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SUMMARY

The quasi-static mechanical properties of the aorta of Octopus dofleini
were investigated using biaxial inflation and uniaxial force-extension tests on
vessel segments tn vitro. The octopus aorta is a highly compliant and
non-linearly -elastic structure. The elastic modulus (i.e. the stiffness)
measured circumferentially (Ec) and longitudinally (Ep) increased
markedly with distension of the vessel wall. E¢c was always greater than E;,
and varied from about 10* to 2X10° N m™2 between 2 and 5 kPa pressure
respectively, the approximate range of resting blood pressure in this species.
Increasing vessel wall stiffness is necessary for the aorta to be compliant at
low pressure, and at the same time to be protected from ‘blowout’ at high
pressure. The non-linear elasticity of the octopus aorta at physiological
pressures can be attributed to the properties of the rubber-like elastic fibres
which are present in the vessel wall, with little contribution from stiff
collagen fibres being required until very high pressures. Dynamic
mechanical properties of the aorta were measured by the method of forced
oscillations. The dynamic modulus in the circumferential direction
increased continuously to almost twice the static value as the frequency was
raised from 0-05 to 10 Hz. At the same time, the viscous damping, tan 9,
increased from 0-11 to 0-27. The resilience of the octopus aorta was close to
70 % at the relevant physiological frequencies. We conclude that this vessel
is suitably designed to function as an efficient elastic energy storage
component in the octopus circulatory system.

INTRODUCTION

Investigations on the mechanical properties of blood vessels have been numerous
since Roy (1880) first gave a detailed quantitative description of the long-range
elastic behaviour of the mammalian aorta. He showed that this vessel was very
distensible at physiological pressure, but became much less distensible as the
pressure was increased. Roy demonstrated two other important properties of
arteries: that inflation was accompanied by viscous energy losses, and that the artery
wall was thermodynamically similar to natural rubber.

More recent studies have added considerable detail to these fundamental
observations (for reviews see Dobrin, 1978; Cox, 1979). We now know that the
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mammalian artery wall has non-linear elastic properties which arise from a complex
arrangement of two fibrous connective tissue proteins: elastin, which is highly
extensible and rubber-like, and collagen, which is stiff and relatively inextensible. At
low physiological pressures the artery wall is highly compliant, as the pressure is
resisted largely by the elastin. With increasing pressures in the physiological range
and above, the artery wall becomes much stiffer due to mechanical recruitment of
more elastin fibres and finally, to the transfer of load to the collagen network.

The role of the arteries as a passive elastic component in the high pressure closed
circulatory system of mammals is well established (McDonald, 1974). In addition to
being blood conduits, large arteries are important in reducing the pulsatility of blood
flow from the heart to the body tissues. The arteries are distended with blood during
systole, while passive elastic recoil provides continued flow during diastole. The
elasticity of the large arteries is an important determinant of the dynamics of blood
flow in the cardiovascular systems of mammals (McDonald, 1974) as well as other
vertebrates (Speckman & Ringer, 1966; Satchell, 1971; Langille & Jones, 1975,
1977; Burggren, 1977).

Until recently there were no reports in the literature on the mechanical properties
of blood vessels from any invertebrate animal. This was not surprising since most
invertebrates have relatively simple, open circulatory systems. However, in
cephalopods the vascular systemni has attained a high level of complexity; the system
is closed, and has an extensive network of blood vessels and capillaries (Wells, 1978;
Browning, 1980). Observations on blood pressures in the octopus (Johansen &
Martin, 1962; Wells, 1979), nautilus (Bourne, Redmond & Johansen, 1978) and
squid (Bourne, 1982) suggested that the large arteries function as elastic reservoirs
in these animals. We measured the mechanical properties of the aorta of several
species of cephalopod, and found that these vessels were indeed highly extensible
elastic structures (Shadwick & Gosline, 1981; Gosline & Shadwick, 1982). We also
showed previously that the octopus aorta contains a connective tissue network made
up of a protein with rubber-like properties. We proposed that this protein provides
the iong-range elasticity in the octopus vessel wall, and thus is a functional analogue
of elastin (Shadwick & Gosline, 1985).

In this paper we present a quantitative analysis of the non-linear and viscoelastic
properties of the octopus aorta in vitro. Our results indicate that this vessel is
mechanically similar to the major arteries of vertebrates, and is suitably designed to
function as an efficient elastic energy storage element in the circulatory system. We
also demonstrate that the elastic properties of the artery wall at physiological
pressure can be attributed to the presence of the rubber-like protein which we have
called the octopus arterial elastomer (OAE).

THEORETICAL BACKGROUND
Non-linear elasticity in thick-walled tubes

Materials with linear (Hookean) elasticity can be characterized by a constant
called the Young’s modulus of elasticity. This is defined as stress (0) divided by
strain (€), where stress is the force divided by the cross-sectional area over which the
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force is applied, and strain is the ratio of the change in length to the initial length.
Extensible biological tissues like artery wall typically have non-linear stress-strain
relationships. Therefore, the elastic modulus is not a constant, but is dependent on
the level of strain. For these materials we can define a tangential modulus of
elasticity (E), for each strain, as the slope of the stress-strain curve at that strain.

\

E=Ad/Aec. (1)

This equation applies only to stress-strain data obtained from the extension (or
compression) of a material in a single direction by a linearly applied force. The
mechanical properties of arteries can be measured 11 vitro by uniaxial tests on strips
or ring slices, and equation 1 may be used. However, it is more desirable to use
inflation tests on intact vessel segments in order to mimic more closely the in vivo
situation. Consider a thick wall elastic tube at equilibrium with a distending pressure
P, (Fig. 1).- There will be tensile forces in two perpendicular directions simul-
taneously, circumferential and longitudinal. There will also be a compressive force
acting radially, but since this will be relatively small (Dobrin, 1978) it is ignored

Fig. 1. (A) Diagram of an arterial segment to define the circumferential (C) and longitudinal (L)
directions. R is the outside radius, r is the inside radius, and h is the wall thickness. (B) Diagram to
illustrate Poisson’s ratios. A uniaxial force (F) in the longitudinal direction causes decreases in the
circumferential and radial directions. (C) A uniaxial force in the circumferential direction causes
decreases in the longitudinal and radial directions (after Dobrin, 1978).
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here in order to simplify our analysis. The circumferential stress in the wall (o¢) is
given by:

oc="Pr/h, (2)

where r is the inside radius and h is the vessel wall thickness. Strain in the
circumferential direction is calculated at the mid-wall radius as:

ec = AR/R,y, 3)

where R = (R+r)/2, R is the outside radius and Ry is the unstressed mid-wall radius.
Stress in the longitudinal direction (o) is given by:

oL =Pr¥/2Rh. “

As R/h increases, R approaches r and oy, approaches 0c/2 (i.e. in a thin wall tube
the circumferential stress is twice the longitudinal stress). Longitudinal strain (€L) is
given as:

€, = AL/L(), (5)

where L is the unstressed vessel segment length.

‘When an artery is pressurized it is loaded biaxially, and the relationships between
stress, strain and modulus become more complex than the one given by equation 1.
For example, a pressure increment gives a strain in the circumferential direction
which depends on the stress and the elastic modulus in that direction, but which also
depends on the strain increment which occurs simultaneously in the longitudinal
direction. The interaction between pairs of orthogonal strains in a material is
described by the Poisson’s ratio (v). If the artery wall is incompressible and
mechanically anisotropic (i.e. the longitudinal modulus E; is not equal to the
circumferential modulus E¢) at least two Poisson’s ratios are necessary to describe
the relationship between €c and €. These are defined as:

veL = —Aec/ A€ (6
and.

vic=—Ae/Acc, (7
where vy, is the ratio of circumferential to longitudinal strains when the artery is
subjected to a longitudinal stress only (Fig. 1B) and v ¢ is the ratio of longitudinal
to circumferential strains when the structure is subjected to a circumferential stress

only (Fig. 1C). Values of v should vary between 0 and 1-0. The Poisson’s ratios are
related to the elastic moduli as follows:

vie/Ec = veL/Er. (8)
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When an artery is inflated the increase in circumference will tend to decrease the
vessel length, while at the same time, the pressure will tend to increase the length.
Whether the artery actually lengthens or shortens, and by how much, is dependent
on the Poisson’s ratios and the relative values.of the elastic moduli. Dobrin & Doyle
(1970) described a method for estimating these parameters from inflation tests. For a
given pressure increment, the two simultaneous strain increments are given as:

AeL= (AUL/EL) - VCL(AUC/EL) 9)
and

Aec = (Aoc/Ec) — veL(AoL/EL). (10

Comparison with equation 1 shows that the biaxial strains are less than uniaxial
strains by an amount which depends on v. Clearly, then, the slope of the biaxial
stress-strain curve is not a direct measure of E. The analysis using equations 9 and
10 is based on the assumptions that radial stresses are small enough to ignore,
shearing stresses do not occur and the artery wall is incompressible. The first two
assumptions greatly simplify the mathematics involved. The incompressibility
assumption is useful because if the volume of a vessel segment is known, then
measurement of two of its dimensions allows calculation of the third dimension.

Viscoelastic behaviour and incremental elasticity

We have considered the artery wall as an elastic structure for which the
mechanical response is independent of the rate of deformation. In reality, biological.
materials exhibit time-dependent elasticity because they have properties both of
elastic solids and viscous fluids. A perfectly elastic solid deforms instantly under a
given stress to a constant strain. Removal of the stress is followed by instantaneous
recovery of the original dimensions because all the work done in deformation is
stored as elastic energy and can be recovered without loss. On the other hand, a
stress applied to a purely viscous fluid will cause deformation at a constant strain
rate, determined by the viscosity. Energy used to drive viscous flow is lost as heat.
The response of a viscoelastic material to stress or strain will be between these two
extremes, depending on the relative contribution of the elastic and viscous
components (Wainwright, Biggs, Currey & Gosline, 1976). There are several ways
to quantify viscoelastic properties of arteries in vitro. One method is by dynamic
mechanical testing over a range of frequencies. This technique provides a direct
measure of viscoelasticity in a form that can be related to haemodynamic parameters
such as pulse wave velocity and vascular impedance. Arteries tn vivo are subjected to
a static stress arising from the mean blood pressure, and a dynamic stress applied by
the pressure pulse from each heartbeat. To simulate these conditions in vitro a small
sinusoidal strain oscillation is imposed upon a static load, and the resulting stress
oscillation is observed at each frequency. If the material exhibits linear
viscoelasticity the stress will also be sinusoidal and will be phase shifted ahead of the
strain by an angle 8. The magnitude of  indicates the relative importance of
viscosity to the overall mechanical response of the material. In theory, 8 may vary
from 0° for pure elasticity to 90° for pure viscosity.
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It is appropriate to describe dynamic elasticity in arteries by using a strain
increment (€;,.) based on the mean radius at which the increment occurs, (R),
rather than the unpressurized radius (Bergel, 1961a, 1972; McDonald, 1974):

€nc = AR/R. (11)
For uniaxial tests we can define a dynamic incremental elastic modulus as:
E*= Ad/€..= (1+€) Ao/ Ae. (12)

Note that E* is related to the tangent modulus E by the factor (1+¢€), since
R =Rg(1+€). E* could also be calculated from oscillatory inflation data by
substituting €;,. for A€ in equations 9 and 10. An alternative and easier calculation
of E* from dynamic inflation data is possible if the change in length which
accompanies the circumferential strain increment is zero, or negligibly small
(Bergel, 1961a). Under these conditions,

E* = (1-v?) Ao/ €. = (1+€)(1-7?) Ad/Ae. (13)

E* can be resolved into two components (Ferry, 1970). E’, the storage modulus,
is derived from the component of stress which is in phase with the strain, and is
proportional to the energy stored elastically in each cycle. E”, the loss modulus,
represents the out-of-phase component of stress and is proportional to the viscous
energy lost per cycle. E’ and E” are determined from measured values of E* and 0.

E' = E* (cos 6) (14)
and

E" = E* (sin 8). ‘ (15)

_ The loss angle is often expressed by the tangent (tan8=E"/E’). Tan§ is an
indication of the amount of energy lost relative to the energy stored per cycle. The
analysis is based on a linear viscoelastic model, which is not adequate to describe the
non-linear behaviour of blood vessels over large extensions. However, if the strain
oscillations are sufficiently small so that the stress response is almost linear, then
equations 14 and 15 can be used to separate the elastic and viscous components of E*
for each frequency (Fung, 1981).

METHODS

Live specimens of Octopus dofleini, 10-15 kg in weight, were obtained from the
waters of Puget Sound, Washington, and Barkley Sound, British Columbia. The
animals were maintained in good health in a recirculating sea water system at 10°C,
and fed on fish, crabs and clams.

Experiments were performed on segments of the dorsal aorta, the major vessel
which leaves the systemic heart. Aortae were dissected from animals which had been
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anaesthetized by chilling and killed by decerebration. The samples were washed and
kept at 4°C in saline (0-4 um filtered sea water) containing 1% of a solution of
penicillin, streptomycin and fungizone (Gibco Labs), and used for mechanical tests
within 12 h of death. These tests were at 10°C, or in some cases at room temperature
(20°C). No differences in the passive mechanical response of the aortae could be
detected between these temperatures.

Inflation experiments

Artery segments about 5 cm long were cannulated at one end with a tubular metal
connector of appropriate diameter and held. in the saline-filled chamber. This
connector was linked to a saline pressure reservoir and either a linear'infusion pump
for quasi-static tests or a sinusoidal pump for dynamic tests. After saline perfusion to
clear air bubbles from the system, the distal end of the specimen was ligated. This
arrangement left the artery free to lengthen as it was inflated. Most samples of aorta
were taken between the heart and the digestive gland where no branch vessels were
present (see Wells, 1983). In some cases a more distal portion of the aorta at about
the level of the crop was used, and branch vessels were ligated. Leak-free
preparations were normally obtained without difficulty.

Quasi-static pressure-volume curves were generated by very slow, continuous
cycles of inflation and deflation of the vessel segment by the linear pump. The pump
consisted of a calibrated glass syringe with a spring-loaded piston which could be
advanced or retracted at a predetermined rate by a reversible, variable-speed motor
(Cole-Parmer Master Servo-Dyne). A cycle consisted of taking the artery from zero
pressure to about 10 kPa (=100 cmH,0) and back to zero. The cycles were repeated
until stable P-V curves were obtained. Infusion rates were varied from 10 to
15 uls™", depending on the specimen size, so that each cycle took 2 to 3 min. For a
typical unpressurized specimen r=0:12cm, R=023cm and L=3-5em. A
preconditioning period consisting of several inflation cycles was required in order to
obtain stable P-V curves.

Transmural pressure was measured through an 18 gauge needle which was glued
into the artery connector and coupled to a BioTec BT70 pressure transducer by a
short length of polyethylene tubing (PE 190). Changes in the external diameter or
length of the artery were détermined with a video measuring system. This consisted
of a video dimension analyser (Instruments for Medicine and Physiology VDA 303)
that provides an analogue voltage which is proportional to the distance between two
reference points in the video image. The dimension measurement is made on the
horizontal axis of the television and the resolution is about 0:1 % of the full width of
the screen (Fung, 1981).

Experiments to demonstrate the effect of vascular muscle activation on the
mechanical behaviour of the artery wall were carried out using 5-hydroxytryptamine
(5-HT-creatine sulphate complex, Sigma Co.) to stimulate and acetylcholine
(ACh-chloride, Sigma Co.) to relax the muscles. The drugs were dissolved in saline
and introduced into the artery lumen by infusion after opening the distal ligature. As
the drug solution flowed through the vessel it was allowed to mix into the
surrounding bath. The ligature was then closed and the artery was inflated, using
the same drug solution in the pump.
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Dynamic inflation experiments involved measuring small pressure and diameter
oscillations over a frequency range of 0-05 to 10 Hz. These experiments were carried
out on artery segments at three different mean pressures: 3, 4 or 6kPa (corre-
sponding to circumferential strains of approximately 0-6, 1-0, 1-2 respectively).
Small sinusoidal volume changes were imposed on the inflated artery by a
diaphragm pump driven by an electromagnetic vibrator (Ling Systems 200). The
amplitude and frequency of the vibrator were controlled by a signal generator which
also provided the frequency reference for a phase analyser. A needle valve inserted
between the pump and the static pressure head ensured that flow from the pump
back into the reservoir would be negligible. The volume amplitude was adjusted to
give diameter changes of less than 5 % of the mean value. Under these conditions
the pressure (P) and diameter (D) oscillations were sinusoidal with little distortion,
and P-D hysteresis loops were essentially linear. The amplitudes and the phase shift
(0) between P and D signals at each frequency were measured by the phase analyser
(SE Labs SM272DP Transfer Function Analyser) as described by Denny & Gosline
(1980). The P and D signals were also recorded continuously on a two-channel strip
chart recorder.

The frequency response characteristics of the pressure transducer were tested by a
free-vibration method using a step function of pressure (‘pop’ test, Gabe, 1972).
The transducer and tubing together had a damped resonant frequency of 45 Hz, and
a damping factor of 0-26. Over the frequency range used the pressure signal was
delayed by 0-7° per Hz, and had an amplitude error of less than 4 % at 10 Hz. The
VDA output is processed through an internal single RC 15 Hz filter, which at 10 Hz
gives a 25 % attenuation and a 135° phase lag. The frequency response of the VDA
over the relevant frequencies was measured with the phase analyser. Appropriate
corrections for phase and amplitude losses were made to the pressure and diameter
data.

After each inflation experiment the unstressed length and external radius were
recorded. The thickness of the vessel wall was measured on frozen-cut transverse
sections, using a microscope micrometer. The vessel wall volume was calculated on
the basis of uniform cylindrical geometry and assuming isovolumetric deformation.
This allowed us to determine vessel length L, and inside radius r, from V and R at
any pressure, or R and r from V and L. Equations 2-5 were used to obtain biaxial
stress-strain curves. Values of tangential elastic moduli were computed from
equations 9 and 10 by the method of Dobrin & Doyle (1970). Dynamic pressure and
radius data were used with equation 13 to obtain values of the dynamic incremental
elastic modulus in the circumferential direction.

Uniaxial force-extension tests

Quasi-static uniaxial tests of the aorta were carried out on a tensile testing machine
(Instron model 1120). Short transverse sections of aorta (3—4mm long) were
mounted over two rigid L-shaped stainless steel bars, one of which was secured to
the base of the test frame, while the other one was attached to a force transducer on
the moveable cross-head of the Instron. This transducer gave reliable measurements
of forces from about 0-1 to 500g. Force-extension tests were conducted by slow
cyclic stretching at constant rates from 0-5 to 5mmmin~" (i.e. strain rates of 0-002
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to 0-02s7!). No differences in the response of the artery specimens were detected
over the range of strain rates used. Extension of the sample was determined from the
cross-head displacement. Data were recorded on an X-Y plotter. Since the ring
samples became flattened under a force of less than 1g, they were considered to be
two parallel sheets of tissue, each having a length equal to one-half of the
circumference of the ring. Thus uniaxial extension of ring samples resulted in
stresses which were essentially in the circumferential direction (Attinger, 1968;
Goedhard & Knoop, 1973). Preconditioning of the samples was achieved by
repeated strain cycling until relatively stable force-extension curves were obtained.
During the experiments the samples were immersed in a saline bath at 10°C.

In another series of experiments the longitudinal elastic properties of the aorta
were investigated. Vessel segments about 5 cm long were mounted in the saline bath
by ligating the ends over tubular connectors which were attached to the Instron test
frame. Longitudinal force-extension tests were done according to the procedure
described for the ring samples. A hole through one connector allowed fluid
movement in and out of the vessel lumen, thus maintaining the transmural pressure
at zero throughout the test.

Sample dimensions were measured at the end of each test. Strain calculations
were based on an unstressed sample length which was measured at the crosshead
position where a positive force was just detectable. Stress was calculated as the force
divided by the cross-sectional area of the specimen, which for rings was taken as 2hL.
(see Fig. 1A), while for the longitudinal samples it was m(R®*—r%). With the
assumption of isovolumetric deformation of the artery wall, the cross-sectional area,
and thus the stress, at each strain could be calculated from the initial dimensions.

Dynamic mechanical tests were conducted on artery ring samples by using a
forced strain oscillation technique which was analogous to the dynamic inflation.
Ring samples were loaded to predetermined strains and then subjected to small
sinusoidal strain increments at 0-1-10Hz, by an electromagnetic vibration
apparatus (Gosline & French, 1979). Deformation of the sample was measured by a
strain gauge displacement transducer attached to the vibrator shaft. Force was
measured by a semiconductor strain gauge transducer which was linked, by the
sample, to the vibrator. Experiments were performed at mean strains of 0-3 and 0-6.
The displacement amplitude was kept small enough (+2% of the mean strain) to
give relatively linear force-extension hysteresis loops. Force and displacement
signals were conditioned with matched carrier amplifiers (SE Labs type 4300), and
the amplitudes and phase relationship measured by the Transfer Function Analyser.
The resonant frequency of the force transducer was two orders of magnitude greater
than the highest test frequency and therefore no signal corrections were necessary.
The force and extension data were used to; calculate the dynamic incremental
modulus, according to equation 12.

RESULTS
Inflation experiments

The first four consecutive inflation cycles for an aortic segment are shown in Fig.
2. The first inflation curve is highly sigmoid and lies well above the deflation curves.
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Fig. 2. Quasi-static pressure-volume curves for a segment of aorta. The inflation curves (solid lines)
and deflation curves (broken lines) for the first four successive tests are shown, as indicated by the
numbers, to illustrate the preconditioning phenomenon. Arrows indicate the direction of loading.

Since the product of pressure (P) and volume (V) is work, then the area under the
inflation curve is the total work done (= the energy used) to distend the artery, while
the area under the deflation curve is the energy recovered by elastic recoil. The area
enclosed by the P-V loop is the energy lost as heat through viscous processes and,
when expressed as a percentage of the total energy, is called the mechanical
hysteresis. For the first inflation cycle shown in Fig. 2 the hysteresis was 43 %. With
subsequent inflations the curves shifted to the right and the hysteresis loops became
smaller. Three to four cycles were normally enough to obtain a stable response with
about 25 % to 30 % hysteresis. The instability of hysteresis curves during the first
few strain cycles is a phenomenon which is typical of arteries tested iz vitro, and
probably represents a process of internal structural readjustment to stresses after
being excised and kept in an unpressurized state (Bergel, 1961a; Fung, 1972). The
most important feature of the P-V curves is that the volume distensibility of the
aorta, (dV/VdP), decreased markedly with increasing distension over the range of
physiological blood pressures, approximately 2-5kPa (Johansen & Martin, 1962).

Inflation of the octopus aorta always resulted in an increase in length as well as in
circumference. The changes in these dimensions which occurred in a typical
experiment are shown in Fig. 3. At a pressure of 5kPa, the increase in length was
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Fig. 3. Results of quasi-static pressure-volume tests, expressed in terms of the strain in
circumference (€c) and in length (€.). The approxi range of physiological pressure is indicated

by the broken lines.

30% (€L =0-30), while the circumference had increased by 120% (ec = 1-20).
Since luminal volume increases with the square of the radius, but only linearly with
vessel length, it can be seen that circumferential strain contributes the major portion
of the volume distensibility of the aorta. Above physiological pressures only
relatively small changes in longitudinal and circumferential strain were observed.
The aorta has a relatively thick wall at zero pressure, the ratio h/R being about 0-45
(£0:05). However, due to the large circumferential strains, at 5 kPa pressure h/R is
reduced to about 0-10 (£0-01). In mammalian arteries h/R is about 0-20 at zero
pressure and decreases to about half of this value at physiological pressures (Cox,
1979).

Fig. 4 presents data, taken from the inflation limb of P-V loops, in terms of stress
and strain in the circumferential and longitudinal directions. The observed
stress-strain relations for the octopus aorta were always non-linear. The stress-strain
data for distal segments of the aorta indicate that in this region the aorta is somewhat
less extensible, circumferentially and longitudinally, than the main part of the vessel
which lies more proximal to the heart. While these differences in extensibility may
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Fig. 4. Inflation data taken from ascending limb of quasi-static pressure-volume curves and
computed as stress and strain in the longitudinal direction (A,B) and in the circumferential direction

(C,D). Segments of aorta were taken proximal (B,D; seven samples) or distal (A,C; four samples)
to the heart.

be due to an ‘elastic taper’ in the aorta, as occurs in the vertebrate aorta (McDonald,
1974), the possibility was not investigated further in this study. The experiments to
follow deal only with the major proximal portion of the aorta which is characterized
by curves B and D in Fig. 4.

Activation of vascular muscle

Immediately after excision, many aortae exhibited a brief period of spontaneous
muscle activity which was severe enough to cause visible undulatory movements
along the length of the vessel. However this phenomenon did not persist for more
than about 30 min in cold saline. Spontaneous muscle activity was also indicated by
brief, large pressure transients or by small pressure pulsations which occasionally
occurred during the slow inflation of a vessel. This activity appeared to be abolished
by several consecutive inflation cycles during the normal preconditioning period, or
by exposure of the artery to a high pressure (10kPa) for several minutes.
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Since the main objective of this study was to measure the passive mechanical
properties of the artery wall, it was necessary to be able to distinguish between the
active and relaxed states of the vascular muscle. To do this, we used drugs which
had previously shown excitatory or inhibitory effects on the octopus circulation in
vivo (Johansen & Huston, 1962) or on the aorta in vitro (Wells & Mangold, 1980).
Prolonged periods of muscle activation (i.e. several minutes) could be produced by
treatment with 5-HT. Fig. 5 shows the results of an experiment in which a
preconditioned aortic segment was subjected to three sets of inflations, the first with
- normal saline (A), the second after infusion with 5-HT (B), and the third following
infusion with ACh (C). P-V curves for the control and ACh-treated artery are
virtually identical. In the presence of 5-HT, however, the volume distensibility of
the aorta was greatly reduced, particularly over the physiological range of pressures.
Muscle activation increased hysteresis slightly above the control level (28 % and
22 % respectively for the example in Fig. 5). The results suggest that the muscle in
preconditioned, control arteries was in the relaxed state. Thus, we can regard the
results of tests on preconditioned artery samples where drugs were not used as
representing the passive elastic properties of the vessel wall.

10
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Fig. 5. Quasi-static inflation of an aortic segment under (A) control conditions, (B) following

- infusion of 5-hydroxytryptamine (5-HT) at 100 ug mi~" concentration and (C) following infusion of
acetylcholine (ACh) at 1 mg ml™' concentration.
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Stress-strain curves, calculated from the loading portion of P-V curves, are shown
for the longitudinal and circumferential directions in Fig. 6. Here, strain is
expressed with reference to the initial dimensions of the relaxed vessel. Note that
5-HT did not produce a measurable change in the external diameter at zero
pressure, although the length appeared to increase by about 6 %. For all strains in
the octopus aorta, the circumferential and longitudinal stresses were elevated by
activation of the muscle, with the exception of the initial part of the longitudinal
extension. The difference between the stress curves for the stimulated and relaxed
states is the active stress component, and this is shown in Fig. 6. Active stress in the
circumferential direction increased continuously with strain, reaching an apparent
peak at €c = 1-0. In the longitudinal direction, the active stress increased to a plateau
level at €, > 0-20. These results suggest that the magnitude of the active stress
response is maximal at some optimum circumference or length. This optimum
dimension appears to occur at circumferential and longitudinal strains that

correspond to a pressure of about 3-5kPa, i.e. in the middle of the physiological
range.

Uniaxial tests

Fig. 7 shows examples of force-extension curves obtained from quasi-static
uniaxial tests of the aorta in the longitudinal and circumferential directions. We
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Fig. 6. Stress-strain curves computed from the loading portion of the pressure-volume curves in
Fig. 5. (A) Longitudinal and (B) circumferential directions. Strain is given in terms of the initial
dimensions of the relaxed vessel. Activation of muscle increased the stress in the artery wall. The
‘active stress’ is plotted as the difference between curves for 5-HT and ACh treatments and is
labelled D. The broken part of the active stress curve is calculated by extrapolating the 5-HT curve
to intersect with the ACh curve.
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found that hysteresis was greater longitudinally than circumferentially (39% vs
26 % respectively, in this case). Data from the loading portion of force-extension
cycles were used to construct stress-strain curves, examples of which are plotted in
Fig. 8. These curves resemble the J-shaped biaxial stress-strain curves in Fig. 4,
except that the artery wall appears to be more extensible, for a given stress, when
loaded uniaxially than biaxially. This difference was expected according to equations
9 and 10, and was most noticeable in the circumferential direction.

Values of the tangential elastic moduli, Er, and E¢, were calculated from uniaxial
stress-strain data using equation 1 (Fig. 9). Over the range of extensions used the
artery wall increased in stiffness by approximately two orders of magnitude: Ei,
varied from 3x10° to 1-8x10°N m™2, while E¢ varied from about 5x10° to
5X10°Nm™2, These values of modulus are characteristic of an elastic material
which has from 1/200 to 1/2 the stiffness of an ordinary rubber band. The large
increase in elastic modulus which accompanies increasing strain explains the
decreased volume distensibility observed at high pressures (Fig. 2).

Calculation of Ec from inflation data

Uniaxial tests on isolated artery rings are simple and convenient, but the results
from these tests may be unreliable at very high strains where fibre orientations
within the vessel wall must differ considerably between uniaxial and biaxial
specimens. Therefore we wanted to calculate the circumferential elastic modulus
from biaxial inflation data. This requires the knowledge of either Poisson’s ratio or
the longitudinal modulus. Since Poisson’s ratios were not measured directly, we
decided to use values of E;, from uniaxial tests in order to determine v and E¢ from
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Fig. 7. Typical hysteresis curves obtained from quasi-static uniaxial tests of the aorta. (A)
Longitudinal and (B) circumferential directions. Hysteresis is 39 % in (A) and 26 % in (B).
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Fig. 8. Examples of stress-strain curves calculated from uniaxial tests in (A) circumferential and (B)
longitudinal directions.
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Fig. 9. Tangential elastic moduli, E| and Ec calculated from uniaxial stress-strain data by equation
1 (samples of 6 and 10 aortae respectively). Modulus is plotted on a logarithmic scale as a function of
linear strain. Curves were fitted by polynomial regression analysis.
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the biaxial data. To do this, we assumed that the uniaxial Ey, values are close to the
true biaxial values. The assumption is reasonable since the longitudinal uniaxial tests
involved only small strains (up to 30 %) which presumably did not cause too
extensive an alteration in fibre orientation.

Values of vy, calculated from equation 9, varied from 0-20 to 0-54 with a mean of
0-30. We used these values to determine Ec by solving equation 10. Ec is plotted as a
function of pressure in Fig. 10, and as a function of strain in Fig. 11. E¢ increased
from 9% 10° to 2:3%10° N m™2, over the approximate physiological pressure range,
which corresponds to circumferential strains of 0-5 to 1-18 respectively. The ratio of
the moduli, Ec/Ey,, varied between 1:05 and 3-30 (Fig. 10). It appears that the
octopus aorta has greater stiffness circumferentially than longitudinally at all
pressures, and has a Poisson’s ratio which is generally less than 0-5. Under these
conditions equation 9 yields positive values of Agp: that is, the artery should
lengthen as it is inflated. ’

The curve for E¢ obtained from uniaxial tests (Fig. 9) is redrawn in Fig. 11 for
comparison with E¢ values determined from inflation tests. For strains below 1-10,
tests on artery rings yielded values of E¢ which are in close agreement with those
obtained from inflation of vessel segments. At strains above 1-10 the two curves

10°

T

Ec
10°

Modulus (N m~2)

10°

T

Ec/EL

Pressure (kPa)

Fig. 10. Circumferential modulus of elasticity, E¢, plotted as a function of inflation pressure. The
ratio of circumferential modulus to longitudinal modulus (Ec/EL) is also shown. Points represent
means from seven samples, and bars are * one standard error. The approximate physiological blood
pressure range is indicated: by the arrows.
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Fig. 11. Circumferential elastic modulus E¢ as a function of strain. The data points and
corresponding polynomial regression curve (solid line) were calculated from biaxial inflation data
(seven samples) using equations 9 and 10. Vertical bars are one standard deviation. The broken line
represents Ec, as calculated from uniaxial stress-strain data, and has been redrawn from Fig. 9.
Arrows gn the abcissa show the approximate strains for pressures of 2 and 5kPa.

diverge. The ring samples may be expected to show mechanical behaviour which is
different from the intact vessel, particularly at high extensions, because the artery
wall is not a homogeneous material. At large strains it is likely that fibre networks in
the artery wall will be considerably reorientated, in ways which may differ in the two
types of samples. Since these analytical methods are not exact, the results must be
regarded as only approximations of the true values. It is quite satisfying, therefore,
that uniaxial and biaxial tests on the aorta gave similar values of E¢ for strains which
include the physiological range. This indicates that uniaxial tests on ring samples are
legitimate for extensions up to about 100 %.

Viscoelastic properties

The presence of a significant viscous component in the mechanical response of
octopus artery wall was indicated by hysteresis in the quasi-static inflations. Other
viscoelastic phenomena which we observed during step-wise inflation of the aorta
were stress-relaxation and creep (data not shown). Since arterial viscoelasticity is
important in determining haemodynamic relationships, we decided to characterize
this property by dynamic testing.

A quantitative analysis of the frequency-dependent mechanical properties of the
octopus aorta is based on the combined results of dynamic mechanical tests on intact
vessel segments and ring samples. In these tests small sinusoidal strain oscillations



Mechanics of the octopus aorta 277

were superimposed on different levels of pre-strain (Fig. 12A). Examples of a
pressure-radius loop from a dynamic inflation experiment (Fig. 12B) and a
force-extension loop from an artery ring vibration test are given (Fig. 12C). Both
show that the strain increments were sufficiently small that these loops were
approximately linear. Fig. 13A shows that the storage modulus E’ increased
continuously with the frequency of oscillation for each level of pre-strain which was
tested. In addition, the proportional change in E' over the range of frequencies used
increased with strain, i.e. the ratio of E’ at 10 Hz to E' at 0-1 Hz was 1-33 at ¢ = 0-3
(curve d), 1:43 at €c = 0-6 (curve c), 1-88 at €c = 1-0 (curve b) and 1-96 at €c = 1-2
(curve a).

In all experiments, the phase angle 8 was positive, 1.e. the change in pressure (or
force) always led the change in radius (or extension), and tan § varied between 0-11
and 0-27 (Fig. 13B). For these values of tan d, E’ is approximately equal to E* and
E" is relatively small. Unlike E’, tan §.did not seem to change significantly with
different levels of pre-strain, except perhaps at the highest frequencies when curves
for higher pre-strain (a and b) appear to diverge from curves for lower pre-strain (c
and d). With increasing frequency there was a steady rise in tan §, suggesting that

- the loss modulus E” was increasing relative to E’ (since tan § = E"/E’). However,
the large scatter in data at frequencies above 1 Hz may indicate that errors were
being introduced due to inertial effects of fluid acceleration in the vessel. We were
unable to assess to what extent this problem influenced our measurements.
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Fig. 12. Diagram to illustrate dynamic mechanical testing of the aorta. Small sinusoidal
oscillations of strain were imposed at four levels of pre-strain, as shown in (A). (B) A pressure-
radius loop from a dynamic inflation experiment, and (C) a force-length loop from a vibration test,
both done at a frequency of 1 Hz.
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Fig. 13. Results of dynamic mechanical tests on the aorta, showing (A) storage modulus E’ and (B)
loss tangent tan § plotted as functions of frequency. Four levels of pre-strain (€c) were used: (a)
€c = 1'2, mean pressure = 6 kPa; (b) €c = 1'0, mean pressure = 4kPa; (c) €c = 0:6, mean
pressure = 3 kPa; (d) €c = 0-3. Sample sizes of 4, 5, 6 and 3 respectively.

We defined the mechanical hysteresis to be the energy lost expressed as a
percentage of the total energy used through one cycle of deformation. The efficiency
of elastic energy storage may be expressed as the resilience Re, which is defined as
the percentage of total energy input that is recovered in elastic recoil. Re = 100—H,
where H is the hysteresis. In the quasi-static tests (Fig. 2) the octopus aorta
exhibited hysteresis of about 25 % to 30 %, corresponding to a resilience of 75 % to
70%. In viscoelastic materials the resilience usually decreases with increasing
frequency. Since tan J is proportional to the ratio of energy lost to energy stored in
one cycle of a sinusoidal oscillation, the hysteresis may be calculated as (Wainwright
et al. 1976):

Re
100

In dynamic tests at a mean strain of 1:0, Re was 70 % at 0-05 Hz (tan 6 = 0-11),
67% at 0:5Hz (tand=0-13) and 62% at 1-0Hz (tan 6= 0-15). Physiologically

= exp(—mtan d). (16)
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relevant frequencies of pressure oscillations in the aorta of O. dofleini range up to
about 1-0 Hz (R. E. Shadwick & J. M. Gosline, in preparation). At frequencies
above 1-0 Hz, tan 6 continued to increase, (Fig. 13B, curve b), with a concomitant
drop in the elastic energy storage efficiency.

DISCUSSION
- Quast-static mechanical properties

The results of this study show that the octopus aorta is a highly distensible and
resilient elastic vessel which is well suited to function as an elastic reservoir in the
central circulation. A very important feature of the aorta is that the elasticity is
highly non-linear. Over the physiological pressure range the passive distensibility of
the vessel wall changed dramatically as the circumferential elastic modulus increased
from a relatively low value.of about 10* up to about 2x10°Nm™2. Thus, a
twenty-fold increase in stiffness occurs over the range of strain imposed on the artery
wall by a resting blood pressure pulse. Similarly, in other cephalopods we found
large changes in the aortic wall stiffness with extension in the physiological pressure
range. In the nautilus (Nautilus pompilius) Ec increased from 2x10* to
2% 10° N'm™2 between pressures of 2 and 6kPa respectively, while in the squid
(Nototodarus sloani) Ec increased from 10° to 10N m™2 between pressures of 10
and 20 kPa respectively (Gosline & Shadwick, 1982).

Non-linear elasticity is also characteristic of vertebrate arteries. For example,
Bergel (1961a) showed that the luminal volume of the canine thoracic aorta
increased by about four times when inflated from 0 to 40kPa pressure, and the
circumferential elastic modulus increased from 2x10° to about 10° N m~2 between
11 and 22kPa, the approximate iz vivo blood pressure. All blood vessels that have
been studied exhibit ‘J-shaped’ stress-strain curves and a progressive increase in wall
stiffness with extension, or pressure (Bergel, 196la; Cox, 1979; Fung, 1981).
Apparently this is a design feature of highly distensible pressure vessels which is
necessary in order to prevent instability and rupture (Burton, 1954; Gordon, 1975;
Bogen & McMahon, 1979).

Burton (1954) showed that for a pressurized elastic tube the volume distensibility
D (=dV/VdP), is inversely proportional to [(Eh/R)—P], where E is the elastic
modulus, h is the wall thickness, R is the radius and P is the pressure. As the
pressure is raised, R will increase and h will decrease. If E remains constant with
extension, then D will become infinitely large as P approaches Eh/R, and the tube
will rupture. This can be avoided either by having E very large relative to P, or by
having E increase with radius, such that Eh/R is always greater than P. In the first
case the tube would be non-compliant (e.g. a steel water pipe), but this would not be
useful as an elastic reservoir. The second case is what has been observed for the
arteries of vertebrates as well as cephalopods. This allows the vessel to have large
compliance at low pressures, thereby smoothing the pulse and offering low
resistance to flow from the heart, and yet still be protected from ‘blowout’ at higher
pressures. The range of modulus which is necessary to meet the above criteria will
depend on the physiological pressures normally experienced, and on the dimensions
of the vessel. The elastic modulus of the aorta is lower in the relatively low pressure
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circulatory systems of octopus and nautilus than in the high pressure systems of
squid and dog.

In our experiments the artery segments were free to lengthen when inflated, so as
to mimic the situation in the animal. The octopus has no rigid skeleton, so the aorta
cannot be tethered to a fixed length in vive. In contrast, the vertebrate aorta is
restricted longitudinally by the axial skeleton, and retracts by about 30 % when
excised (Dobrin, 1978). The length change that occurs when the vessel is inflated
depends on the Poisson’s ratios and the relative stiffness in the circumferential and
longitudinal directions (equations 8, 9). Ec was greater than Eg, at all pressures in
the octopus aorta. The vessel lengthened when inflated, although the longitudinal
strain was always less than the circumferential strain. Mechanical anisotropy has also
been demonstrated in many mammalian arteries. Patel, Janicki & Carew (1969)
found that E;, was greater than Ec in the dog thoracic aorta. Others have shown
that E is greater than Ey, in the dog carotid artery (Dobrin & Doyle, 1970; Cox,
1975).

The passive hysteresis for slow inflation of the octopus aorta was slightly greater
than that typically observed in mammalian- arteries. Vascular muscle is the main
factor contributing to hysteresis in the artery wall (Dobrin, 1978), although a small
amount of hysteresis is also found in isolated elastin and collagen when tested at low
strain rates (Fung, 1981). The octopus aorta has more muscle, and less collagen and
elastic fibres than have mammalian arteries (Shadwick & Gosline, 1983). These
differences in composition of the tissue components, as well as their structural
organization, probably account for the lower elastic modulus and greater hysteresis
in the aorta of the octopus versus the mammal.

Hysteresis is increased by activation of the muscle component in mammalian
arteries (Dobrin, 1973; Busse, Bauer, Sattler & Schabert, 1981) and apparently in
the octopus aorta as well. We do not fully understand the role of the muscle in the

_octopus vessel wall. Fibroblast cells must be responsible for the deposition of the

extracellular connective tissues. Muscle cells may serve this purpose, as well as
forming a mechanical linkage between fibres in the elastic network (Shadwick &
Gosline, 1983). Vasculair muscle may be responsible for active propulsion of blood
through the circulation, but this has not been clearly demonstrated (Johansen &
Martin, 1962; Wells, 1978). It seems unlikely that muscle activation in the aorta
could be important in regulating blood flow resistance since this parameter must be
influenced predominantly by the peripheral vessels. :

Structural basis of non-linear elasticity

The non-linear elastic properties of the mammalian artery wall are attributed to
the parallel arrangement of elastin and collagen fibre systems. Elastin itself has
non-linear elasticity because of its non-Gaussian behaviour (Aaron & Gosline,
1981). However, the increase in stiffness of isolated elastin fibres with extension is
not nearly as great as the increase in stiffness which occurs with comparable strains
in the whole artery wall. Thus, the ‘]’ shape of the stress-strain curve for the
mammalian artery arises, not from the non-linear properties of elastin, but from the
recruitment of more elastin fibres and the transfer of load to the collagen network, as
the artery is inflated (Roach & Burton, 1957; Wolinsky & Glagov, 1964).
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In contrast, the non-linear elasticity of the OAE fibres may be important in
determining the shape of the stress-strain curve for the octopus aorta. It was shown
in the previous paper (Shadwick & Gosline, 1985) that the molecular chains of the
OAE protein are more restricted in their flexibility than are those of elastin.
Consequently, the stiffness of the OAE fibres increases rapidly with stretch in the
region of non-Gaussian extensions. In Fig. 14 the shapes of the stress-strain curves
for the octopus artery wall and for the OAE fibres are compared. Here, the stress
scales have been adjusted arbitrarily so that the initial portions of the curves coincide
(up to € = 0-2). When this is done, it can be seen that the curves are almost identical
in form up to strains of 1-2. By this semi-quantitative method it appears that the
non-Gaussian behaviour of the elastic fibres gives rise to an increase in stiffness, with
extension, which is similar to the non-linear elasticity of the whole artery wall, up to
and including the normal range of physiological extensions.

We found that the elastic fibre network comprises about 3 % of the volume of the
aorta, and that the fibres are present as a sheet lining the vessel lumen, and as a
multi-directional array throughout the muscle layers (Shadwick & Gosline, 1983,
1985). Fig. 14 shows that up to € = 1-2 the stress required to stretch the elastic fibres
is about 100 times greater than the circumferential stress in the whole artery wall

- (i.e. the stress scales in Fig. 14 differ by a factor of about 100). If as little as
one-third of the total fibre content (i.e. about 1% of the wall material) is orientated
to support the circumferential stress when the artery is inflated, then the presence of
elastic fibres alone can account for the stiffness of the artery wall through the
physiological range of pressures. Collagen, which is present as a loose adventitia,

may not be required to take a significant portion of the load until very large
extensions.
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Fig. 14. Curves of nominal stress vs strain for the octopus aorta (circumferential direction), for
the octopus arterial elastomer (OAE), and for a Gaussian rubber with the same elastic modulus as
the OAE. Left ordinate is for the aorta; right ordinate is for the OAE and the rubber. Stress scales

are adjusted so that the curves coincide up to a strain of 0-2. Nominal stress = true stress/(1 +
strain.)
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The octopus aorta as an elastic reservoir

The results of our dynamic mechanical tests show that the octopus aorta is a
viscoelastic structure which becomes stiffer and less resilient with increasing rates of
deformation. E’ and tand both increased continuously with frequency over the
range of 0-05 to 10 Hz. This type of behaviour is typical of other biomaterials and
polymeric solids at frequencies below the glass transition (Ferry, 1970; Fung, 1981).
In the mammalian artery wall E’ increases by up to twice the quasi-static value, and
tan § generally rises from about 0-09 to 0-20 with frequencies from 0-2 to 20 Hz
respectively (Bergel, 1961b; Gow, 1970; Patel, Janicki, Vaishnav & Young, 1973;
Busse et al. 1981). The magnitude of viscosity in mammalian arteries can be
correlated with the amount of vascular muscle at different anatomical sites, as can
hysteresis and stress relaxation properties (Dobrin, 1978). In terms of tan 6 and the
relative change in E’ between 0 and 10 Hz, the octopus aorta is comparable to the
carotid artery of mammals. No data are available for the dynamic mechanical
properties of any other cephalopod arteries.

Viscous energy losses in the artery wall decrease the efficiency of elastic energy
storage in the system. However, some degree of wall viscosity may be
haemodynamically favourable. The impedance to flow which the heart must work
against is determined by a complex interaction between incident and reflected
pressure waves in the arterial tree; wall viscosity causes attenuation of pressure
waves, and this can reduce the impedance (Taylor, 1966). Since viscosity in the
artery wall arises primarily from the muscle component, then the amount of muscle
present in an artery may be determined, at least in part, by a mechanical
requirement to optimize elastic recoil and pressure wave damping in the vessel wall.

In the physiological range of frequencies for Octopus dofleini (about 0-1 to 1 Hz)
the resilience of the aorta varied from 70 % to 62 %. This is only slightly less than the
resilience of the mammalian aorta at the relevant physiological frequencies (approx.
2-20Hz in the dog; Bergel, 1961b). Thus the octopus aorta appears to have
mechanical properties which would allow it to function effectively as an elastic
reservoir in the circulatory system. We are currently investigating the relationship
between arterial mechanical properties and the fluid dynamics of blood flow in the
living octopus.

This research was funded by an operating grant to JMG from NSERC of Canada.
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