghcmsin(ϕ2) − I

A     A A

dϕ2

dt

d2ϕ2

dt2

ϕw −mghcmsin(ϕw) − I
dϕw

dt

d2ϕw

dt2

ϕ1 −mghcmsin(ϕ1) − I
dϕ1

dt

d2ϕ1

dt2

c

k

(31)

























































c + kϕe = −Itether − mtetherghcmsin(ϕe) .
dϕe

dt

d2ϕe

dt2
(29)
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htip distance from the tether pivot to the tip of the 
pipette

i volumetric element number
I inertia tensor for the body of a larva
IB inertia tensor for the body in the body’s 

coordinate system
Itether moment of inertia of the tether
j tail element number
kdamp damping coefficient
kf coefficient of the form force on the trunk
kspring spring coefficient
l height of a tail element
L body length
mbody mass of the body of a larva
M total moment
Ma moment generated by the acceleration reaction
M f moment generated by form force
Ms moment generated by skin friction
mtether mass of the tether
O moment generated by force on the trunk
p speed of the trunk
P tail-beat period
P velocity of the trunk
q total number of volumetric elements
Rj position of the tail element with respect to the 

center of mass
Re Reynolds number for whole body
Rea Reynolds number of the trunk
Rejl height-specific Reynolds number of a tail element
Rejs position-specific Reynolds number for a tail 

element
rtether inner radius of the micropipette
s distance along the tail from the tail base to the 

element
sj position of the element down the length of a tail
S projected area of the trunk
t time
T force acting on the trunk
Tf form force acting on the trunk
Ts skin friction acting on the trunk
ū mean swimming speed
v̄ mean tail element speed
V i velocity of a tail element
vj norm speed of the normal component of the velocity of 

a tail element
vj tan speed of the tangent component of the velocity of 

a tail element
V j norm normal component of the velocity of a tail element
V j tan tangent component of the velocity of a tail 

element
xi x-coordinate of volumetric element
yi y-coordinate of volumetric element
z position of inflection point along the length of the 

tail
α amplitude of change in curvature
χ amplitude of change in trunk angle

δ linear deflection of the tether
∆s width of a tail element
∆wi volume of a volumetric element
ε wave speed of inflection point
ϕ radial deflection of the tether at its pivot
ϕe measurement of tether deflection
γ period of change in curvature
κ tail curvature
µ dynamic viscosity of water
θ trunk angle
ρ density of water
ρbody density of tissue
Ω rate of rotation about the center of mass
ζ phase lag of inflection point relative to trunk 

angle
* non-dimensional quantity
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