The integration of sensory information with adequate motor outputs is critical for animal survival. Here, we present an innovative technique based on a non-invasive closed-circuit device consisting of a perfusion/stimulation chamber chronically applied on a single leg of the crayfish Procambarus clarkii. Using this technique, we focally stimulated the leg inside the chamber and studied the leg-dependent sensory–motor integration involving other sensory appendages, such as antennules and maxillipeds, which remain unstimulated outside the chamber. Results show that the stimulation of a single leg with chemicals, such as disaccharides, is sufficient to trigger a complex search behaviour involving locomotion coupled with the reflex activation of antennules and maxillipeds. This technique can be easily adapted to other decapods and/or other sensory appendages. Thus, it has opened possibilities for studying sensory–motor integration evoked by leg stimulation in whole aquatic animals under natural conditions to complement, with a direct approach, current ablation or silencing techniques.

You do not currently have access to this content.