Carbon dioxide (CO2) is commonly used to immobilize insects and to induce reproduction in bees. However, despite its wide use and potential off-target impacts, its underlying mechanisms are not fully understood. Here, we used Bombus impatiens to examine whether CO2 impacts are mediated by anoxia and whether these mechanisms differ between female castes or following mating in queens. We examined the behavior, physiology and gene expression of workers, mated queens and virgin queens following exposure to anoxia, hypoxia, full and partial hypercapnia, and controls. Hypercapnia and anoxia caused immobilization, but only hypercapnia resulted in behavioral, physiological and molecular impacts in bees. Recovery from hypercapnia resulted in increased abdominal contractions and took longer in queens. Additionally, hypercapnia activated the ovaries of queens, but inhibited those of workers in a dose-dependent manner and caused a depletion of fat-body lipids in both castes. All responses to hypercapnia were weaker following mating in queens. Analysis of gene expression related to hypoxia and hypercapnia supported the physiological findings in queens, demonstrating that the overall impacts of CO2, excluding virgin queen ovaries, were unique and were not induced by anoxia. This study contributes to our understanding of the impacts and the mechanistic basis of CO2 narcosis in insects and its impacts on bee physiology.

This article has an associated ECR Spotlight interview with Anna Cressman.

You do not currently have access to this content.