Mitophagy, the selective degradation of mitochondria by autophagy, is a central process essential to maintain cell homeostasis. It is implicated in the clearance of superfluous or damaged mitochondria and requires specific proteins and regulators to perform. In yeast, Atg32, an outer mitochondrial membrane protein, interacts with the ubiquitin-like Atg8 protein, promoting the recruitment of mitochondria to the phagophore and their sequestration within autophagosomes. Atg8 is anchored to the phagophore and autophagosome membranes thanks to a phosphatidylethanolamine tail. In yeast, several phosphatidylethanolamine synthesis pathways have been characterized, but their contribution to autophagy and mitophagy are unknown. Through different approaches, we show that Psd1, the mitochondrial phosphatidylserine decarboxylase, is involved only in mitophagy induction in nitrogen starvation, whereas Psd2, located in vacuole/Golgi apparatus/endosome membranes, is required preferentially for mitophagy induction in the stationary phase of growth but also to a lesser extent for nitrogen starvation-induced mitophagy. Our results suggest that Δpsd1 mitophagy defect in nitrogen starvation may be due to a failure of Atg8 recruitment to mitochondria.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview

Supplementary information