Animals respond to sudden challenges with a coordinated set of physiological and behavioral responses that enhance the ability to cope with stressors. While general characteristics of the vertebrate stress response are well described, it is not as clear how individual components covary between or within individuals. A rapid increase in glucocorticoids coordinates the stress response and one of the primary downstream results is an increase in glucose availability via reduced glucose utilization. Here, we asked whether between- and within-individual variation in corticosterone directly predict variation in glucose. We collected 2673 paired glucose and corticosterone measures from 776 tree swallows (Tachycineta bicolor) from four populations spanning the species range. In adults, glucose and corticosterone both increased during a standardized restraint protocol in all four populations. Moreover, in one population experimentally increasing a precursor that stimulates corticosterone release resulted in a further increase in both measures. In contrast, nestlings did not show a robust glucose response to handling or manipulation. Despite this group-level variation, there was very little evidence in any population that between-individual variation in corticosterone predicted between-individual variation in glucose regulation. Glucose was moderately repeatable within individuals, but within-individual variation in glucose and corticosterone were unrelated. Our results highlight the fact that a strong response in one aspect of the coordinated acute stress response (corticosterone) does not necessarily indicate that specific downstream components, such as glucose, will show similarly strong responses. These results have implications for understanding the evolution of integrated stress response systems.

You do not currently have access to this content.