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SUMMARY

A technique is described whereby the vortex wake of birds in slow forward
flight may be investigated with a view towards testing some of the assump-
tions and predictions of existing theoretical models of bird flight. Multiflash
stereophotogrammetry was used to analyse the wake as a pigeon passed
through a cloud of neutrally-buoyant helium bubbles.

All photographs obtained support the hypothesis that the wake is com-
posed of a chain of discrete, small-cored vortex rings. This being the case,
velocity profiles taken from sections through the wake allow us to estimate
the momentum in the wake as represented by vortex rings.

The momentum in the wake appears to be approximately half that
required for weight support in unaccelerated, level flight. The possible
causes and consequences of this paradoxical result are discussed.

INTRODUCTION

Theoretical models purporting to predict the power output of flying birds have
become increasingly elaborate over the years (e.g. Pennycuick, 1975; Rayner,
1979a,b), but confidence in their predictive value remains limited, owing to the dif-
ficulty of testing the predictions. Tucker (1973) found a promising degree of agree-
ment between predictions based on mechanical analyses and measurements of oxygen
consumption. However, the comparison cannot be carried to a high degree of detail
because the physiological measurements do not allow different components of the
power requirements to be discriminated. The measurement of oxygen consumption
yields a single value, which, according to mechanical theory, is made up from several
components, including induced, parasite and profile power components. Where the
measured and predicted results differ, it is difficult to tell whether the discrepancy is
due to an error in prediction of one or several components of power or to a flaw in the
underlying concept of additive power components. Furthermore, chemical power, as
reflected in oxygen consumption, is converted into mechanical power with an unknown
efficiency, which may or may not itself be independent of speed or power.
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This paper describes an attempt to single out one component of power, the indue*
power, and to measure it independently of the rest. The induced power is that which
is expended in supporting the bird's weight. In level flight, the weight must be
balanced by a force equal to the rate at which momentum is imparted to the air. The
induced power is the rate at which the bird imparts kinetic energy to the air in order
to create the necessary momentum. It should be possible to examine the wake after
the bird has passed, and measure the kinetic energy left behind.

In principle, this could be done without making any prior assumptions about the
structure of the wake. However, it is much easier to estimate momentum and energy
in relation to a specific model of the structure expected in the wake. The vortex ring
model of the wake, developed by Rayner (I979a,b) was used as a basis for the analysis.
If the wake does indeed consist of vortex rings as predicted, it should be a simple
matter to calculate the energy of each ring, and hence the induced power.

The first objective was to ascertain whether vortex rings with the predicted charac-
teristics occur. Having confirmed this, the next objective was to make a semi-
independent estimate of the wake energy and hence the induced power requirement.
These can then be compared with the predictions of the vortex-ring model.

METHODS

Pigeon training
Three pigeons (Columba livia Gm) were trained to fly in response to the alternate

switching of two red lights. The nai've bird was introduced at one end of a flight cage
(dimensions 4x2-7x1 -2 m, Fig. 1) with a red light illuminated at that end. When the
bird's attention appeared to be directed down the length of the cage, the lights were
switched and about 0-5 s later a small disturbance created behind the bird would
induce it to fly to the illuminated bulb at the other end of the flight cage. After a
calming period of 10-20 s the procedure was repeated. Training sessions typically
lasted 30-60 min and were repeated daily for 2-4 weeks after which the pigeons would
fly in response to the light switching without any other cues. Training continued in
reduced light levels and in conditions gradually approaching those of the experiment.
After 10 weeks, one pigeon had been trained to the point where level and repeatable
flights could be evoked at the flick of a switch. Flights were repeated under 4kW of
light and filmed at 200 frames s"1 with a Photosonics IPL high speed cinecamera.
Analysis of these films revealed no significant accelerations of the body and no measur-
able departure from horizontal motion in the test section of the flight cage. The
morphology and kinematics measured directly and by film analysis respectively are
given in Table 1.

Helium bubbles

A cloud of neutrally-buoyant helium bubbles (approx. 3 mm diameter) was
generated by an Armfield SAI Bubble Generator with a low-speed head (No. 2).
Helium, air and bubble film solution were passed at carefully metered flow rates to
a mixing head where bubbles were produced at the tip of three concentric tubes. The
design, construction and development of a helium bubble flow visualization systeai
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Fig. 1. The flight cage, camera, lighting and bubble generation systems. Metered flow rates of helium,
air and soap solution are provided at fj to form the helium bubbles at exit nozzle, n. Flashguns fi_4 rest
pointing upwards and slightly away from the background grid, g, to maximize contrast, and are
covered by a Perspex lid. The pigeon flies straight between platforms pi and P2 , which are both 1 '5 m
from the floor, according to the switching of lights li and 12. In mid-flight, the pigeon interrupts the
focused infra-red light beams from Si, 82 to trigger dark-activated switches lsi, lsz. According to the
direction of flight, one of these switches opens the shutters of the cameras C], C2. These, in turn start
the flash timer, t, triggering the sequence of flashguns, fi_,. After approximately 2 weeks training of
the pigeons, the centre of the front face of the wire mesh cage could be safely removed. The experimen-
ter, standing at X, effectively controls the entire operation when switching between li and U with sw.

Table 1. Kinematics and morphology of the pigeon used inflight cage experiments

Parameter

Body mass
Wing semi-span
Wing area
Flight velocity
Wingbeat frequency
Stroke period
Downstroke period
Upstroke period
Dowrwtroke ratio
Stroke plane angle
Stroke amplitude
Body tilt

Kinematics measured

Symbol

M
b
S
V
f
T
Td

Tu
i

Y
<t>

from high-speed film.

Units

kg
m
m2

ms"1

8 - '

S

s
8

degrees
degrees
degrees

Value

0-350
0-33
0062
2-4
6-67
0-15
0-067
0-083
0-45

55
150
35

have been described by Lee (1976). The bubble generator head was positioned 0-35 m
from the floor and tilted at 30 c from the vertical back wall of the flight cage to produce
a cloud of bubbles with low initial velocity in the field of view of the camera system.

Photography

Two motor-driven Nikon cameras (F2 and FM) with micro-Nikkor 55 mm (f3-5)
fcises were mounted on wooden blocks on a rigid frame of slotted steel angle. The lens
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centres were separated by a horizontal distance of 0-25 m and the wooden mounti
blocks were filed down so that the lenses were at the same height, as measured wit
a steel rule (±0-2mm). A plumb line was used to fix a planar, vertical, background
grid (2 cm squares in a 2-45 X l-22m area) along the back wall of the flight cage, and
camera orientation normal to the grid was checked by sighting down the lenses at a
mirror mounted flush with the grid surface.

Four Sunpak AZ5000 flashguns (GN48 at 100 ASA) were mounted at a small angle
to the floor of the flight cage to maximize contrast between the bubbles and the
background. The flashguns were triggered sequentially at intervals determined by a
chain of four 555 timers. Opto-isolators before the SCRs in each timing circuit
prevented interference from the high voltage switching of the flashguns. Time inter-
val settings were calibrated with a Marconi Instruments Universal Counter Timer
2438 applied at the opto-isolator output pins. With the flashguns set at full power, the
photographic depth of field spanned the entire width of the flight cage, and the gradual
tail-off in light intensity (total flash duration approx. 3-5 ms) of each flash allowed the
direction of travel of each bubble to be deduced.

In the experiments, the camera shutters were opened for 1/8 s, during which time
the four flashguns were triggered; camera apertures were set at f32. Ilford HP5 film
was processed in Acuspeed developer at an equivalent speed of 800 ASA and the
negatives were then printed with a Leitz Focomat V35 enlarger and 40 mm Zeiss lens
onto 18X24cm sheets of Kodalith 4556 or Ilfolith IH7 lithographic film. These
positive enlarged transparencies formed the raw material for all subsequent analysis.

Photogrammetry
In this section we briefly describe how the photocoordinates (x,y) of bubble images

on pairs of stereophotographs (stereopairs) were used to derive their three-
dimensional real space coordinates (X,Y,Z). The object space is that part of real space
containing information to be used in the analysis. An exposure station is the position
of the camera at the time of exposure, or more precisely in this case, the location of
the point half-way between the incident nodal point and the emergent nodal point
along the optical axis of the lens. This 'lens centre' was estimated from technical
drawings supplied by Nikon. The principal point on a photograph is that point at the
intersection of the focal plane with a line from the rear nodal point of the camera lens
perpendicular to the focal plane.

The two enlarged lith positives of a stereopair were fixed on the carriages of a Karl
Zeiss Jena Stecometer (stereocomparator) where corresponding points on the stereo-
pair could be measured. The photographs were viewed in stereo through binoculars
and their positions, absolute and relative, were adjusted until a reference floating mark
appeared to rest on the desired point. At the push of a button, the stereocomparator
coordinates (x,y) of the left and right photographs were recorded. For each stereopair,
up to 2500 bubble images were digitized in this fashion and recorded on paper tape.

For each stereopair, the four corner points of the left and right photographs were
digitized so that the data in the stereocomparator coordinate system could be converted
to a photographic coordinate system with origin at the principal point, if the principal
point was assumed to lie at the intersection of the diagonal lines joining opposite
corner points. This is illustrated in Fig. 2A, where the comparator coordinates of tW
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Fig. 2. (A) The principal point (So ,yo) marks the intersection of principal rays from the perspective
centre with the negative after they have travelled through the lens system. In a first estimate, it is
assumed to lie in the geometric centre of the negative frame. Under magnification, the corners of the
frame are actually curved (exaggerated in this diagram) and the corner points are taken from linear
extrapolation of the frame edges. (B) All data points in the stereocomparator coordinate system (i,y)
are now expressed in a photographic coordinate system (x,y) with origin at the principal point.

principal point (xo ,yo) are calculated from the comparator coordinates of the corner
points of the photograph (XA-D .YA-D) by

and

XO = - (XA + XB + XC + X D ) ,

4

yo = - (yA + yB + yc + YD).
4

(1)

The comparator coordinates (x,y) of a point may now be reduced to photocoordi-
nates (x,y) with origin at the principal point by the simple relation:

x = x — xo,

y = y - yo, (2)

as shown in Fig. 2B. The relationship between these photocoordinates (x,y) and the
object space coordinates (X,Y,Z) for any given point is simple and exact if certain
conditions are satisfied. The basic geometry is given in Fig. 3. The point A has object
space coordinates XA ,YA ,ZA and its image has photocoordinates (x, ,y,) and (x'a ,y'a)
fc the left and right photographs respectively. The horizontal distance between
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exposure stations Li and L2 is the camera base B. B is parallel to the X axis and i »
distance H from it along the Z axis which runs parallel to the optical axes of the camera
lenses, f is the focal length of the lenses. The position of A in object space is related
to theparallax of that point. For the geometry considered here, only x-parallax occurs
and this change in x coordinate from one photograph to the next is simply,

pa = - x (3)

XA ,YA and ZA are now given by the parallax equations which may be derived by
considering similar triangles in Fig. 3,

** •» •©•

and (4)

In equations (4), x, ,ya and p>, have been measured from the photographs, H and B are
known and f is known, at least nominally. Equations (l)-(4) were applied to each
point in object space (i.e. to each bubble image) to yield real space coordinates which
were then corrected for systematic errors as described in the next section. All
photogrammetric details herein, including Fig. 3, are adapted from Wolf (1974). A
clear derivation of the parallax equations may be found in Hallert (1960) and Thompson
(1966) contains a thorough discussion on the sources of errors and their correction.

Fig. 3. Perspective geometry of a pair of normally orientated overlapping photographs. The point A
in object space appears at a and a' in the left and right photographs respectively.
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Sources of error

As can be seen in Fig. 3, the parallax equations assume that the cameras are aligned
with their lens axes parallel to each other and normal to the ground base plane XY.
Errors in the determination of H and B enter directly into equations (4). H could be
fixed to ±0-5 mm (1/6 X mean bubble diameter) and B was determined to within
0-2mm. The focal length is also assumed to be fixed and affects the scaling in Z,
although it is in fact known only nominally from lens specifications. As measurements
have been taken from enlarged positives, scaling corrections must be applied later
from analysis of a control object of known dimensions, and these will also take care
of any uncertainty in the focal length. The accuracy of the measured photocoordinates
(x» ,y») and the parallax between them, p,, is affected by any deviation from the ideal
geometry of Fig. 3. Errors in the determination of the principal point, lens aberra-
tions, film emulsion shrinkage, film curvature in the camera or enlarger and imprecise
orientation of the photographic system will all affect the fidelity of the final result.

Corrections
The lack of geometric stability may be compensated for, given sufficient object

space control and an analytical data reduction system (Karara & Faig, 1980).
Specialized techniques requiring extensive object space control (reviewed by Karara,
1980) cannot be used here as the flight path must remain free of obstructions. We make
use of the fact that the camera positions are accurately determined so that they
themselves may be used as control points in object space. Also, taking advantage of
the fact that the data points are well distributed in space, the data field can be sub-
divided into a number of separate blocks where the small distortions are corrected by
applying the technique known to photogrammetrists as 'relative orientation by
collinearity' (Faig, 1973). Here, a set of collinearity equations are written for each
point in object space, expressing the ideal condition that the exposure station, an
object point and its photographic image all lie on a straight line. So,

_ _ f [ mii(XA-XL) + mi2(YA-YL) + mi3(ZA-ZL) 1
Lm31(XA-XL) + m32(YA-YL) + m33(ZA-ZL) J'

_ _ f [ m2i(XA-XL) + m22(YA-YL)
y* L 3 i (X A -X L ) + m32(YA-YL) + m33(ZA-ZL) -I'

where x, and y, are the photocoordinates of an image point with real space coordinates
XA ,YA ,ZA . The exposure station has real space coordinates XL ,YL ,ZL , f is the focal
length of the camera and the m coefficients are functions of the rotation angles (0, <p
and X about X, Y and Z respectively, known as the direction cosines. The equations
are linearized by taking the first terms of a Taylor series and solving iteratively to a
preset convergence limit. Again, these equations may be found in Wolf (1974) and are
thoroughly derived with examples of applications by Inghilleri (1968). When there
are more than five object points, some data are redundant and a least squares solution
is used, resulting in corrected real space coordinates for each point, together with
statistics concerning residual errors and standard deviations for position estimates of
fech point.
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Scaling in X, Y and Z is calculated by reference to stereopairs of a control cut*
analysed in the same way. A cube with sides of 0-2 m was suspended in object space
and photographed and scaling factors were determined by the apparent lengths of X,
Y and Z in the reconstructed image. The cameras were not moved after this calibra-
tion procedure. Subsequent reconstruction of the same cube from another stereopair
produced mean standard deviations of 0*35 mm in X, 0*33 mm in Y and 0-52mm in
Z. The mean difference between measured and calculated lengths on the cube was
± 0-50mm. Given an estimate for the standard deviation of each time interval from
timer calibration, the standard error of velocity measurements may be calculated (G.
M. Jarman, personal communication), and measured velocities should be accurate to
within 10%.

Construction of velocity maps

The u, v and w components of velocity in X, Y and Z respectively were calculated
over each of the three time intervals within each set of four bubble images. Velocity
maps were drawn by plotting the particle paths in two dimensions and the length of
these lines are directly proportional to the velocity in that plane. When it proved
convenient to refer bubble movements and velocities to some other system of rotated
coordinates, the following rotation equations were applied:

X' = Xcosx + Ysinx

Y' = Ycosx-Xsinx. (6)

Rotation about the Z axis through an angle X transforms the original X, Y coordinates
to X', Y'. Bubble velocities are then recalculated for this system as before. Sections
could be taken through the bubble field in any plane, taking slices thin enough so that
three dimensional effects may be regarded as being constant across that slice.

Analysis and computer facilities

Paper tape issuing from the stereocomparator was fed to the Honeywell Multics
Computer System at the University of Bristol where all photogrammetric analysis and
velocity field calculations were performed. All programmes were written in
FORTRAN IV; that used for relative orientation was adapted from code written by
P. R. Wolf. All model calculations which are discussed later in this paper were
performed on a Research Machines 380Z microcomputer in Microsoft BASIC and
cin6-film analysis was performed on a NAC Film Motion Analyser connected to the
same machine.

RESULTS

Wake structure and velocity profiles

Fig. 4 is typical of the approximately 900 stereopairs obtained which indicate that
a ring-like structure does exist in the wake. We may note that the helium bubbles
appear to be following the air flow faithfully.

In 210 of these stereopairs, conditions were determined accurately enough for
quantitative work. Owing to the large number of computer and man hours required!
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Fig. 4. The vortex wake of a pigeon in horizontal flight at 2 '4ms '. The pigeon, flying from left to
right across the field of view leaves a vortex ring structure in the wake, as shown by the multiple images
of the helium bubbles. Each bubble reflects light off both the front and back surfaces of the soap film
and so appears as a double streak line. The mean time between successive images is S ms. The squares
in the grid are 2cmx2cm.

R. SPEDDING, J. M. V. RAYNER AND C. J. PENNYCUICK (Facing p. 88)
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^ five stereopairs were fully analysed. The selection criteria were that there should
be an extensive but well distributed coverage of bubbles in the wake and that the wake
structure produced during one wingbeat cycle (downstroke + upstroke) should be
visible in stereo. After inspecting 900 stereopairs, the development and general struc-
ture of the wake are quite familiar and readily identified. The following results are
outlined with reference to one representative stereopair. The consistency of the wake
parameters measured in all five stereopairs and summarized in Table 2 is thought to
justify such an approach.

Figs 5 and 6 are simple reconstructions of the wake. The pigeon flew from right to
left across the field of view and the multiple exposure of the tail has been outlined in
Fig. 5A. There are 1828 bubble images represented here, most of them in the
foreground, as stereo views of bubbles far from the cameras were often obscured or
confused by the intervening bubble cloud. The wingbeat is assumed to be symmetri-
cal about the mid-plane and the wake is also taken to be symmetrical about the same
plane. In the plan view of Fig. 5B the position of the outspread tail feathers is shown
together with a scale bar showing the extent of the wingspan. The same format is
shown in Fig. 6 which shows four vertical slices, 100 mm thick, in sections 1—4 moving
from the background towards the cameras. Sections 1 and 2 straddle the mid-plane
and sections 3 and 4 cut through the outer regions of a ring-like structure. The general
wake structure revealed is similar to that which might be expected for sections through
a small-cored vortex ring. The hypothesis that such a ring is present may be further
tested by constructing velocity profiles for various sections through the wake; these
may be compared with those reported in experimental studies of vortex rings by
Sullivan, Widnall & Ezekiel (1973), Sallet & Widmayer (1974), Didden (1977),
Maxworthy (1977) and Giihler & Sallet (1979), among others. Fig. 7 shows the
coordinate systems and notation used in this study. Note that the vortex structures in
the wake are generally inclined from the horizontal, the angle %p being the angle
between the horizontal and a convenient longitudinal axis in the wake. This corres-
ponds to the ring momentum angle of Rayner (1979a) for a wake composed of vortex
rings. Note also that experiments were conducted with the bird flying both from left
to right (Fig. 4) and from right to left across the field of view (Figs 5, 6, 7). This causes
few problems in the analysis, the major change being the change in sign of xp. There
is some asymmetry in the wake however (cf. Fig. 8) which will be discussed later and
all following analysis and discussion assumes the bird to be flying from right to left.

The v(X') velocity profile of Fig. 8 shows the variation in fluid velocity normal to
the ring plane as we move along the ring plane at the centre line Zo. v(X') profiles were
obtained for a series of sections over the whole range of Z and conformed to expected
flow patterns for sections across a vortex ring. At the midline, Zo, dv/dX' is greatest
as v changes sign across the vortex core. Remembering that Fig. 8 is a superposition
of the circulatory flow of the vortex together with its own translational motion (the

Fig. 5. Reconstructions of the three dimensional bubble field. (A) Projected onto the XY plane and
viewed from along the Z axis. The leading bubble (the final image in the series of four) is plotted as
a circle and the length of the trailing 'tail' is proportional to the magnitude of the velocity in XY. The
angle between the estimated ring plane and the horizontal is the ring momentum angle, xp. (B)
Projection onto the Z plane, viewed from along the Y axis. Format as in (A). The pigeon's tail position
and wing span (2b = 0'66m) are shown.
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X'c

Fig. 7. Coordinate systems and notation. (A) The origin of the XY coordinates is arbitrarily set at
the left camera lens centre. The X',Y',Z system is defined relative to the wake structure, s^en here
in cross section with cross-sections of a vortex at Ai and A2. The motion of the bubble is resolved into
u and v components along X' and Y' respectively, rji is the ring momentum angle. (B) Plan view from
along the Y' axis. X'^,, is the X' coordinate of the centre of the vortex core. Velocity profiles in Figs
8, 9 and 11 are confined to a small range of Z about Zo.

ring is convecting downwards away from the bird), the vortex core location is given
by the intersection of the line of v(X') with a horizontal line at U,, the ring convection
velocity. U» is a mean value taken by measuring the distance between successive rings
on photographs where this could be discerned; there were 32 of these. The distance
travelled by one ring during one stroke period (T) could be calculated, T is known
from cine'-film analysis, and U8 was thus estimated at 1-25 ms"1, S.D. 0-3. This value
is marked on the v axis of Fig. 8. We note that the slope of v(X') is not symmetrical
about X'o . The steeper, better defined slope on the right of the figure corresponds to
the starting vortex shed by the wings while the left-hand side of the curve intersects
the stopping vortex produced at the end of the downstroke. In an ideal vortex r i ^
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Fig. 8. v(X') for a small range of Z about Zo and Y' about Y'o- v is positive when the flow is
downward, as defined in Fig. 7.

these two cross-sections would be identical. The departure from this condition, which
can be seen on close inspection of many stereopairs, is small but consistent. It is not
obvious whether this might be due to distortion by the next ring in the chain, in-
complete roll-up of the more recently shed wake vorticity or if it reflects a time history
of wing circulation and hence vortex shedding into the wake which precludes the forma-
tion of a truly axisymmetric vortex ring. During the course of this investigation we
found that each ring was affected by the development of the next ring in the chain,
indicated by an increase in the ring momentum angle xp with time which was pronoun-
ced on the downstroke producing the newest vortex ring. Of the choices outlined above,
the first thus seems to be implied, but in the absence of any further evidence we note that
the effect is small, ignore it, and concentrate on the velocity profiles across the right-
hand vortex core which is less distorted by interaction with other wake elements.

Having thus located the core position in X', X'core, a profile of u(Y') may be taken
where the velocity parallel to the ring plane is plotted along a line running normal to the
ring plane, through the vortex core, centred at Zo . The resulting profile of Fig. 9 has the

I shape as u reaches peak values ±umax at the edge of the vortex core, decaying
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Fig. 9. u(Y') around Zo and X'o,, .

thereafter with | Y' — Y'o |. The diameter of the vortex core is given by the distance in Y'
between Umin and Uma* • The curve has been fitted by eye and this, together with the
scatter in the data, lends some uncertainty to the value of Ro . However, this did take into
account information from neighbouring profiles at different Z locations and the fact that
each section has a finite thickness when a least squares best fit would always under-
estimate Umin, Umax and du/dY' and similarly overestimate Ro , to an extent depending
on the thickness of the section. A conservative error estimate would be ±20 % which
is close to the standard deviation for all measurements (Table 2).

From such data as presented in Figs 8 and 9, the vorticity co can be calculated at
Zo where the vorticity component due to a vortex line parallel to the Z axis is defined
(e.g. Batchelor, 1967) by

au___av_
3Y' SX'

(7)

The distribution of vorticity across the vortex core is given in Fig. 10. 3u/3Y' and
-Sv/3X' were taken from smoothed curves fitted to the v(X') and u(Y')
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•ofiles. These points are plotted in Fig. 10 and a smooth curve is drawn through a)
which is the sum of the two. While (i) appears to be confined largely to within the
vortex core as defined in Fig. 9 by Umax, the resolution of the technique cannot be
claimed to be fine enough to justify any more precise description.

The circulation, K, a measure of the total vortex strength, is defined by the line
integral of the fluid velocity round any closed curve surrounding the vortex (Batchelor,
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Fig. 10. The vorticity distribution <u(X'—X'core) across the vortex core.
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Fig. 11. v(Y') around Zo and X'o. This curve is integrated to estimate the circulation K.

1967) and following the previous experimental investigations mentioned we calculate
it from

K=J+°VdY'. (8)
— 00

The curve of the fluid velocity normal to the ring along a line running normal to the
ring plane and along the axis of symmetry is shown in Fig. 11. This curve of v(Y') at
X'o has been drawn by eye, reflecting the fact that data in this region are somewhat
sparse as bubbles moving at high velocity in a straight or nearly straight path were
difficult to identify without ambiguity. Further from the ring plane, slowly moving
bubbles, appearing as a blur of closely-superimposed images, were also impossible to
digitize accurately. We integrate under this line assuming symmetry about the ring
plane and a rapid decay of v in the far field. This is confirmed in the photographs. The
uncertainty in this estimate of K should be ±20 % at the outside.

Table 2. Wake parameters measured from five stereopairs

Ring parameter

Momentum angle, V
Ring length
Ring width
Core radius, Ro
Ro/R
Circulation, K

Units

degrees
m
m
m

m V

PI

8-0
0-424
0-400
0031
015
1-52

Stereopair number

P2

13-5
0-396
0-381
0-046
0-24
1-80

P3

130
0-452
0-442
0034
016
1-66

P4

9 0
0-397
0-390
0030
015
2-08

P5

10-5
0-400
0-386
0034
0-17
1-55

Mean

10-8
0-414
0-400
0-035
0-17
1-72

S.D.

2-4
0-024
0025
0006
0-038
0-23
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p all cases, velocity profiles obtained from sections through the wake were consis-
tent with the hypothesis that it is composed of vortex rings. The results are sum-
marized in Table 2.

Vortex ring energy

A direct estimate of the self-energy of these vortex rings can now be made if the ring
is assumed to be circular. As Table 2 shows, the ratio of the vortex core radius Ro to
the vortex ring radius R is small. Fraenkel (1970), Saffman (1970) and Norbury
(1973) have demonstrated that when Ro/R is less than 0-25, the self-energy of a small-
cored, planar, circular vortex ring is given by the formula:

E, = ip/5?R[ln(8R/Ro) + A - 2] . (9)

As an isolated circular vortex ring persists without deformation, this kinetic energy
will remain constant as the ring travels. The presence of vorticity elsewhere in the flow
field (including on the wings) can induce deformation in the ring under investigation,
but the instantaneous self-energy can still be derived from equation (9). There are
additional energy components resulting from vortex interactions (mutual energy), but
experience with the vortex ring model (Rayner, 1979a,b) has shown that these inter-
actions are probably small compared to the self-energy. Moreover, the most obvious
effect of such interactions is a perturbation to the convection velocity Ug, and as such
it is already accounted by this experimental method. In these experiments, the cir-
culation K and ring dimensions R and Ro have all been measured, the air density g is
known to be 1-205 kg m~3 at 20 °C, and it remains to assign a value to the constant A.
A varies between 0 and 0*5, depending on the distribution of vorticity ft) across the
vortex core, and has the value 0-25 when the vorticity is constant across the core.
Although Fig. 10 shows that CO declines a little towards the edge of the core, 0-25 has
been chosen here for ease of comparison with the vortex ring model. The calculated
value of E, for each stereopair appears in Table 3.

Model predictions
The vortex ring model (Rayner, 1979a,b) used here for comparison with experi-

ment is based on the logic that in steady level flight the mean forces acting on the bird
are in equilibrium. The vortex-based forces of lift and induced drag must balance
weight and the frictional drag forces. If it is assumed that useful aerodynamic force
is generated by the downstroke alone, then momentum to support and propel the bird
is transferred to the wake in the form of discrete bursts of vorticity, each representing
a single downstroke. By the laws of vortex conservation these bursts must be com-
posed of closed vortex loops, and it is natural to choose to model these structures as
small-cored vortex rings. As pointed out by Lighthill (1973), a vortex ring has the
property of conveying a given quantity of momentum with the least energy (or in-
duced drag), and is therefore likely to be selected by birds - if feasible - since power
economy in flight is critical. It is well known that subsonic aircraft wakes roll up
into small-cored line vortices, and there is limited previous experimental evidence
(Magnan, Perrilliat-Botonet & Girerd, 1938; Kokshaysky, 1979) that, in some birds
at least, the wake of a flapping wing consists of discrete vortex rings. The experiments
^scribed here provide further strong evidence for this hypothesis, and give the first
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Table 3. Comparison of wake parameters as predicted by the vortex-ring model (left)
and as measured by experiment (right)

Ring dimensions: long axis (m)
short axis (m)
ring radius R (m)
core radius Ro (m)
Ro/R

Ring momentum angle t/i (degrees)
Wake element spacings

normal to the ring plane
parallel to ring plane

Ring convection velocity U, (ms"1)
Ring circulation K (m2 s~')
Ring momentum pKnrR2 (kgm"1 s"1)
Ring self-energy E. (J)
Induced power (W)

Model predictions

0-557
0-495
0-263
0-045
0-17
0-30

0-324
0-360
2-15
1-97
0-514*
1-29
9-56

In both cases ring radius R is the geometric mean of the long and short semi-axes;
relative core radius Ro/R has been set to the measured value 0' 17.

• Value required to support weight, profile and parasite drags for single wing beat

Measured

0-414
0-400
0-203
0035
0-17

10-8

0-221
0-336
1-25
1-72
0-270
0-76
5 05

in the model predictions,

opportunity to measure the properties of the vortices in comparison with theoretical
descriptions of flight performance.

Model predictions of wake parameters and induced power for the morphological
and kinematic data of Table 1 are shown in Table 3, together with measured values.
As the bird is flying very slowly, parasite and profile drags are small compared with
weight: equivalent flat plate area of the body is estimated as l-42xlO~3m2 so that
parasite drag is 4-9xlCT3N, while the horizontal component of profile drag is
estimated as l-3xlO"2N if profile drag coefficient is 0-02 (cf. Rayner, 1979a). These
drag forces are negligible compared with weight Mg = 343N, even allowing for
substantially higher drag coefficients than quoted, and therefore the wake momentum
angle rp (to the vertical Z axis) should be small (030°). Measured angles range
between 8-0° and 13-5 °, and the increase in angle is largely the result of 'solid-body'
rotation of the vortex ring induced by vorticity generated by previous wing strokes;
such rotation can be readily distinguished on many of the photographs obtained.

The form of the vortex-ring model used to predict the wake configuration is essenti-
ally that described in detail by Rayner (1979a), but with certain simplifications incor-
porated, partly as a response to these experiments. Profile drag and power are now
calculated by blade-element methods for the upstroke as well as for the downstroke,
but since at this flight speed profile drag is insignificant, the change is not critical. The
more important change is possible because wing-beat kinematics have been deter-
mined from film in parallel with flow visualizations. In its original form the model
included a two-dimensional equilibrium condition expressing the balance of mean
forces in horizontal and vertical planes: this condition fixed the vortex-ring momen-
tum angle and vortex momentum, and imposed a constraint on wing-beat kinematics
so that the vortex sheet shed by the wings during the downstroke could deform under
its self-induced downwash into a vortex ring of the appropriate configuration. It is thj|
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:ond constraint that has been relaxed, since with full kinematic data available it
'buld be redundant. Moreover, these experiments indicate that while vortex roll-up

does occur, at these speeds at least it is a more complex process than originally
envisaged, and, pending further experimental evidence, it is unjustified to include a
description of vortex development in the model. The condition now takes the less
strict form of a constraint on wing-beat geometry, in that the mean angle of wing-tip
travel to the horizontal (xpi) must be greater than the momentum angle \p. Since here
xpi is approximately 45 ° there is no difficulty: the constraint only becomes important
in fast flight, where it imposes an upper limit on flight speed. As speed increases ipi
falls, whereas %p rises as profile and parasite drags become bigger; beyond a certain
speed the wing beat cannot generate sufficient thrust. It is not known whether this
constraint is more critical than that of obtaining sufficient power output.

As explained above, ring convection velocity and self-energy are calculated on the
basis of constant vorticity across the vortex core, so that A = 0-25. Predicted self-
energy is calculated for the elliptic vortex ring by the formulae given by Rayner
(1979a, equations 42 and 43), while measured self-energy is obtained for the
equivalent circular ring using equation (9); if the observed ring is assumed to be
elliptical then it has very low eccentricity, and the exact elliptical self-energy is close
to the value given in Table 3.

DISCUSSION

Theory and experiment compared

It is immediately apparent from Table 3 that the vortex rings measured in the wake
are significantly different from expected; they are smaller, and also have lower circula-
tion, and therefore the momentum convected into the wake with each ring is substan-
tially lower than expected, being only 60% of that required to support the bird's
weight. (The momentum associated with a vortex ring is given by its vector area times
the circulation times the fluid density). Even allowing for the rough-and-ready nature
of some of the calculation, the size of the measured wake momentum deficit is disturb-
ing. Apparently the reaction force from air accelerated into the wake by aerofoil action
of the wings is only about three-fifths of that required for weight support.

Primarily because of the size and strength discrepancy, the estimated ring self-
energy E, = 0-76 J is also 60% of predicted (1-29 J). If we calculated induced power
Pi as E./T as explained above, then Pi is only 5-05 W, a surprisingly low value for a
bird of this size at this flight speed. This estimate should not, however, be seen as fully
reliable until the momentum deficit has been satisfactorily explained.

The wake element spacings and ring convection velocities also differ from predic-
tion, due in part to the different size and strength of the measured ring: however, the
equivalent circular ring to that measured would travel at 2-43 m s~l if isolated, and it
is unlikely that vortex interactions would reduce this to as low as l-72ms~1. It is
feasible that this discrepancy is diagnostic of misinterpretation of the nature of the
vortex field, but in view of the regularity with which near-planar, near-circular vortex
loops were discerned this appears to be unlikely.

Inspection of equation (9) shows that the critical quantities affecting estimation of
£ , and hence Pi, are circulation K and ring radius R. All other quantities including
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the core radius Ro and the constant A are the same in both cases. The predicted a n
measured circulations do not differ appreciably, and the root of the discrepancy in
momentum and induced power calculations appears to lie in the value of R measured
from the photographs.

Before taking the comparison of results any further, it is worth summarizing the
assumptions made in each case and considering their effects on the outcome. As
explained above, calculation for the vortex ring model is based on the premise that
forces on the bird are balanced: it follows that the momentum of each vortex ring must
balance the bird's weight, together with the vector sum of profile and parasite drags,
for the duration T of each wing-beat. Ring geometry is calculated from wing-beat
kinematics by assuming near-elliptical loading distribution on the wing during the
down-stroke, and effectively no loading during the upstroke. Momentum balance
determines the circulation of the wake vortex, and wake energy and induced power
are computed. Momentum balance is thus an inviolable condition, vital to the model
calculations, but it is hard to see how the condition, derived directly from Newton's
second law of motion, can be relaxed if the bird is in steady level flight.

At this very low flight speed the bird must be experiencing the most demanding of
all flight conditions, having to generate virtually all wing force by the wing-beat alone
as there is relatively little forward air speed. It is to be expected, therefore, that this
flight pattern will present the vortex-ring model with its most strenuous test. One
outcome of the experiments which is not surprising is that the rings are rather smaller
than expected; ring size is determined by loading distribution on the wing, and clearly
this is somewhat less favourable than the assumed near-elliptical distribution. To
compensate, the circulation should be much higher (approx. 3*28mzs~') for these
small rings to support the weight, but evidently this is not the case.

No momentum balance condition of course is either assumed or stipulated in the
direct computation of momentum from ring size and circulation or of self-energy E,
from equation (9). Here, the approximation is valid for circular, planar, small cored-
vortex rings where Ro < 0-25 R (Norbury, 1973). The latter condition is satisfied but
the rings are not circular, and we cannot claim to have shown that they are truly
planar. The small departures from circular shape do not affect ring energy, but
departures from planarity may cause a small increase. The model also includes the
interactive energy of successive rings in the wake. The magnitude of this is assumed
to be small, as is indicated by the wake photographs; it is estimated for the predicted
wake as 0-14 J, approximately 10 % of the estimated self-energy, and accordingly has
been ignored. Induced power is likely therefore to have been slightly underestimated,
but it will suffice as a first approximation at the rate of energy flow in the wake. In view
of the as yet unexplained momentum deficiency, we are not in a position to argue
whether this represents the true induced power demanded from the bird.

Vortex dynamics
The nature and magnitude of the wake momentum deficit imply that there is a

conceptual flaw in the vortex ring theory, or the measurements, or both. In both cases,
it is assumed that the deformed, unstable, vortex sheet initially shed from the wingtips
and trailing edges rolls up into a vortex ring without loss of momentum. This argument
is subject to certain modifications and qualifications to allow for the effects of viscosity
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•Maxworthy (1974) has described the formation and motion of turbulent vortex
rings in the Reynolds number (Re = 2RU»/v: v is the kinematic viscosity) range
0-25 X104-0-75 X104; similarly defined, Re = 3-4x 104 for our rings in the wake. Two
fundamental processes were identified as entrainment and subsequent rejection of
fluid into a turbulent wake, and the resulting decrease in ring impulse as vorticity is
deposited into the wake appears as a momentum deficit therein. Maxworthy (1977)
also described an axial flow along the core of a turbulent vortex ring; such an axial
component can be detected in photographs like Fig. 4, and Widnall, Bliss & Zalay
(1971) have remarked that a radial force would be necessary to support a momentum
flux around a vortex ring. While noting these considerations, it is difficult to make
valid comparisons when the generation mechanisms of the vortex flows are so dif-
ferent. We may further note that the azimuthal wave propagation described by Max-
worthy took place about 10 ring diameters downstream of the generating nozzle and
therefore far beyond the range we are considering, and also that there is no obvious
large scale turbulent structure aside from the vortex ring visible in our photographs.

Similarly, viscous dissipation of the ring energy and observable wake momentum
has been ignored. This is justified, according to Saffman (1970) for t < < R2/v where
t is a suitable time scale, vis the kinematic viscosity of the fluid and R is the ring radius.
In our case, v = 0-15Xl0~4rn2s~1 and R = 0-2m, so that viscous decay of the ring is
not critical within 2-7Xl03s, rather more than the stroke period 0-15 s.

It seems unlikely then that these turbulent and viscous effects will modify the flow
field to anything like the extent required to explain the measured wake momentum
deficit. Neither can we identify any other large scale structures in the wake which
could account for the missing momentum. For example, a flow normal to the tail
surface can be seen towards the end of the downstroke, just after depression of the tail,
but the vertical component of the reaction force is estimated to be less than 10 % of
that required.

Qpu and Dpro should contribute little towards the overall lift at these low flight
speeds. Furthermore, a significant contribution towards weight support from Dp™,
for example, would be accompanied by a concomitant increase in the drag which
would, in turn, have to be compensated by increasing the vortex wake momentum.
The energy expended against Dp« and Dpro is assumed to pass into a separate viscous
wake and there is no evidence from the photographs to suggest that such a wake might
contain the required momentum.

CONCLUSION

The measured wake momentum deficit appears to imply a physical impossibility
and it is difficult to identify possible sources of error. Indeed we are in no position to
state categorically that the deficiency actually exists. Similarly, we cannot claim to
have made a true measurement of Pi and we must remain equivocal concerning the
accuracy of the various theoretical estimates of Pi.

As guidance for future attempts to resolve this paradox, we might bear in mind the
fact that the conceptual model used in the measurements bears many similarities and
shares many of the assumptions of the model which we are attempting to test. Also,

crucial importance of accurate measurements of the ring radius, R and, to a lesser
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extent the circulation, K, has been highlighted by the somewhat puzzling ^
presented here and these quantities should be very carefully measured in the further
work which seems to be necessary.
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