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SUMMARY STATEMENT 

 

    filoVision is a filopodia analysis platform that uses deep learning and tip markers to 

measure filopodia, prioritizing automation and flexibility for user data.  

 

ABSTRACT 

    Filopodia are slender, actin-filled membrane projections used by various cell types for 

environment exploration. Analyzing filopodia often involves visualizing them using actin, 

filopodia tip, or membrane markers. Due to the diversity of cell types that extend 

filopodia, from amoeboid to mammalian, it can be challenging for some to find a reliable 

filopodia analysis workflow suited for their cell type and preferred visualization method. 

The lack of an automated workflow capable of analyzing amoeboid filopodia with only a 

filopodia tip label prompted the development of filoVision. filoVision is an adaptable 

deep learning platform featuring filoTips and filoSkeleton. filoTips uses a single tip 
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marker to label filopodia tips and the cytosol, allowing information extraction without 

actin or membrane markers. In contrast, filoSkeleton combines a tip marker with actin 

labeling for a more comprehensive analysis of filopodia shafts in addition to tip protein 

analysis. The ZeroCostDL4Mic deep learning framework facilitates accessibility and 

customization for different datasets and cell types, making filoVision a flexible tool for 

automated analysis of tip-marked filopodia across various cell types and user data. 

INTRODUCTION 

    Filopodia are thin, actin-rich membrane projections cells use to explore and interact 

with their environment (Eilken and Adams, 2010; Mattila and Lappalainen, 2008; 

Mortimer et al., 2008). They are dynamic structures typically made up of 10-30 parallel, 

bundled actin filaments that can vary in length, from 1-10 µm (Mattila and Lappalainen, 

2008; Medalia et al., 2007; Mellor, 2010). Filopodia are initiated from the actin-rich 

cortex where parallel bundles of actin grow out perpendicular to the plasma membrane. 

These actin bundles are typically nucleated by the actin polymerases VASP or formin 

and are cross-linked by actin binding proteins such as fascin (Jacquemet et al., 2015; 

Mattila and Lappalainen, 2008). Their formation often requires the action of a MyTH4-

FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) myosin such as 

the mammalian filopodia myosin, Myosin 10 (Myo10) or the amoeboid filopodia myosin 

(DdMyo7) that collaborate with actin polymerases to initiate and extend filopodia. 

Filopodial myosins, along with VASP and formin, are robustly localized to the filopodia 

tip during elongation (Bohil et al., 2006; Petersen et al., 2016; Tuxworth et al., 2001). 

Increased expression of filopodial proteins such as Myo10 and the actin cross-linker 

fascin is often associated with greater metastatic potential (Arjonen et al., 2014; Cao et 

al., 2014; Vignjevic and Montagnac, 2008) and indeed metastatic cells make increased 

numbers of filopodia that are used to move in 3D, adhering to and aligning extracellular 

matrix fibrils (Arjonen et al., 2014; Cao et al., 2014; Jacquemet et al., 2015; Jacquemet 

et al., 2016; Shibue et al., 2012; Summerbell et al., 2020).   

 

    Studies addressing filopodial functions or the mechanism of initiation and extension 

of filopodia rely on visualizing and measuring filopodia. There are at least three methods 

for visualizing filopodia: labeling the cell membrane, labeling the actin cytoskeleton, and 
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marking the tips of filopodia. The two most common methods of visualizing filopodia are 

labeling the actin cytoskeleton using the actin-specific probe phalloidin or a marker 

enriched in filopodia tips that is also present in the cytosol (see, for example Jacquemet 

et al., 2019b; Petersen et al., 2016). Filopodial myosins, like Myo10 and DdMyo7, and 

the actin polymerases VASP and formin are commonly used to mark the ends of 

filopodia tips. (Dobramysl et al., 2021; Jacquemet et al., 2019b; Kerber and Cheney, 

2011; Petersen et al., 2016; Young et al., 2018). This is similar to using a microtubule 

tip protein such as EB1 to label and track microtubule growth (Vaughan, 2005). Tip 

markers and actin labels both present certain advantages and disadvantages. Tip 

proteins clearly mark the tips of filopodia, providing precise identification of their distal 

end. They have a strong signal-to-noise ratio allowing for easy detection and can 

provide clear signal separation between the cell body and filopodia tips, enabling a well-

defined cell edge. However, if filopodia shaft lengths are needed and the cell type is 

known to have long, curled filopodia, using tip markers alone might not be suitable. If 

the shaft lengths of long, curled filopodia are needed, an actin label might be more 

appropriate. However, it can be difficult to define the cell edge without clear separation 

of the actin-labeled cell body and filopodia stalks which can cause challenges for 

identifying the base of filopodia. Thus, while curved filopodia shaft lengths could be 

more reliably measured with an actin label, the tips and base of filopodia can be better 

defined using a tip-marker. 

 

    Many tools have been developed to measure filopodia, demonstrating that there is 

high demand for workflows that quantify filopodia production. These tools are typically 

targeted towards a certain cell type and/or filopodia visualization method, and each 

have their own strengths and limitations (Table S1; Barry et al., 2015; Driscoll et al., 

2019; Jacquemet et al., 2017; Mousavi et al., 2020; Nilufar et al., 2013; Tsygankov et 

al., 2014; Urbančič et al., 2017). For example, FiloQuant and Filopodyan each have 

different visualization targets (Jacquemet et al., 2017; Urbančič et al., 2017) - FiloQuant 

uses an actin label to identify and measure filopodia stalks protruding from a cell body, 

whereas Filopodyan uses a membrane marker with the option of including a tip marker 

to measure filopodia and their dynamics over time. To the best of our knowledge, a tool 
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specifically designed to measure filopodia using a tip marker alone or in combination 

with an actin label doesn’t exist, yet many use tip markers in their filopodia analysis 

workflow (Petersen et al., 2016; Jacquemet et al., 2019a,b). Furthermore, it can be 

difficult to find tools adaptable for diverse cell types like amoeba, likely due to most tools 

being designed for working with mammalian cells. Thus, filoVision was developed to 

address the lack of an automated workflow for measuring tip-marked filopodia in diverse 

cell types like amoeba.  

 

 

RESULTS 

Overview of filoVision: a flexible automated filopodia analysis platform 

    The filoVision platform contains two notebooks, filoTips and filoSkeleton. filoTips uses 

deep learning and a tip marker alone to measure the cell body and filopodia, while 

filoSkeleton uses tip markers in combination with an actin-label to extract more precise 

filopodia shaft length information from long, curled filopodia like those formed by HeLa 

cells. The U-net convolutional neural network architecture was chosen because it 

enables successful model training on very few images compared to other architectures 

partially due to its training strategy involving data augmentation (Ronneberger et al., 

2015). This has played a large role in the U-net architecture being widely adopted by 

the biological and medical communities for image segmentation applications. Briefly, the 

default filoVision U-net models were trained with the ZeroCostDL4Mic platform (von 

Chamier et al., 2021). This platform enables training models with a graphical user 

interface, allowing easy training, and more importantly, easy transfer learning 

capabilities for users to finetune our models to their unique datasets code-free in a 

timeframe of 1-3 days which then provides tailored automation for future analyses. After 

the models classify pixels, the OpenCV library is used to identify cell bodies and 

filopodia as objects, allowing their quantification (see Methods).  

 

filoTips: filopodia analysis using deep learning and tip markers 

    filoTips was developed to analyze filopodia identified by a tip marker such as Myo10, 

DdMyo7, VASP, or Formin. It uses a U-net deep learning model to classify pixels as 
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background, body, or filopodia tip. The default model was trained on a dataset of 385 

images of live vegetative Ddisc (Dictyostelium) cells expressing DdMyo7 (see Methods, 

Table S2). After pixels are classified, OpenCV is used to detect multiple body and tip 

objects within an image and assigns the filopodia tips to cells based on Euclidean 

distance (Fig. 1). This enables automated measurements of cell area, perimeter, aspect 

ratio, and filopodia number per cell. It also measures filopodia length, calculated as the 

linear distance between the cell cortex and filopodia tip, and tip marker protein 

fluorescence intensity within the tip, body, and cortex. To establish filoTips as a reliable 

analysis tool, its output was compared to manual analyses in ImageJ (Schneider et al., 

2012) using 54 out-of-sample (independent test dataset previously unseen by model) 

Ddisc cells expressing mNeonGreen-DdMyo7 (Fig. 2A, Methods, Table S2). A random 

number array was used for each correlation calculation as a non-correlated control. 

There was a strong correlation in filopodia number per cell measurements between 

filoTips and manual counting, with a Pearson’s correlation coefficient of 0.99 (Fig. 2B). 

Measurements of the lengths of 40 randomly selected filopodia were also strongly 

correlated between filoTips and manual counting with a correlation coefficient of 0.98 

(Fig. 2C). The length measurement works well when analyzing filopodia that protrude 

directly out from the cortex which is common for many cell types. However, cell types 

like HeLa can sometimes have long, curled filopodia that if analyzed with filoTips could 

result in incorrect lengths being recorded. For this scenario, filoSkeleton (see below) 

might be more appropriate because it uses an actin stain to visualize filopodia shafts for 

length extraction. 

 

    Filopodia tip proteins are also present in a visible cytosolic pool (Petersen et al., 2016 

and Jacquemet et al., 2019b) and this enables filoTips to obtain additional information 

about their distribution and determine several cell parameters such as cell area, 

perimeter, and aspect ratio. filoTips uses the cytosolic signal to outline the cell body to 

calculate area and perimeter. It draws a minimum area bounding box for each cell to 

define its cell body aspect ratio calculated by dividing the shorter axis by the longer axis 

where a score of 1 equals a perfect square. The distribution of tip marker protein in the 

cell body, cortex, and filopodia tips can be determined by calculating the mean 
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fluorescence intensity of each and calculating their ratios. For example, a cortex/body 

intensity ratio of 1.2 indicates a 1.2x enrichment of the tip protein at the cortex 

compared to body. Similar to what was found for filopodia numbers and length, a strong 

correlation is seen between values obtained from filoTips and manual measurements of 

cell area and body aspect ratio (Fig. S1A). 

 

Fine tuning filoTips to diverse cell types 

    A primary objective of filoTips is to prioritize flexibility so that users can fine tune the 

tool to their own unique datasets and cell types. filoTips models are publicly available 

(see GitHub repository), in fact filoTips will ask the user if they want to use the default 

model, and if so, users will automatically have instant access without additional steps. 

However, users can also tune the default model trained on Ddisc cells (see GitHub 

repository for model links) to their own data by taking advantage of transfer learning 

capabilities in the ZeroCostDL4Mic 2D multi-label U-net notebook. For example, a lab 

member with no prior deep learning knowledge was able to generate 141 ground truth 

annotations and fine tune the default filoTips model within 48 hours with minimal 

guidance. This initial time investment is worthwhile if the user plans on routinely 

analyzing hundreds or thousands of filopodia in the future and wants to take advantage 

of automation.  

 

   The adaptability of filoTips was demonstrated using transfer learning.  This was 

conducted using 89 images of U2-OS and COS-7 cells (containing 50 U2-OS cells and 

50 COS-7 cells) expressing eGFP-Myo10 or mCherry-Myo10 (70/30 train/validation) 

that differed from those used in default training dataset acquisition (Methods, Table S2). 

Data augmentations shift, zoom, shearing, flip, and rotation were used to increase the 

size of the training data (Ronneberger et al., 2015). A model unseen testing dataset 

consisting of 52 total U2-OS and COS-7 images (containing 26 U2-OS cells and 30 

COS-7 cells) was used to evaluate model pixel predictions (Tables S2 and S3). It was 

found that the default filoTips model trained on amoeboid cells was able to reliably 

predict U2-OS and COS-7 filopodia tips.  Filopodia counts using the default filoTips 

model (prior to finetuning) were strongly correlated with manual counts in ImageJ (r = 
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0.94; Table S6).  However, cell edge prediction accuracy dropped, perhaps due to a 

less defined cell edge provided by the Myo10 signal as compared to DdMyo7 expressed 

in amoeboid cells (see Fig. 3A for an example of pre- and post-transfer learning 

segmentations for Myo10). By starting with the weights from the default filoTips model 

trained on amoeboid cells expressing DdMyo7 and using the U2-OS/COS-7 datasets for 

further training and testing, the model that underwent transfer learning was able to 

better predict U2-OS and COS-7 cell edges marked by Myo10 (Fig. 3A). To ensure 

filopodia detection accuracy after transfer learning, filopodia number measurements 

acquired by filoTips using the fine-tuned model (see GitHub repository for model link) 

were compared to manual measurements of 56 out-of-sample cells (26 U2-OS and 30 

COS-7 split) expressing eGFP-Myo10 or mCherry-Myo10. Filopodia per cell 

measurements strongly correlated between filoTips and manual counts with a 

correlation coefficient of 0.98 (Fig. 3B;  Table S6), demonstrating accurate filopodia tip 

detection. The example presented here shows that filoTips can be successfully tuned 

for different cell types and user data in a relatively short time period. 

 

Relationship between Myo10 and DdMyo7 expression and filopodia formation.                 

    Measurements of filopodia and localization or levels of filopodia proteins can provide 

insight into the mechanism of their formation. The MyTH4-FERM myosins DdMyo7 and 

Myo10, from amoeba and mammalian cells respectively are both essential for filopodia 

formation (Bohil et al., 2006; Petersen et al., 2016; Tuxworth et al., 2001). However, it’s 

unclear if they promote filopodia formation via a similar mechanism. Therefore, U2-OS 

cells expressing eGFP-Myo10 and Ddisc cells expressing eGFP-DdMyo7 were used to 

directly observe and compare the relationship between a myosin’s expression levels 

and filopodia numbers (Fig. 4A). filoTips was used to analyze 1,008 filopodia over 20 

U2-OS cells transiently expressing eGFP-Myo10 or mCherry-Myo10 and 280 filopodia 

over 153 Ddisc DdMyo7-null cells expressing GFP-DdMyo7 in less than an hour, which 

otherwise couldn’t be done using existing methods, further highlighting the advantage of 

using filoVision. The relationship between cell size, or cell perimeter (µm), on filopodia 

number per cell was investigated first. As expected, a strong correlation was observed 

for the perimeter of U2-OS cells expressing Myo10 and filopodia number (correlation 
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coefficient of 0.85), with larger cells forming more filopodia (Fig. S2A). A weaker 

correlation between cell perimeter and filopodia number was observed for Ddisc cells 

expressing DdMyo7 (correlation coefficient of 0.25), suggesting that cell size might have 

a stronger impact on filopodia number in U2-OS cells than in Ddisc, perhaps because of 

Ddisc’s inherently smaller size. Because cell size impacts filopodia number, it could be 

argued that filopodia density or filopodia number normalized to cell perimeter (filopodia / 

µm) is a more useful metric than raw filopodia number per cell. Thus, filoTips provides 

the filopodia /10µm measurement in addition to raw filopodia number per cell to account 

for cell size and measure filopodia density. 

 

    Filopodia numbers are reduced when either Myo10 or DdMyo7 protein levels are 

depleted in mammalian or amoeboid cells respectively (Bohil et al., 2006; Petersen et 

al., 2016). Conversely, higher Myo10 expression levels are associated with increased 

numbers of filopodia in mammalian cells (Bohil et al., 2006; Jacquemet et al., 2017), 

however it’s unclear if overexpression of DdMyo7 relates to amoeboid filopodia number. 

Therefore, the relationship between cytosolic DdMyo7 and Myo10 protein levels and 

filopodia density was determined. No correlation was observed between mean cytosolic 

intensity of DdMyo7 and filopodia density (Fig. 4B), revealing that DdMyo7 

overexpression doesn’t strongly impact filopodia density in amoeboid cells. Because 

previous reports show that overexpression of Myo10 promotes increased filopodia 

number (Bohil et al., 2006; Jacquemet et al., 2017), it was expected that mean cytosolic 

Myo10 signal would have a strong positive correlation with filopodia density, however, 

surprisingly the opposite result was observed. A strong negative correlation between 

cytosolic Myo10 and U2-OS filopodia density was measured with a correlation 

coefficient of -0.76 (Fig. 4B). This suggested that as ectopically expressed cytosolic 

Myo10 decreased, filopodia density actually increased. The low cytosolic Myo10 signal 

observed for cells making relatively high filopodia could be due to Myo10 localizing from 

the cytosol to filopodia tips. Therefore, the total fluorescence intensity of Myo10 (the 

sum of Myo10 signal in the cytosol and all filopodia tips) was calculated for each cell 

and a correlation coefficient of -0.47 was measured when filopodia tip signal was 

included, demonstrating a weaker yet also negative correlation even with Myo10 tip 
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signal included (Fig. S2B). This suggests that increased levels of cytosolic Myo10 did 

not correspond to increased filopodia as expected, and it is possible that under certain 

conditions or in certain cell types highly expressed Myo10 is maintained in an 

autoinhibited state. This could, perhaps, be due to lower PIP3 production required for 

relief of Myo10 autoinhibition (Umeki et al., 2011), maintaining Myo10 in a cytosolic 

pool. 

 

    DdMyo7 is targeted to the cortex, particularly during cell migration, and a 1.2 fold 

cortical enrichment is typically observed (Arthur et al., 2019 and Arthur et al., 2021). 

filoTips was used to compare DdMyo7 cortical enrichment in Ddisc to Myo10 cortical 

enrichment in U2-OS cells. A cortical enrichment value of 1.14 ± 0.01 was observed for 

DdMyo7, similar to previous reports (Arthur et al., 2019 and Arthur et al., 2021). 

However, a low cortical enrichment value of 0.65 ± 0.05 was observed for Myo10 in U2-

OS cells, suggesting the mean Myo10 signal is actually stronger in the cell body 

compared to the cortex or cell edge (Fig. 4C). Myo10 has been shown to be enriched in 

membrane ruffles (Berg et al. 2000), however under conditions typical for imaging U2-

OS cells making filopodia, Myo10 cortical enrichment wasn’t observed. This may be due 

to the relatively limited migration of these cells compared to Ddisc.   

 

    Myo10 is a relatively fast motor thought to have a role in transporting the actin 

polymerase VASP to filopodia tips (Kerber et al., 2009; Ropars et al., 2016; Tokuo and 

Ikebe, 2004). Due to Myo10’s fast velocity (~600 nm/s; Kerber et al., 2009; Ropars et 

al., 2016) outpacing the much slower rate of mammalian filopodia extension (variable 

depending on cell type, but example report of 55 nm/s in mouse root ganglion growth 

cone; Brown and Bridgman, 2003), Myo10 can be seen accumulating in the tips of 

filopodia as they elongate during extension. This reportedly results in an enriched 

Myo10 signal in the tips of relatively longer filopodia compared to tips belonging to 

shorter filopodia (Fitz et al., 2023). In contrast, previous reports suggest DdMyo7 signal 

in filopodia tips remains constant throughout extension (Arthur et al., 2019). To more 

directly compare the tip accumulation of the two myosins, filoTips was used to quantify 

filopodia length and tip signal intensity of Myo10 and DdMyo7 (normalized to body 
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signal). Similar to previous reports (Fitz et al., 2023; Tokuo and Ikebe, 2004), there was 

a weak (r=0.13) but significant positive correlation between Myo10 signal in filopodia 

tips and filopodia length, with longer filopodia more likely to have a stronger Myo10 tip 

signal (Fig. 4D). However, unlike Myo10, no correlation was detected between the 

DdMyo7 signal in filopodia tips and filopodia length (Fig. 4D), consistent with DdMyo7 

not accumulating in filopodia tips over time during extension, unlike what is observed for 

Myo10 (Fitz et al., 2023; Arthur et al., 2019). Interestingly, this suggests that once a 

Ddisc filopodium extends, a constant level of DdMyo7 is maintained at the tip and 

elongation doesn’t require continued increases in DdMyo7 levels, unlike what is seen 

for filopodia formed by Myo10. Collectively, these observations show that while Myo10 

and DdMyo7 have some common features (Petersen et al., 2016 and Arthur et al., 

2019), there are aspects of their role in filopodia elongation that differ. 

 

filoSkeleton: filopodia analysis using tip markers coupled with actin labeling 

    Characterization of filopodia is often carried out on cells stained for, or expressing, 

both actin and tip proteins. filoSkeleton was developed to use a tip marker in 

combination with an actin label that allows for detection of cell bodies, filopodia stalks or 

shafts, and the far ends of filopodia. Briefly, it uses two deep learning models and 

OpenCV (Bradski, G. 2000) to segment and detect cell bodies, filopodia stalks, and 

filopodia tips within an image. It checks each filopodia tip to see if it overlaps with or 

neighbors a stalk (max 3 pixel distance), and if so, identifies it as a filopodium (Fig. S3). 

Starting at the tip, it finds the direction of the nearest cortex and in that direction, moves 

5 pixels at a time along the stalk until it reaches the cortex/filopodia base interface. 

 

    filoSkeleton provides cell body measurements that include cell area, aspect ratio, and 

circularity in addition to perimeter and average filopodia/micron records. Tip marker 

signal intensity in the cell body and filopodia tips are also recorded to observe tip 

marker protein distribution. The performance of filoSkeleton was assessed by 

comparing its output to manual measurements of the same dataset.  As seen for 

filoTips, filoSkeleton performed well with a Pearson’s correlation coefficients of 0.997 for 

cell area and 0.791 for body aspect ratio (Fig. S1B). There was also high correlation for 
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tip protein average pixel intensity measurements. Measurement of filopodia number and 

length were made using filoSkeleton or FiloQuant to compare the performance of the 

two tools. FiloQuant (Jacquemet et al., 2017, 2019a) was chosen for the filopodia 

number and length comparison because it uses an actin stain to analyze filopodia, 

similar to filoSkeleton. A total of 47 out-of-sample cells (24 U2-OS and 23 HeLa) stained 

for actin with fluorescent phalloidin and immunostained for Myo10 were analyzed (Fig. 

5A). For FiloQuant analysis, cells were manually cropped, and parameters (cell edge 

and filopodia) optimized for all cells individually to obtain the most accurate readings 

possible. A strong correlation between filoSkeleton and FiloQuant filopodia number 

measurements was observed with a correlation coefficient of 0.82 (combined U2-OS 

and HeLa r = 0.82; U2-OS alone r = 0.81; HeLa alone r = 0.83; Fig. 5B), demonstrating 

similar filopodia number measurements for both filoSkeleton and FiloQuant. Average 

filopodia lengths were also compared and a strong correlation between filoSkeleton and 

FiloQuant was seen with a correlation coefficient of 0.74 (Fig. 5C). 

 

 

DISCUSSION 

    filoVision is a new deep learning filopodia analysis platform that accurately measures 

filopodia number, length and tip intensity using filopodia tip markers. It enables 

automated, highly reproducible, and highly adaptable analysis of filopodia using either a 

tip marker alone or in combination with an actin label to extract information about cell 

bodies, filopodia, and tip protein measurements in 2D images. It doesn’t rely on manual 

parameter tuning to identify filopodia, removing user bias and increasing reproducibility. 

If different lab members use the same models, they will consistently get the same 

results.  

 

     filoVision’s ability to analyze multiple cells simultaneously within the same image 

allows the user to save time spent cropping images or manually tuning parameters to 

each cell, which can cause filopodia analysis to become tedious. filoTips was shown to 

analyze hundreds of U2-OS or Ddisc filopodia in less than an hour, which wouldn’t be 

possible using existing methods. It should be noted that the default filoTips model 
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trained on amoeboid cells was surprisingly able to reliably detect Myo10-marked U2-OS 

filopodia tips with only relatively minor underestimates of cell edges needing fine-tuning. 

However, the option for transfer learning allows filoVision to be fine-tuned to different 

cell types or imaging conditions (Fig. 3B). Lastly, both notebooks can also be run and 

edited locally with Python, which doesn’t require proprietary software and is designed 

for biologists who might not have experience setting up a coding environment. The 

option of running filoVision in a cloud-based, pre-initialized Google Colab environment is 

available with no software or hardware requirements (GitHub repository). Ultimately, this 

results in flexible, automated, and rapid tip-marked filopodia analyses with high 

reproducibility and low user bias that can be run in a cloud environment or locally. 

 

Limitations and other considerations 

    There are some limitations to filoVision that users should keep in mind. As with all 

image analysis tools, the quality of the image is paramount. There should be a strong 

signal for the tips, shaft or cell body which should be noticeably above background. A 

faint tip signal, in particular, can lead to an underestimation of filopodia number. As with 

other filopodia analysis workflows, it is necessary to avoid densely plated samples to 

prevent overlap between filopodia and neighboring cells. This can result in obscured 

filopodia and an underrepresentation of filopodia number, or assignment of filopodia to 

the incorrect cell. filoTips uses Euclidean distance to assign filopodia tips to cell bodies. 

Therefore, cells should be plated at a density where filopodia tips are closer to the 

bodies they belong to as opposed to neighboring cell bodies. The exact density will 

depend on the cell type and their average filopodia length. This limitation is minor 

considering most will plate cells at a low density regardless of analysis method to 

prevent occlusion of filopodia by neighboring cells and their filopodia. Occasionally, 

while tracking a filopodia shaft, filoSkeleton will confuse the correct shaft with one that 

partly overlapped and begin tracking that shaft back to the cortex. In our experience, the 

error associated with this was usually minor as the relatively rare crossing events were 

more likely to occur near the cortex and had similar remaining shaft lengths from the 

crossing event to the cortex. However, in some cases, it will cause incorrect length 

measurements. The annotations make it so users can see if an event like this occurred, 
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and if so, all other measurements including filopodia number per cell remain valid, but 

the shaft length of that event is inaccurate. 

 

    The current filoVision models are tuned for our Ddisc, U2-OS, COS-7, or HeLa cell 

images.  The default model trained on Ddisc cells was found to perform surprisingly well 

at predicting filopodia tips for U2-OS and COS-7 cells considering it hadn't been 

exposed to these cell types, but required some adjustment to better predict the relatively 

dim edge of these cells. After performing transfer learning with the default filoTips model 

weights and 89 images of 100 U2-OS and COS-7 cells, the fine-tuned model did a 

substantially better job predicting the cell edge. While using the filoVision models 

provided is likely to result in respectable annotations of cells and filopodia tips, 

especially for users working with cell types matching our model training data, model 

performance would be at its highest by tuning the existing filoVision models by 

performing transfer learning with a user’s images of the cell type and typical imaging 

conditions. This can easily be accomplished with the 2D U-net ZeroCostDL4Mic 

notebooks. The initial time investment in transfer learning is likely to be an acceptable 

trade-off for future, efficient automation if the user plans on analyzing hundreds or 

thousands of filopodia, especially if the user commonly uses a lone tip marker to 

analyze filopodia and wants to take advantage of an automated workflow.  

 

    Many filopodia analysis tools have been developed with a specific purpose in mind, 

therefore it’s crucial to consider the analysis goals of both the user and the tool. 

filoVision is an excellent choice if the potential user routinely analyzes hundreds or even 

thousands of tip-marked filopodia. Its advantage becomes even more apparent when 

additional cell or tip protein signal information is required, or if speed, reproducibility, 

and automation are top priorities. However, there are also scenarios when filoVision 

may not be the ideal choice. For those with smaller datasets or infrequent filopodia 

analysis needs, manual methods, or a tool like FiloQuant may be more efficient 

(Jacquemet et al., 2017). Also, if the user lacks tip-labeled data, FiloQuant or 

Filopodyan (Urbančič et al., 2017) is a better fit depending on the cell marker. If 3D 

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



image analysis is required, U-shape 3D (Driscoll et al., 2019) should be considered 

instead. 

 

 

Conclusion 

    Filopodia tools have been primarily developed for the analysis of actin or membrane-

labeled mammalian cells that are relatively large (30 - 100 µm diameter)  and as such 

many aren’t optimized for smaller, less common cell types like amoeba (10 µm 

diameter). While labeling filopodia tips is common (see examples: Jacquemet et al., 

2019b; Kerber and Cheney, 2011; Petersen et al., 2016), to our knowledge an 

automated tool that uses tip-labeling alone to quantify filopodia doesn’t currently exist. 

These were the core limitations that motivated the development of filoVision. To 

address the lack of flexibility for user data or cell type, filoVision takes advantage of the 

accessible ZeroCostDL4Mic platform’s transfer learning capabilities. It also enables 

rapid live cell analysis with a lone tip marker when the cytosolic signal is sufficiently 

high, and this cytosolic fraction can be used to detect and measure the cell body 

(filoTips). Alternatively, the tip marker can be combined with actin staining to obtain 

similar measurements, with the benefit of extracting additional filopodia shaft 

information (filoSkeleton). Currently, filoVision is being expanded to include tracking 

filopodia tips over time in live-cell experiments and will include the ability to use more 

than one tip marker for extracting co-localization information about different tip marker 

proteins, providing the ability to gain even more insight into the role of different filopodia 

tip proteins and their collaboration during filopodia formation. 

 

 

MATERIALS AND METHODS 

filoTips default model training 

Overview 

     filoTips takes advantage of the U-net neural network architecture to generate image 

segmentations predicting pixel classes as either background, cell body, or filopodia tip, 

represented by values 0, 1, and 2, respectively.  ZeroCostDL4Mic was selected for the 
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training workflow because the framework enables easy, GUI-based model training and 

transfer learning (von Chamier et al., 2021).  Training was performed using the U-net 

2D multi-label notebook.  After generating pixel predictions, filoTips then leverages 

OpenCV to identify and measure cell bodies and their corresponding filopodia by 

converting the segmentation information into measurable objects. 

 

Training data description 

     The training dataset consisted of 385 images of live vegetative Ddisc cells. Wild type 

and filopodia mutant amoeba (myo7 or vasp null; Tuxworth et al., 2001 and Han et al., 

2002) expressing DdMyo7 tagged with GFP or mCherry or mNeonGreen were included 

in the training dataset (see Table S2 for complete breakdown; Arthur et al., 2019; Arthur 

et al., 2021; Petersen et al., 2016; and unpublished). 

 

Ground truth generation 

     The source images were paired with target annotations, or ground truths, that 

describe the images, demonstrating the correct class (background, cell body, or 

filopodia tip) each pixel should be assigned to (Fig. S4A). Generating ground truths for 

training can be a tedious task, thus tools like Amazon SageMaker, V7 labs, Labelbox, 

and Ilastik can be used to expedite the image labeling process for deep learning 

applications. Ilastik is free and is designed for the biomedical community (Berg et al., 

2019), thus its pixel classification mode was chosen to generate ground truths for the 

default filoTips model (Fig. S5A). Ilastik was provided with batch sizes of 20 images, all 

features were used and set to the highest settings, and 3 labels were selected (0- 

background, 1- cell body, and 2- filopodia tips). Using each label’s “paintbrush”, Ilastik 

was shown the correct assignment by the user and begins to auto-assign pixels. This 

process was repeated until all pixels in the 20-image batch have been assigned the 

correct label. The ground truths were exported as simple segmentation .tiff files and a 

new project was started for the next batch of images until ground truths are generated 

for all data. 
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https://www.ilastik.org/


Training parameters 

     The source images and ground truths, along with the total number of labels (3), were 

provided for default filoTips model training. Data augmentations shift, zoom, shearing, 

flip, and rotation were used to artificially increase the size of the training data 

(Ronneberger et al., 2015). The following training parameters were used: epoch 

number: 300, image patches: 279, patch size: (512,512), batch_size: 4, number of 

steps: 0, pooling steps: 2, percent validation: 20, initial learning rate: 0.0003, patch 

dimensions: 512x512, min fraction: 2%, loss function: acategorical_crossentrop (see 

Fig. S4B for training and validation loss).  

 

Model evaluation 

     To test the model’s ability to generate accurate predictions, segmentation predictions 

for 76 out-of-sample test images were compared to ground truths and scored using 

metrics like intersection-over-union (IoU), F1, and panoptic scores (Table S3, Fig. S4A). 

IoU measures the overlap between predicted and ground truth segmentation masks 

using the ratio of their intersection to their union and is provided by ZeroCostDL4Mic 

after model evaluation. F1-score combines precision and recall into a single value to 

assess the accuracy of the segmentation. filoVision uses semantic not instance 

segmentation (U-net, Ronneberger et al., 2015), but panoptic quality, which is typically 

used to evaluate predictions that involve the combination of semantic and instance 

segmentation for categorizing objects, was also calculated as part of the comprehensive 

evaluation process. 

 

filoTips filopodia detection and extraction of measurements 

Detection and measurement of cell bodies 

    filoTips utilizes OpenCV (Bradski, 2000) contours to convert model segmentation 

predictions into individual cell body and filopodia tip objects (Fig. 1). Pixels belonging to 

the body class in the segmentations are extracted. Contour detection then searches for 

connecting body pixels and provides the contour, or outline, of the connected pixels. 

This allows cell body object assignment with a numerical identifier and provides body 

object coordinate information. If multiple cell contours are detected, the cell body 
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contours are measured iteratively using OpenCV image moments like contourArea and 

arcLength to extract pixel measurements that are converted to micron measurements. 

Image moments within the OpenCV library like those above enable easy calculations of 

metrics like area, perimeter, aspect ratio, centroid, and circularity using the contours as 

a reference point. The cortex is identified by increasing the thickness of the contour 

edge (cell edge) outline by 15 pixels and assigning the thin ~6 pixel wide, inner band 

that overlaps with the existing cell contour as the cortex, or cell body edge (marked as 

blue and orange in filoTips annotations). Another ~15 pixel gray band is introduced to 

separate the cortex (blue/orange) and cell body (yellow) for more accurate tip protein 

signal assignment (cortex or body) during extraction (Fig. 2A bottom). Tip protein signal 

in the body and cortex is then extracted from the image via pixel assignment (body or 

cortex object) and recorded coordinates. To enable measurement of the asymmetrical 

enrichment of DdMyo7 at the cortex, a metric was included which scans for the 

strongest signal within the cortex, extracts signal from the surrounding ~50 cortex 

pixels, and labels it the “leading edge” (the blue section of the cortex in filoTips 

annotations). Tip marker signal ratios (cortex/body, tip/body, etc.) for each section are 

calculated and included in the final summary table. 

 

Detection and measurement of filopodia tips 

     After all cell bodies have been detected, contour detection is again performed to 

detect filopodia tips. During cell body analysis, cell outline coordinates are saved and 

referred to when assigning filopodia tips to cells. Iteratively for each detected tip 

contour, the tip protein signal is extracted from the contour via recorded pixel 

coordinates and a tip/body signal ratio is calculated. The Euclidean distance from the tip 

to all outline coordinates are calculated and the tip is assigned to the closest cell 

contour. If a cell outline isn’t within 10µm of the tip, it is considered an artifact and not 

recorded, otherwise this linear distance is recorded as the filopodium’s length (pink, Fig. 

2A bottom). Again, for many cell types including amoeba this is quite effective for 

getting accurate lengths. However, if a potential user requires shaft length of long, 

curled filopodia, filoSkeleton or FiloQuant would be more appropriate. All filopodia 

analysis methods require separation of cell bodies to avoid body and filopodia overlaps 
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and thus loss of filopodia signal. Because of this spatial separation, it is effective to use 

Euclidean distance to assign filopodia tips to the nearest cell cortex. Sometimes this 

results in a filopodia tip being assigned to the wrong cell if neighboring cells are closer 

to the tip than the cell it belongs to, however evaluations of filoTips suggest this isn’t 

common. Due to the nature of filopodia analysis, cells should be plated at low densities 

to avoid occlusion of filopodia, therefore this is a minor limitation. A record is kept of the 

number of filopodia tips assigned to the different cell body objects and after all filopodia 

have been detected the filopodia number per cell metric is calculated for each cell. 

Lastly, the annotations (Fig. 2A) are exported along with summary tables (see Table S4 

examples) for cell body and filopodia information extraction.    

 

filoTips transfer learning 

    ZeroCostDL4Mic 2D U-net multi-label notebook (von Chamier et al., 2021) was used 

to perform code free, low barrier transfer learning to fine-tune filoTips for U2-OS and 

COS-7 cells. A total of 89 images consisting of 100 mammalian cells (50 COS-7 and 50 

U2-OS) expressing either mCherry-Myo10 or eGFP-Myo10 were used (see Table S2 for 

breakdown). Similar to training the default filoTips model, these source images were 

paired with ground truths and used for transfer learning via the 2D U-net multi-label 

notebook. Ground truths were generated via the ImageJ macro “filoTips Ground Truth 

Generator” (GitHub filoVision repository) which allows the user to threshold cell bodies 

and filopodia tips, then using a series of erosions and dilutions, removes filopodia tips 

leaving a mask of the cell body (Fig. S5B). The resulting cell body mask for each cell 

was closely inspected and, if necessary, minor corrections were made manually as part 

of the macro. We tried using ImageJ thresholding methods to acquire masks of filopodia 

tips and found some success, but found that the default filoTips model was able to 

better predict filopodia tips than the thresholding methods used in ImageJ. So, the 

default filoTips prediction of filopodia tips was incorporated into the ImageJ macro to 

obtain a starting point for filopodia tip ground truths. As with the method for obtaining 

the cell body mask, minor corrections can be made to filopodia tip annotations if 

needed. 
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Training parameters 

     The source images and their annotation pair were provided for the training of the 

filoTips model fine-tuned to mammalian cells, undergoing a 70/30 train/validation split. 

The following training parameters were used: previous model weights: default filoTips 

model, labels: 3, epoch number: 800, image patches: 318, patch size: (512,512), batch 

size: 4, number of steps: 0, pooling steps: 2, percent validation: 30, initial learning rate: 

4.7e-06, patch width and height: 512, minimum fraction: 0.02, loss function: 

acategorical_crossentrop. Data augmentations shift, zoom, shearing, flip, and rotation 

were used to artificially increase the size of the training data. 56 out-of-sample cells (30 

COS-7 and 26 U2-OS) expressing eGFP-Myo10 or mCherry-Myo10 were analyzed with 

filoTips using the fine-tuned model and compared to manual measurements (Table S6). 

 

filoSkeleton model training 

Overview 

    Unlike filoTips, filoSkeleton uses two U-net neural networks in parallel, one to predict 

filopodia tips using a tip marker (0- background, 1- filopodia tips) and the other to predict 

cell body and filopodia stalks using an actin stain (0- background, 1- cell body, 2- 

filopodia stalk). Each of these models were trained separately using ZeroCostDL4Mic 

as the framework for the training workflow; models were trained using the U-net 2D 

notebook and U-net 2D multi-label notebook respectively (von Chamier et al., 2021). 

filoSkeleton also leverages OpenCV to identify objects, however it uses segmentations 

from both models to identify and measure cell bodies, filopodia stalks, and filopodia tips. 

 

Ground truth generation and training parameters (Cell body and filopodia stalk model) 

     The model for segmenting cell bodies and filopodia stalks was trained on a dataset 

of 86 phalloidin-stained U2-OS cells (see Table S2). Ground truths for cell bodies and 

filopodia stalks were generated using the “filoSkeleton Body_Stalk Ground Truth 

Generator” ImageJ macro (GitHub filoVision repository; Fig. S5C) which masks the cell, 

shaves off the filopodia stalks through 5 rounds of erosion and dilution to isolate the cell 

body pixels like workflows such as ADAPT (Barry et al., 2015), then generates a ground 

truth segmentation consisting of 3 labels (0- background, 1- cell body, 2- filopodia 
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stalks; Fig. S4C).  The source images and ground truths, along with the total number of 

labels (3), were provided for training. Data augmentations shift, zoom, shearing, flip, 

and rotation were used to artificially increase the size of the training data. The following 

training parameters were used: epoch number: 500, image patches: 174, patch size: 

(512,256), batch_size: 4, number of steps: 0, pooling steps: 2, percent validation: 20, 

initial learning rate: 0.0003, patch dimensions: 512x512, min fraction: 2%, loss function: 

acategorical_crossentrop (see Fig. S4D for training and validation loss). 

 

Ground truth generation and training parameters (Filopodia tip model) 

     The model for segmenting filopodia tips was trained on a dataset of 121 images of 

U2-OS cells ectopically expressing eGFP-Myo10 and immunostained for FMNL3 (see 

Table S2 for breakdown).  Ground truths for filopodia tips were generated with Ilastik 

(see filoTips: Ground truth generation, two classes: 0-background and 1-filopodia tips; 

Fig. S4E). Data augmentations shift, zoom, shearing, flip, and rotation were used to 

artificially increase the size of the training data. The following training parameters were 

used: epoch number: 600, image patches: 133, patch size: (512,256), batch_size: 4, 

number of steps: 0, pooling steps: 2, percent validation: 20, initial learning rate: 0.0003, 

patch dimensions: 512x512, min fraction: 2%, loss function: acategorical_crossentrop 

(see Fig. S4F for training and validation loss). 

 

Model evaluation (both models) 

    Cell body and stalk ground truths (1) and filopodia tip ground truths (2) were 

generated for 45 out-of-sample test images (see Table S2 for breakdown) using the 

same methods for obtaining training data ground truths.  As for filoTips, the ground 

truths were compared to predictions made by the filoSkeleton models and scored using 

intersection-over-union (IoU), F1, and panoptic evaluation metrics (Table S3, Fig. S4C 

and S4E). 

  

filoSkeleton filopodia detection and extraction of measurements 

    filoSkeleton utilizes OpenCV contours (Bradski, 2000) to convert model segmentation 

predictions into cell body, filopodia stalk, and filopodia tip objects (Fig. S3). Like filoTips, 
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filoSkeleton uses contour detection to first detect the edges of all cell bodies in an 

image and assign them as cell body objects (aqua, Fig. 5A). For each cell body object, 

related measurements are extracted iteratively as for filoTips (see filoTips default model 

training and filopodia detection). After all cell bodies have been detected, contour 

detection is performed on the stalk segmentation to detect filopodia stalks and record 

their coordinates. Finally, contour detection is used to locate filopodia tip foci. If a tip foci 

is within 3 pixels of a filopodia stalk, it is assigned as a filopodium. For each detected tip 

contour, the tip protein signal is extracted and a tip/body signal ratio is calculated. 

Starting at the tip, it finds the direction of the nearest cortex and in that direction, moves 

5 pixels at a time along the stalk until it reaches the cortex/filopodia base interface 

(yellow stalk with a red tip). This provides filopodia shaft length information and allows 

filoSkeleton to detect broken or disembodied filopodia and ignore them if they are at 

least 5 pixels from the cortex (yellow stalk with a blue tip). A record is kept of the 

number of filopodia tips assigned to the different cell body objects and after all filopodia 

have been assigned, the filopodia number per cell metric is calculated. Lastly, 

annotations (Fig. 5A) are exported along with summary tables (see Table S5 for 

examples). 

 

Manual quantification of filopodia – analysis comparison and statistics 

    filoTips was compared to manual measurements in ImageJ using base tools like line, 

oval, and polygon (Schneider et al., 2012). Cell bodies were outlined manually in 

ImageJ using the polygon tool and metrics like cell area and aspect ratio were 

calculated using the measurements tool. Fluorescent protein intensities were measured 

by outlining the body, cortex, and filopodia tips using the polygon and oval tools to 

obtain the mean fluorescent intensities of each. filoTips: filopodia number per cell was 

counted manually and filopodia lengths were measured using the line tool along the 

filopodia shaft in ImageJ. filoSkeleton: filopodia number and length measurements by 

filoSkeleton were compared to those by FiloQuant. Obvious debris that could be called 

filopodia and multiple cells in the same frame were cropped out for FiloQuant, and 

single image analysis mode used to adjust the cell edge parameter (ranging from 6-20) 

for every cell individually to obtain the most accurate possible FiloQuant measurements 
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for comparison with filoSkeleton. Two-sided Pearson correlation coefficients were 

calculated using the scipy.stats.pearsonr library in Python. Significance was accepted at 

a p-value of less than 0.05. 

 

filoTips default model data acquisition 

    Ddisc cells were grown at 21°C on plastic dishes in HL5 glucose medium 

(Formedium) supplemented with 10kU/mL penicillin G and 10ug/mL streptomycin 

sulfate. Cells were transformed by electroporation then selected and maintained in 10-

20ug/mL G418 (neomycin resistance, Fisher Scientific) or 50ug/mL hygromycin B (Gold 

Biotechnology), depending on the plasmid. Integrating or extrachromosomal expression 

plasmids (Arthur et al., 2021; Petersen et al., 2016) were used to express the tip marker 

DdMyo7 tagged with various fluorophores (see Table S2 for plasmid numbers and 

fluorophores used). Cells were plated in 35-mm, No. 1.5 coverslip imaging dishes 

(MatTek or CellVis) at a density of ~105 cells/cm2 and allowed to adhere for 10min. 

Cells were rinsed twice in phosphate buffer (PB, 16.8mM sodium/potassium phosphate 

pH 6.4) and placed in 1-2mL of PB for 45-75min, a time window of optimal filopodia 

formation (Petersen et al., 2016). Cells were then imaged with 63x or 100x Plan Apo oil-

immersion objectives (NA 1.4) on a Marianas Spinning Disk Confocal imaging system 

based on a Zeiss Axiovert microscope equipped with a Yokogawa CSU-X1, a 

Photometrics Evolve 512 electron multiplying (EM) CCD camera, a Photometrics HQ2 

CCD camera, an ASI MS-2000 stage controller, and laser lines at 488 and 561nm in a 

SlideBook 6.0 software environment (Intelligent Imaging Innovations).  

 

filoTips transfer learning data acquisition 

    COS-7 (ATCC CRL-1651) and U2-OS  (ATCC HTB-96) cells were grown in DMEM 

(Dulbecco’s Modified Eagle’s Medium) with 10% fetal bovine syndrome (FBS), 1% 

penicillin streptomycin (P/S), and 5% CO2 at 37°C. Cells were transfected with either an 

eGFP-tagged human Myo10 expression plasmid (EGFPN3-hMyoX, Addgene plasmid 

#47609;  a gift from Emmanuel Strehler) or mCherry-Myo10 (made by exchanging 

eGFP in EGFPN3-hMyoX for mCherry by restriction enzyme cloning) via 

Lipofectamine® 2000 (Invitrogen). For plasmid transfection, cells were seeded on day 1, 
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transfected with 0.25-1 µg DNA using Lipofectamine 2000 (Thermo Fisher Scientific) on 

day 2, and analyzed on day 3. Cells were plated on 24 well glass bottom plates with No. 

1.5 cover glass (CellVis) that had been pre-coated with 5µg/mL fibronectin (Sigma-

Aldrich F1411 or FC010). Live cell images were acquired on a Nikon Ti2-E microscope 

equipped with a Crest Optics X-Light V3 spinning disk, 60 x Plan Apo oil-immersion 

objective (NA 1.4), and captured with a Hamamatsu ORCA-Fusion BT CMOS camera. 

Samples were illuminated with [800 mW] lasers (488 or 561 nm) with GFP or DS Red 

filters (High Signal to Noise BL Series, Nikon) for 488 or 561-nm excitation (final 0.1099 

µm pixel size). 5 Z-stacks of 0.3µm steps were taken with 50-100 ms exposure and 30-

60% laser power, and max projections generated for analysis. 

 

filoSkeleton model data acquisition 

    U2-OS and HeLa cells were grown in DMEM supplemented with 1% GlutaMAX™ 

(Thermo Fisher), 10% FBS, and 1% P/S. U2-OS and HeLa cells were plated on 18mm 

No. 1.5 glass coverslips pre-coated with 5μg/mL fibronectin (Sigma-Aldrich F0411 or 

FC010) in 1X phosphate-buffered saline. Cells either underwent siRNA silencing 

followed by DNA transfection with a mCherry-Myo10 expression plasmid, or were 

directly transfected with a mCherry-Myo10 expression plasmid. The following siRNAs 

were used for MYO10 Human siRNA Oligo Duplex (OriGene;  Locus ID 4651; ref: 

CAT#: SR303060):  siRNA_A: 5’-GGTCAGGTATTCACTTACAAGCAGA-3’. siRNA_C: 

5’-GGAAAAATACGCTCTCTTCACTTAC-3’).  For U2-OS or HeLa cells that underwent 

silencing, cells were seeded and transfected with siRNAs (10nM) using lullaby reagent 

(OzBioscience) via a reverse transfection protocol on day 1. This was followed by 

transfection with a mCherry-Myo10 plasmid using the FuGENE® HD Transfection 

Reagent (Promega) on day 3, then fixation and image analysis on day 4. For cells that 

did not undergo silencing, U2-OS or HeLa cells were seeded on day 1, transfected with 

a mCherry-Myo10 plasmid using the FuGENE® HD Transfection Reagent (Promega) 

on day 2, then fixed and imaged on day 3 or 4. For fixation and imaging, cells were fixed 

with 4% paraformaldehyde and stained with anti-Myo10 primary Anti MyoX (Novus 

NBP1 87748 - 1:1000 dilution) or anti-FMNL3 primary (Sigma Atlas HPA002552 - 1:500 

dilution) followed by Alexa Fluor 647 secondary antibody (Jackson ImmunoResearch 
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711-605-152 1:400 dilution) to visualize filopodia tips. The actin cytoskeleton was 

visualized by staining with either Alexa 488-phalloidin or rhodamine phalloidin 

(Cytoskeleton PHDG1-A; PHDR1 - 1:200 dilution). Images were acquired on a spinning 

disk system (Gataca Systems) based on an inverted microscope (Ti-E; Nikon) equipped 

with a sCMOS camera (Prime 95B; Photometrics), a confocal spinning head (X1; 

Yokogawa), a 100× 1.4 NA Plan-Apo objective lens, and a superresolution module 

(Live-SR; Gataca systems) based on structured illumination with optical reassignment 

technique and online processing leading to a two-time resolution improvement (Roth 

and Heintzmann, 2016). Nine Z-stacks (0.2μm each) were acquired and max-projected 

prior to model training and analysis. 

 

Hardware and software requirements 

    filoVision can be run locally with Python, or within a Google Colab cloud environment 

that eliminates any specific software or hardware requirements. No proprietary software 

is required. 

 

filoVision dependencies 

    Dependencies associated with ZeroCostDL4Mic are required and imported by 

filoVision. Additional libraries include: pandas, numpy, glob, shutil, OpenCV, math, 

scipy, researchpy, matplotlib and seaborn (Bryant, 2018; Harris et al. 2020; Hunter, 

2007; Itseez, 2015; The pandas dev. Team, 2020; Van Rossum, 2009; Van Rossum, 

2020; Virtanen, 2020; Waskom, 2021). 

 

Data and software availability 

    The filoVision GitHub repository (https://github.com/eddin022/filoVision) contains links 

to the filoTips and filoSkeleton Google Colab notebooks, as well as local python scripts. 

Source data and training annotations used to train the default filoTips model are publicly 

available via links in the Github repository. Data for new users to do a test run is also 

available on the GitHub page. Updates will be provided directly to the Colab notebooks, 

and update to the local scripts will be included on the GitHub repository. User’s may 

copy the notebooks, or use the local scripts if they want to make personalized edits. The 
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ImageJ macros used for generating filoVision ground truths and the Python script used 

to calculate segmentation evaluation metrics can be found on the filoVision GitHub 

repository. Links to filoVision models, data, and ground truths can be found on the 

GitHub repository as well. 
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Figures 
 

 

 

Graphical Abstract. filoVision: a platform to automate filopodia quantitation using 

deep learning and tip markers. (Left) filoTips: filopodia quantitation using tip markers. 

Live cell images of Ddisc cells expressing the filopodia tip marker DdMyo7 fused to 

GFP. Cell bodies are highlighted with a blue circle and filopodia tips indicated by yellow 

arrows. (Right) filoSkeleton: filopodia quantitation using tip markers in combination with 

a labeled cytoskeleton. Image of a fixed and stained U2-OS cell ectopically expressing 

eGFP-Myo10. Cells were stained with phalloidin to label the actin cytoskeleton and anti-

Myo10 to detect filopodia tips indicated by yellow arrows. 

  

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

 

Fig. 1. filoTips filopodia detection and cell assignment. Briefly: (1) An input image of 

Ddisc cells expressing GFP-DdMyo7 is given to filoTips and (2) a mask representing 

pixels belonging to the background, cell bodies, and filopodia tips is generated and cell 

body objects are identified. (3) Filopodia tip objects are identified. (4) Filopodia are 

assigned to cell bodies based on distance from the cortex. The objects are indicated by 

black (background), gray (cell body), yellow (cortex outline), and white (filopodia tips) 

pixels. Orange arrows and circles indicate a representative filopodia tip.   
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Fig. 2. filoTips automated measurements compared to manual measurements. (A) 

Representative Ddisc cells making either a high or low number of filopodia and the 

filoTips analysis annotation for each. Annotation colors: yellow: body, orange: cortex, 

pink: filopodia, blue: area of highest signal intensity in cortex, gray: separation between 

cortex and body, green: centroid, and white: cell number in image. (B) Correlation of 

filopodia per cell measurements between filoTips and either manual measurements 

(N:6, n:54, r: 0.99, P-Val: 1.37e-41, blue) or a random number control array (n:54, r: -

0.02, P-Val: 0.88, gray) using two-sided Pearson correlation coefficient (PCC). (C) 

Correlation of filopodia length measurements (PCC) between filoTips and either manual 

measurements for 40 random filopodia from 20 random cells (n:40, r: 0.98, P-Val: 1.87e-

26, blue) or a random number control array (n:40, r: -0.06, P-Val: 0.73, gray). 
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Fig. 3. Tuning filoTips for U2-OS and COS-7 data  

(A) Segmentation predictions before and after transfer learning. Left: Source image of a 

representative COS7 cell ectopically expressing eGFP-Myo10. Middle: Prediction made 

by the default filoTips model. Right: Prediction made after performing transfer learning 

on U2-OS and COS-7 data. Yellow rectangle highlights an example of improved cell 

edge detection after transfer learning. (B) Filopodia per cell measurement correlation 

(PCC) between filoTips using the default model and manual measurements (n:56, r: 

0.94, blue) or U2-OS and COS-7 finetuned model and either manual measurements 

(N:6, n:56, r: 0.98, P-Val: 2.03e-39, orange) or a random number control array (n:56, r: -

0.08, P-Val: 0.56, gray). 
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Fig. 4. Correlation of ectopic Myo10 and DdMyo7 expression levels with filopodia 

formation. (A) Representative images of U2-OS cells transiently expressing eGFP-

Myo10 and a Ddisc cell expressing GFP-DdMyo7. (B) Correlation of filopodia density 

and cytosolic myosin signal (PCC) for Myo10 (N:2, n:20, r: -0.76, P-Val: 0.00011, red), 

DdMyo7 (N:3, n:153, r: -0.01, P-Val: 0.91, blue), and a random number control array 

(n:20, r: -0.13, P-Val: 0.58, gray). (C) Cortical enrichment measurements for DdMyo7 

(N:3, n:153, mean: 1.14, standard error: 0.01, blue) and Myo10 (N:2, n:20, mean: 0.65, 

standard error: 0.05, red). Statistics: Two-sided student’s T-test, P-Val: 0. (D) 

Correlation between myosin tip signal normalized to body and filopodia length (PCC) for 

Myo10 (N:2, n:1008, r: 0.13, P-Val: 6.1e-05, red), DdMyo7 (N:3, n:280, r: -0.08, P-Val: 

0.21, blue), and a random number control array (n:1008, r: -0.01, P-Val: 0.71, gray). 
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Fig. 5. Comparison of filoSkeleton measurements with FiloQuant analysis. (A) 

Representative HeLa cell stained with Alexa 488 phalloidin (green) to visualize the actin 

cytoskeleton and anti-Myo10 antibodies (magenta) showing the filoSkeleton analysis 

annotation. filoSkeleton annotation - aqua: body, yellow: filopodia stalks, red: filopodia 

tips. FiloQuant annotation – purple: filopodia stalks. (B) Correlation of filopodia per cell 

measurements (PCC) between filoSkeleton and either FiloQuant (N:5, n:47, r: 0.82, P-

Val: 3.07e-12, blue) or a random control array (n:47, r: -0.08, P-Val: 0.60, gray). (C) 

Correlation of average filopodia length measurement (PCC) between filoSkeleton and 

either FiloQuant (N:5, n:47, r: 0.74, P-Val: 3.0e-09, blue) or a random control array (n:47, 

r: -0.05, P-Val: 0.76, gray).  
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Fig. S1. Comparison of additional measurements between filoTips and 

filoSkeleton manual analysis. (A) Cell area, body aspect ratio, and average pixel 

intensity measurements by filoTips and manual analysis. (B) Cell area, body aspect 

ratio, and average pixel intensity measurements by filoSkeleton and manual analysis. 

Correlation plots for area, aspect ratio, and intensities for body and cortex using 25 

random cells. Correlation plots for filopodia tip intensities using 40 random filopodia. 

Two-sided Pearson correlation, ****: pVal <0.0001. 
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Fig. S2. Correlation between cell size and filopodia number. (A) Correlation of 

filopodia number / cell and cell perimeter (µm) (PCC) for eGFP-Myo10 expressing U2-

OS cells (N:2, n:20, R2: 0.85, P-Val: 1.97e-06, red), GFP-DdMyo7 expressing Ddisc cells 

(N:3, n:153, R2: 0.25, P-Val: 0.0019, blue), and a random number control array (n:20, 

R2: -0.05, P-Val: 0.82, gray). (B) Correlation of filopodia density and total (cytosolic and 

tip) Myo10 intensity (PCC) for eGFP-Myo10 expressing U2-OS cells (N:2, n:20, R2: -

0.47, P-Val: 0.03, red) and a random number control array (n:20, R2: -0.13, P-Val: 0.59, 

gray). 
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Fig. S3. filoSkeleton filopodia detection and assignment.  Image of a fixed U2-OS 

cell ectopically expressing mCherry-Myo10 (magenta) and stained with Alexa-488 

phalloidin (green) is shown. (1) The Alexa-488 phalloidin stained image is provided. (2) 

filoSkeleton generates a segmentation of the background (black), cell body (dark 

green), and filopodia stalks (light green). The cell body and filopodia stalks are identified 

and recorded. (3) Next, the mCherry-Myo10 image is provided to identify filopodia tips. 

(4) filoSkeleton generates a binary segmentation of background and filopodia tips 

highlighted in black and magenta. (5) Filopodia tips are identified if they overlap with, or 

are within 3 pixels, of a filopodia stalk. 
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Fig. S4. filoVision model training overview. (A) Representative images of a source 

and target pair. Source: Live cell images of Ddisc cells expressing GFP-DdMyo7. 

Target: Segmentation mask of the source image where all pixels have been classified 

into 3 groups: background-0 (black), body-1 (gray), and filopodia tips-2 (white) assigned 

pixel class (yellow numbers). The arrow indicates a representative filopodia tip. 

Representative ground truth and default filoTips model prediction overlay representing a 

source (white) and ground truth (green) pair along with the trained model prediction 

(light purple) and an overlay of the model prediction and ground truth (dark blue). In the 

representative example, the overlay Intersection-over-union (IoU) score was 0.96. (B) 

Plot of training and validation loss by epoch number during training of the filoTips default 

model. (C) Representative images of a labeled cytoskeleton source and target pair. 

Source: Fixed imaging of a U2-OS cell ectopically expressing eGFP-Myo10 stained with 

J. Cell Sci.: doi:10.1242/jcs.261274: Supplementary information
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anti-Myo10 antibodies. Target: Segmentation mask of the source image where all pixels 

have been classified into 3 groups: background-0 (black), body-1 (gray), and filopodia 

stalks-2 (white) assigned pixel class (yellow numbers). The arrow indicates a 

representative filopodia stalk. Representative ground truth and filoSkeleton body and 

stalk model prediction overlays. (D) Plot of training and validation loss by epoch number 

during training of the filoSkeleton body and stalk model. (E) Representative images of a 

labeled filopodia tips source and target pair. Source: Image of a U2-OS cell ectopically 

expressing eGFP-Myo10 fixed and stained with anti-Myo10 showing labeled filopodia 

tips. Target: Binary segmentation of the source image where all pixels have been 

classified into 2 groups: background-0 (black) and filopodia tips-1 (white) and pixel class 

(yellow numbers). The arrow indicates a representative filopodia tip. Representative 

ground truth and filoSkeleton filopodia tips model prediction overlays. (F) Plot of training 

and validation loss by epoch number during training of the filoSkeleton filopodia tips 

model. 

  

J. Cell Sci.: doi:10.1242/jcs.261274: Supplementary information

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



 

Fig. S5. Ground truth generation methods for filoVision models. (A) Workflow for 

generation of ground truths using Ilastik. Representative source cells (Ddisc cells 

expressing DdMyo7) are annotated in Ilastik until pixels are correctly assigned by Ilastik. 

(B) The ImageJ macro “filoTips Ground Truth Generator” generates a mask for the cell 

body of a representative COS-7 cell expressing Myo10, which is combined with the 

filoTips default model prediction for filopodia tips to generate ground truths. (C) The 

ImageJ macro “filoSkeleton Body_Stalk Ground Truth generator” generates a mask for 

the cell body of a representative HeLa cell stained with phalloidin, first for the cell body, 

then for filopodia stalks. All ground truths generated by these methods were used to 

train filoVision models. 
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Table S1. Filopodia Tool Comparison. Table listing several prominent filopodia 

analysis tools along with their analysis goals, strengths, and limitations for comparison 

with filoVision. Potential users should look at this table to determine the best analysis 

tool for their specific use case. 

Table S2. filoVision Model Train Test Data Description. Description of data used for 

filoVision model training and evaluation. There are separate sheets for filoTips model 

train data, filoTips model test data, filoTips transfer learning train data, filoTips transfer 

learning test data, training data for the filoSkeleton models, and test data for the 

filoSkeleton models. 

Table S3. filoVision Model Prediction Scores. Prediction scores for all filoVision 

models described in the study. 

Table S4. filoTips Output. An example summary table featuring filoTips cell and 

filopodia analyses split by sheet. 

Available for download at
https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.261274#supplementary-data

Available for download at
https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.261274#supplementary-data

Available for download at
https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.261274#supplementary-data

Available for download at
https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.261274#supplementary-data
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Table S5. filoSkeleton Output. An example summary table featuring filoSkeleton cell 

and filopodia analyses split by sheet. 

Table S6. Comparison between filoTips models and ground truths. Body IoU 

scores, body F1-scores, and filopodia counts for 56 individual cells (30 COS-7 and 26 

U2-OS) in 52 images analyzed by the default filoTips model and the filoTips model fine 

tuned to U2-OS and COS-7 cells. IoU scores and F1-scores for cell body are each 

compared to ground truths. 

Available for download at
https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.261274#supplementary-data

Available for download at
https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.261274#supplementary-data
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