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Phosphorylation of the AMPA receptor subunit GluA1 regulates
clathrin-mediated receptor internalization
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ABSTRACT
Synaptic strength is altered during synaptic plasticity by controlling
the number of AMPA receptors (AMPARs) at excitatory synapses.
During long-term potentiation and synaptic upscaling, AMPARs
are accumulated at synapses to increase synaptic strength.
Neuronal activity leads to phosphorylation of AMPAR subunit
GluA1 (also known as GRIA1) and subsequent elevation of GluA1
surface expression, either by an increase in receptor forward
trafficking to the synaptic membrane or a decrease in receptor
internalization. However, the molecular pathways underlying GluA1
phosphorylation-induced elevation of surface AMPARexpression are
not completely understood. Here, we employ fluorescence recovery
after photobleaching (FRAP) to reveal that phosphorylation of
GluA1 serine 845 (S845) predominantly plays a role in receptor
internalization, rather than forward trafficking, during synaptic
plasticity. Notably, internalization of AMPARs depends upon the
clathrin adaptor AP2, which recruits cargo proteins into endocytic
clathrin-coated pits. In fact, we further reveal that an increase inGluA1
S845 phosphorylation upon two distinct forms of synaptic plasticity
diminishes the binding of the AP2 adaptor, reducing internalization
and resulting in elevation of GluA1 surface expression. We thus
demonstrate a mechanism of GluA1 phosphorylation-regulated
clathrin-mediated internalization of AMPARs.
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INTRODUCTION
Tetrameric α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate-
type glutamate receptors (AMPARs) mediate the majority of the
fast excitatory synaptic transmission in the mammalian central
nervous system (Diering and Huganir, 2018). AMPARs are formed
by the assembly of subunits GluA1–GluA4 (also known as GRIA1–
GRIA4) in different combinations together with several auxiliary
proteins that play critical roles in the receptor kinetics and
trafficking patterns (Diering and Huganir, 2018; Greger et al.,
2017; Henley and Wilkinson, 2016; Pick and Ziff, 2018).

Regulation of AMPAR function is highly dynamic in many
different forms of synaptic plasticity, including long-term
potentiation (LTP) and long-term depression (LTD), as well as
homeostatic synaptic plasticity (Diering and Huganir, 2018). A
major part of these forms of synaptic plasticity is the trafficking of
AMPARs from or to synapses to decrease or increase the number of
AMPARs localized at synapses, which modulates the strength of
synaptic activity (Hanley, 2018).

Although a large group of AMPAR auxiliary subunits can
provide heterogeneity of AMPAR trafficking (Greger et al., 2017),
activity-dependent receptor trafficking has long been known to be
regulated by the phosphorylation of GluA1, mainly in a two-step
process (Diering and Huganir, 2018; Pick and Ziff, 2018). First,
phosphorylation of serine 845 (S845) in GluA1 is mediated by
cAMP-dependent protein kinase A (PKA) or cGMP-dependent
protein kinase II (cGKII, also known as PRKG2) (Derkach et al.,
2007; Roche et al., 1996; Serulle et al., 2007). Importantly, GluA1
S845 phosphorylation promotes GluA1 surface expression,
increases channel open-probability, and mediates several forms of
synaptic plasticity, including LTP and synaptic upscaling (Banke
et al., 2000; Diering et al., 2014; Diering and Huganir, 2018; Ehlers,
2000; Esteban et al., 2003; Kim et al., 2015; Kim and Ziff, 2014;
Lee et al., 2000, 2003; Man et al., 2007; Oh et al., 2006). In contrast,
calcineurin-mediated dephosphorylation of S845 is involved in
receptor internalization during LTD and synaptic downscaling
(Banke et al., 2000; Diering et al., 2014; Diering and Huganir, 2018;
Ehlers, 2000; Esteban et al., 2003; Kim et al., 2015; Kim and Ziff,
2014; Lee et al., 2000, 2003; Man et al., 2007; Oh et al., 2006).
Second, when GluA1 is additionally phosphorylated at serine
831 (S831) by Ca2+/calmodulin-dependent protein kinase II
(CaMKII) or protein kinase C (PKC), the single-channel
conductance is elevated, contributing to the enhanced synaptic
transmission following LTP induction, and GluA1-containing
AMPARs are targeted to the postsynaptic density (PSD) (Banke
et al., 2000; Barria et al., 1997; Derkach et al., 1999; Kristensen
et al., 2011; Lee et al., 2000; Pick and Ziff, 2018). Therefore,
cooperative phosphorylation of GluA1 plays important roles in
AMPAR trafficking and function during synaptic plasticity.

Extensive studies have yielded inconsistent data on the role of
GluA1 phosphorylation in AMPAR trafficking during synaptic
plasticity. Nonetheless, the impairment of synaptic plasticity in
mice, including by mutations that disrupt GluA1 phosphorylation,
strongly supports a requirement for receptor phosphorylation for
synaptic plasticity (Lee et al., 2003). However, it has also been
proposed that LTP expression does not require the carboxyl tail of
GluA1 (Granger et al., 2013). Furthermore, molecular mechanisms
concerning the role of GluA1 phosphorylation in regulation of
synaptic targeting and stabilization of AMPARs have not been
fully understood. Importantly, LTP-inducing stimuli may promote
AMPAR surface trafficking via S845 phosphorylation, supporting
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the idea that S845 phosphorylation has a direct role in GluA1-
containing AMPAR forward trafficking to the synaptic membrane
(Esteban et al., 2003; Lee et al., 2003). However, other studies
reveal that LTD rather than LTP is strongly correlated with S845
dephosphorylation (Kameyama et al., 1998; Lee et al., 2000, 1998),
indicating that S845 dephosphorylation is directly involved in LTD-
induced internalization of GluA1-containing AMPARs (Lee et al.,
2003). The latter idea is further supported by the finding that
NMDA-induced AMPAR internalization correlates with the time of
maximal dephosphorylation of S845, which is blocked by a
calcineurin inhibitor (Ehlers, 2000). Moreover, it has been
suggested that S845 phosphorylation stabilizes LTP by inhibiting
internalization of recently inserted GluA1-containing receptors (Lee
et al., 2003). Thus, GluA1 S845 phosphorylation may directly
regulate AMPAR internalization rather than receptor forward
trafficking, but the exact mechanisms underlying GluA1 S845
phosphorylation-mediated AMPAR internalization have not been
investigated.
Activity-dependent internalization of AMPARs is mediated by

the clathrin machinery (Ehlers, 2000; Hanley, 2018; Lee et al.,
2002; Man et al., 2000; Parkinson and Hanley, 2018). Clathrin-
mediated endocytosis (CME) is a multi-step process that requires
several proteins to be recruited to specific membrane domains
(Hanley, 2018;McMahon and Boucrot, 2011). The resulting protein
complex changes the membrane geometry to create an invagination
that leads to pit formation, ultimately resulting in scission of the
formed vesicle from the plasma membrane by dynamin proteins
(McMahon and Boucrot, 2011). A central player in this process is an
adapter protein complex, AP2, which binds to cargo proteins,
endocytic accessory proteins and clathrin (Fiuza et al., 2017;
Kelly and Owen, 2011; Robinson, 2004; Traub, 2009). Significant
progress has been made in identifying adaptor proteins responsible
for regulating internalization of AMPARs (Hanley, 2018); however,
most of these proteins are known to bind to GluA2 but not GluA1
(Fiuza et al., 2017; Hanley, 2018; Lee et al., 2002). For example,
AP2 is known to bind to GluA2 at a KRMK (lysine-arginine-
methionine-lysine) motif in the carboxyl terminus, which is located
proximal to the transmembrane domain, and promotes AMPAR
internalization (Lee et al., 2002). Moreover, protein interacting with
C kinase 1 (PICK1), after interacting with the AP2 complex
with GluA2, is recruited to clathrin-coated pits (Fiuza et al., 2017).
This association is increased during NMDA receptor (NMDAR)-
mediated LTD and is able to promote dynamin activation,
promoting GluA2 internalization (Fiuza et al., 2017).
Interestingly, GluA1 is known to interact with the AP2 complex
(Lee et al., 2002). More importantly, GluA1 also contains the
KRMK sequence, a candidate site for AP2 complex binding, in the
carboxyl terminus (Lee et al., 2002). The KRMK sequence in
GluA1 is separated by 14 amino acids from S831 and by 29 amino
acids from S845 (Diering and Huganir, 2018). Significantly, S-
nitrosylation of cysteine 875 increases the binding of AP2 to GluA1
(Selvakumar et al., 2013), suggesting that changes in structure of
distal sites on the carboxyl terminus of GluA1 via posttranslational
modifications can affect AP2 complex binding and receptor
internalization. Thus, it is possible that S845 phosphorylation
regulates the interaction between AP2 and GluA1. However, roles
of the interaction between the KRMK sequence in GluA1 and the
AP2 complex in AMPAR trafficking have not been completely
investigated in depth. In particular, whether phosphorylation of
GluA1 S845 can affect this interaction is not yet understood.
Therefore, further clarification is needed to understand GluA1
endocytic mechanisms.

Here, we employ fluorescence recovery after photobleaching
(FRAP) to show that phosphorylation of GluA1 S845
predominantly plays an important role in internalization rather
than receptor forward trafficking. Moreover, we reveal that
phosphorylation of GluA1 S845 promoted by two distinct
pathways of synaptic plasticity, homeostatic upscaling and
chemically induced LTP (cLTP), is sufficient to decrease the
internalization rate of GluA1 via the reduction of GluA1 binding to
the AP2 complex. This ultimately leads to an increase in GluA1-
containing AMPAR surface expression. Our results thus provide a
molecular mechanism for how GluA1 S845 phosphorylation
regulates GluA1-containing AMPAR trafficking.

RESULTS
Receptor forward trafficking of GluA1 S845A is not disrupted
compared with that of wild-type GluA1 during cLTP
Increased AMPAR surface expression is mediated by either
decreased internalization or increased receptor forward trafficking
to the synaptic membrane. To distinguish between these
mechanisms, we employed FRAP to determine whether GluA1
S845 phosphorylation played a critical role in surface insertion of
GluA1-containing AMPARs. To elucidate surface delivery of
GluA1-containing AMPARs, we expressed super-ecliptic pHluorin
(SEP)-tagged GluA1, which exhibits stronger fluorescence
when exposed to pH 7.4 in the extracellular space and is nearly
nonfluorescent when exposed to the acidic environment of
endosomes (Yudowski et al., 2007). We first examined FRAP of
the SEP-tagged wild-type GluA1 (GluA1 WT) on spines in mouse
cultured hippocampal neurons at 14 d in vitro (DIV) under basal
conditions or following cLTP (Fig. 1A). Under basal conditions, we
found∼30% SEP fluorescence recovery of GluA1WTat 3 min after
photobleaching, whereas significantly lower recovery was found
after cLTP (GluA1 WT basal, 30.47±1.13%; GluA1 WT cLTP,
23.39±1.10%; mean±s.e.m; P=0.0002) (Fig. 1B,C). Additionally,
FRAP kinetics of SEP–GluA1 WT between these two conditions
were significantly different (tau for GluA1 WT basal and GluA1
WT cLTP, 60.61±3.21 s and 79.22±5.88 s, respectively; P=0.006;
half-time for GluA1 WT basal and GluA1 WT cLTP, 42.01±2.22 s
and 54.91±4.08 s, respectively; P=0.006; mean±s.e.m) (Table S1).
A previous study has shown that SEP–GluA1 WT expressed in
cultured neurons is largely mobile on spines in the absence of
activity (Makino and Malinow, 2009). However, GluA1 stays much
longer on spines and becomes immobile following cLTP, thus there
is much less space at the synapse for newly trafficked GluA1
(Makino and Malinow, 2009). Therefore, FRAP of SEP–GluA1 in
the absence of LTP induction is significantly higher than the SEP–
GluA1 recovery after LTP stimulation (Makino and Malinow,
2009). In fact, our data confirmed these findings; SEP–GluA1-
containing AMPARs were incorporated into synapses and became
immobile after cLTP induction. To further elucidate the direct role
of S845 phosphorylation on GluA1 forward trafficking, we
generated a mutant GluA1, in which serine (S) was replaced by
alanine (A) at the 845 position (S845A) of the carboxyl terminus,
which prevented GluA1 S845 from being phosphorylated (Lee,
2006; Lee et al., 2003). We then compared SEP–GluA1 WT and
SEP–GluA1 S845A recovery after cLTP induction. SEP–GluA1
S845A showed higher recovery levels when compared to those
of SEP–GluA1 WT following cLTP induction (GluA1 WT cLTP,
23.39±1.10%; GluA1 S845A cLTP, 30.42±1.16%; P<0.0001)
(Fig. 1B,C). This indicates that a higher percentage of mutant
receptors is mobile at synapses when compared to GluA1 WT-
containing receptors. However, FRAP kinetics between the two
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conditions were not significantly different (tau for GluA1WT cLTP
and GluA1 S845A cLTP, 79.22±5.82 s and 89.17±6.81 s,
respectively; P=0.27; half-time for GluA1 WT cLTP and GluA1
S845A cLTP, 54.91±4.08 s and 61.81±4.73 s, respectively;
P=0.27) (Table S1). This demonstrates that forward trafficking of
mutant GluA1 is not altered compared with that of GluA1 WT
during cLTP. These results thus suggest that phosphorylation of
GluA1 S845 is unlikely to be involved in GluA1 forward trafficking
to the synaptic membrane during cLTP.

The GluA1 carboxyl terminal domain binds to β-adaptin via
the KRMK motif
As our FRAP data revealed that GluA1 S845A mutant displayed
normal receptor forward trafficking in cLTP conditions (Fig. 1), we
examined the direct role of S845 phosphorylation in the binding of
the AP2 complex to the GluA1 KRMK motif. This motif is known
to play an important role in the binding of GluA2 to β-adaptin
(AP2B1), the main subunit of the AP2 adaptor (Lee et al., 2002).
We thus generated GST fusion proteins containing the GluA1
carboxyl terminal domain (CTD) and various mutants. We
incubated glutathione beads conjugated to GST-tagged CTDs
with rat brain cytosolic extracts in a GST pulldown assay. GST and
GST–GluA2 CTD served as negative and positive controls,
respectively. Both the GluA2 and GluA1 CTDs (GluA2C and
GluA1C, respectively) were able to bind to β-adaptin, whereas the
GST control was unable to interact with β-adaptin (GluA1C, 1.00;
GST, 0.31±0.12, P=0.0011; GluA2, 1.69±0.27, P=0.0021;
mean±s.e.m) (Fig. 2), which was consistent with previous reports
(Lee et al., 2002). We generated a GluA1C mutant in which serine
845 of GluA1 was replaced with a phosphomimetic aspartate
(S845D). Crucially, binding between GluA1C S845D and β-adaptin
was significantly reduced (GluA1C, 1.000; GluA1C S845D, 0.33
±0.07, P=0.0015) (Fig. 2), confirming that GluA1 S845
phosphorylation was sufficient to reduce binding of the AP2
complex, which would result in a decrease in GluA1 internalization.
We generated additional mutants of the KRMK motif in GluA1C

(K819A, R820A, M821A and K822A; residue numbers refer to
full-length GluA1) to determine whether the KRMK motif in
GluA1 was required for β-adaptin binding. The GST pulldown
assay revealed that three mutants, K819A, M821A and K822A,
bound to β-adaptin significantly less than GluA1C, whereas R820A

Fig. 1. Receptor forward trafficking of GluA1 S845A is not disrupted compared with that of GluA1 WT during cLTP. (A) Representative images of FRAP
experiments using SEP–GluA1 WT and SEP–GluA1 S845A under basal and cLTP conditions. Images depicted are before photobleaching; directly after
photobleaching; and 44 s, 90 s, 134 s and 180 s after photobleaching for each condition. The photobleached ROI is shown as a white circle. Scale bars: 3 µm.
(B) Representative normalized traces of FRAP for each experimental group. Each point represents one image acquired every 2 s. Recovery rates were corrected
for internal photobleaching and background and were normalized to pre-photobleaching intensities, followed by one-phase association nonlinear fitting. (C)
Representative bar graphs of SEP fluorescence recovery at 3 min after photobleaching for each experimental group. EachROI represents a spine. Data in B andC
are presented as mean±s.e.m. BASAL GluA1, n=128 spines (16 cells); cLTP GluA1, n=142 spines (12 cells); BASAL GluA1 S845A, n=137 spines (15 cells);
cLTP GluA1 S845A, n=177 spines (18 cells). ***P<0.01, ****P<0.0001 (one-way ANOVA with uncorrected Fisher’s LSD).

Fig. 2. Interaction of β-adaptin with GluA1 via the KRMK motif. GST
pulldown assay showing binding of β-adaptin in brain cytosolic extracts to GST
fusion proteins of the cytoplasmic tails of GluA1 (GluA1C) and the indicated
KRMK motif mutants. GST and GluA2C served as negative and positive
controls for β-adaptin pulldown, respectively. Coomassie staining shows the
amount of GST fusion proteins bound to beads in each lane (KD, kilodalton).
Quantification of mean β-adaptin signal intensity is shown below as the
mean±s.e.m. of n=4 different experiments (a.u., arbitrary units). *P<0.05,
**P<0.01 (one-way ANOVA with uncorrected Fisher’s LSD).
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was able to interact with β-adaptin similarly to GluA1C (GluA1C,
1.00; K819A, 0.48±0.19, P=0.0165; R820A, 0.70±0.20, P=0.1167;
M821A, 0.33±0.08, P=0.0014; and K822A, 0.40±0.11, P=0.0039)
(Fig. 2), indicating that K819, M821 and K822 in GluA1 are
required for interaction with β-adaptin, which is similar to their role in
GluA2.

cLTP and synaptic upscaling decrease β-adaptin binding to
GluA1 via an increase in GluA1 S845 phosphorylation
We addressed whether GluA1 S845 phosphorylation regulates the
interaction of GluA1 with β-adaptin, which contributes to receptor
internalization. First, co-immunoprecipitation (co-IP) analysis using
cell lysates of DIV14 cultured rat cortical neurons confirmed that
β-adaptin was able to bind to endogenous GluA1, and this binding
was significantly enhanced when we blocked receptor internalization
by treating cells with 1 μMDynole, an inhibitor of dynamin, to inhibit
the scission of vesicles from the membrane (control, 1.00; Dynole,
1.46±0.14; mean±s.e.m; P=0.0279) (Fig. 3A). This revealed that
GluA1, similar to GluA2, interacted with β-adaptin for receptor
internalization. To further examine whether synaptic plasticity that
elevated GluA1 S845 phosphorylation and subsequently increased
GluA1 surface expression was able to modify the binding of
β-adaptin to GluA1, we employed the same cLTP protocol used in the

FRAP experiments (Fig. 1) and carried out co-IP experiments in
DIV14 cultured neurons. We confirmed that cLTP significantly
increased GluA1 S845 phosphorylation (control, 1.00; cLTP,
5.56±0.84; P=0.0002) (Fig. 3B), as seen previously (Diering et al.,
2016; Roberts et al., 2021). We observed a significant decrease in the
binding of β-adaptin to GluA1 in response to cLTP induction
(control, 1.00; cLTP, 0.24±0.08; P<0.0001) (Fig. 3C). We further
explored the role ofGluA1 phosphorylation and its interactionwith β-
adaptin in another form of synaptic plasticity. Whereas LTP increases
the activity of individual synapses, during homeostatic synaptic
plasticity there is a global increase in synaptic strength (Galanis and
Vlachos, 2020). We induced synaptic upscaling by chronically
inhibiting neuronal activity, a well-established protocol to increase
GluA1 S845 phosphorylation and subsequently elevate surface
expression (Diering et al., 2014; Kim and Ziff, 2014). For chronic
inhibition of neuronal activity, we treated neurons with 2 μM
tetrodotoxin (TTX) for 48 h and confirmed that synaptic GluA1
S845 phosphorylationwas significantly elevated (control, 1.00; TTX,
1.84±0.23; P=0.008) (Fig. 3D), as seen previously (Diering et al.,
2014; Kim and Ziff, 2014). We then examined the effect of TTX
treatments on the binding of GluA1 to β-adaptin. We treated neurons
with 2 μMTTX for 48 h and measured the interaction of GluA1 with
β-adaptin in co-IP experiments. Our results showed that TTX

Fig. 3. cLTP- and TTX-induced up scaling treatments increase phosphorylation of GluA1 S845 and reduce binding of β-adaptin to GluA1.
(A) Representative immunoblots and quantitative analysis of co-IP of GluA1 with β-adaptin from cultured cortical neurons in the presence or absence of inhibition
of dynamin by Dynole (1 µM for 30 min). Mean±s.e.m. of n=3 different cultures. *P<0.05 (unpaired two-tailed Student’s t-test). (B) Representative immunoblots
and quantitative analysis of GluA1 S845 phosphorylation (pGluA1-S845) with or without cLTP induction. Mean±s.e.m. of n=7 different cultures. ***P<0.001
(unpaired two-tailed Student’s t-test). (C) Representative immunoblots and quantitative analysis of co-IP of GluA1 with β-adaptin from cultured cortical neurons
with and without cLTP induction. Mean±s.e.m. of n=4 different cultures. ****P<0.0001 (unpaired two-tailed Student’s t-test). (D) Representative immunoblots and
quantitative analysis of GluA1 S845 phosphorylation in control neurons, or neurons treated with either TTX or FK506. Mean±s.e.m. of n=15 western blots using
samples from 7 different cultures. **P<0.01, ****P<0.0001 (one-way ANOVA with uncorrected Fisher’s LSD). (E) Representative immunoblots and quantitative
analysis of co-IP of GluA1 from cultured cortical neurons showing that TTX treatment (2 µM for 48 h) and FK506 treatment (5 µM for 48 h) decrease β-adaptin
binding to GluA1. Mean±s.e.m. of n=3 different cultures. **P<0.01 (one-way ANOVAwith uncorrected Fisher’s LSD). GluA1 (A–C,E) and actin (D) are shown as
loading controls used for normalization. Molecular mass markers are indicated in kDa.
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treatment was sufficient to decrease the binding of β-adaptin to
GluA1 (control, 1.00; TTX, 0.44±0.12; P=0.009) (Fig. 3E). To
further examine whether reduced binding of β-adaptin following
synaptic upscaling promoted reduced GluA1 internalization, we
treated DIV14 rat cultured hippocampal neurons with 2 μM TTX for
48 h and measured the surface expression of GluA1 and the rate of
GluA1 internalization (Fig. 4A). As shown previously (Diering et al.,
2014; Kim and Ziff, 2014), TTX treatment was sufficient to increase
GluA1 surface expression (control, 1.00; TTX, 1.18±0.04;
mean±s.e.m.; P=0.0076) (Fig. 4B). By using an antibody-based
live staining and feeding protocol to label the surface GluA1 and
internalized GluA1, we revealed that the rate of GluA1 internalization
was significantly decreased after TTX treatment (control, 1.00; TTX,
0.63±0.02; P<0.0001) (Fig. 4C). These results confirmed that GluA1
surface accumulation following synaptic upscalingwasmediated by a
reduced rate of GluA1 internalization. Taken together, our results
suggest that during cLTP and synaptic upscaling, an increase in S845
phosphorylation significantly reduces binding of the AP2 adaptor to
GluA1, which decreases the internalization rate, ultimately
contributing to increased surface expression of GluA1-containing
AMPARs, a cellular mechanism to strengthen synaptic activity
during synaptic plasticity.

Kinase and phosphatase activity-mediated regulation of
GluA1 S845 phosphorylation plays important roles in the
interaction between β-adaptin and GluA1
We directly compared the interaction of β-adaptin with GluA1 WT
and GluA1 S845A in neurons. DIV14–17 cultured rat cortical

neurons were infected with Sindbis virus expressing HA–GluA1
WTor HA–GluA1 S845A for 16 h, and we performed co-IP with an
antibody against the HA tag. We observed that the β-adaptin
interaction with HA–GluA1 S845A was significantly higher than
that with HA–GluA1 WT (HA–GluA1 WT, 1.00; HA–GluA1
S845A, 4.39±1.48; mean±s.e.m; P=0.0298) (Fig. 5A), further
implicating GluA1 S845 phosphorylation in the regulation of AP2
binding to GluA1. To further explore the role of GluA1 S845
phosphorylation on the binding of AP2 to GluA1, we treated
DIV14–17 cortical cultures with an activator of PKA, 8-bromo-
cAMP (8-Br-cAMP). We found that PKA activation with 500 μM
8-Br-cAMP, a condition that has been previously shown to
significantly increase GluA1 S845 phosphorylation (Serulle et al.,
2007), decreased the binding of β-adaptin to GluA1 (control, 1.00;
8-Br-cAMP 0.78±0.07; P=0.0218) (Fig. 5B). Additionally, we
employed another protocol to elevate GluA1 S845 phosphorylation
and surface expression by inhibiting calcineurin, a phosphatase that
is known to dephosphorylate GluA1 and reduce surface GluA1
expression by promoting receptor internalization (D’Amelio et al.,
2011; Kim and Ziff, 2014). We treated neurons with the calcineurin
inhibitor FK506 at 5 μM for 12 h, a condition that increases GluA1
S845 phosphorylation and surface expression in cultured neurons
(Kim and Ziff, 2014), and confirmed that FK506 treatment was
sufficient to increase GluA1 S845 phosphorylation (control, 1.00;
FK506 2.63±0.311; P<0.0001) (Fig. 3D), as seen previously
(Diering et al., 2014; Kim and Ziff, 2014). We then measured the
interaction of GluA1 with β-adaptin using co-IP. As expected,
reduced calcineurin activity was capable of significantly decreasing

Fig. 4. TTX treatment increases GluA1 surface expression and decreases GluA1 internalization. (A) Neurons were treated with TTX for 48 h (TTX) or left
untreated (control) and then incubated with a rabbit anti-GluA1 extracellular domain antibody for 15 min at 37°C to allow the formation and internalization of
antibody–GluA1 complexes. Antibody complexes remaining on the surface were removed by a brief acidic wash, neurons were fixed, and surface receptors were
relabeled using a mouse anti-GluA1 extracellular domain antibody. Cells were permeabilized, and surface and internalized antibody–GluA1 complexes were
differentially stained using fluorescein- and rhodamine-labeled secondary antibodies (raised in donkey), respectively. Green, surface receptors; red, internalized
receptors; blue, MAP2-positive dendrites (MAPII). Scale bars: 100 μm (upper panels), 20 μm (bottom panels). Quantification of (B) relative surface and
(C) internalized GluA1-containing AMPAR levels in the presence or absence of TTX treatment. Mean±s.e.m. of n=4 different cultures, average of 10 neurons
imaged per culture. **P<0.01, ****P<0.0001 (unpaired two-tailed Student’s t-tests).
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β-adaptin binding to GluA1 (control, 1.00; FK506, 0.48±0.09;
P=0.004) (Fig. 3E). Taken together, our results suggest that kinase
and phosphatase activity-mediated regulation of GluA1 S845
phosphorylation plays important roles in the interaction between
β-adaptin and GluA1, ultimately contributing to the level of GluA1-
containing AMPAR surface expression.

GluA1 S831 phosphorylation might not be involved in the
interaction between β-adaptin and GluA1
GluA1 S831 is known to be phosphorylated by both PKC and
CaMKII, which promotes GluA1 targeting to the PSD; thus, GluA1
S831 phosphorylation is also important for AMPAR surface
expression and synaptic plasticity (Diering and Huganir, 2018). We
therefore examined whether GluA1 S831 phosphorylation regulated
the interaction of GluA1 with β-adaptin in cultured rat cortical
neurons. Similar to GluA1 S845 phosphorylation, cLTP induction
was sufficient to significantly increase GluA1 S831 phosphorylation
(control, 1.00; cLTP, 4.65±0.96; mean±s.e.m; P=0.0016) (Fig. S1A).
Interestingly, synaptic upscaling by TTX treatment was unable to
alter GluA1 S831 phosphorylation (control, 1.00; TTX, 0.63±0.08;
P=0.2606) (Fig. S1B), which was consistent with previous findings
(Diering et al., 2014). In contrast, pharmacological inhibition of
calcineurin activity by treating neurons with FK506 significantly
elevated GluA1 S831 phosphorylation (control, 1.00; FK506,
1.75±0.26; P=0.007) (Fig. S1B). These results suggest that GluA1
S831 phosphorylation is important for cLTP, but it is unlikely to
play critical roles in synaptic upscaling. To determine whether
GluA1 S831 phosphorylation regulated β-adaptin binding to
GluA1, we generated a GluA1 S831A mutant, infected cortical
cells with Sindbis virus expressing HA–GluA1 S831A, and assayed
β-adaptin binding to this mutant using co-IP. We observed that β-
adaptin interaction with HA–GluA1 S831A was unaltered when
compared to the interaction with HA–GluA1 WT (HA–GluA1 WT,
1.00; HA–GluA1 S831A, 0.79±0.14; P=0.2276) (Fig. S1C),
suggesting that GluA1 S831 phosphorylation has no impact on
GluA1 internalization under basal conditions. To further explore the
role of GluA1 S831 phosphorylation on the binding of β-adaptin to

GluA1, we treated DIV14–17 cortical cultures with an activator of
PKC, phorbol ester (TPA). First, we treated neurons with 5 μMTPA
for 10 min, which has been shown to significantly increase GluA1
S831 phosphorylation (Lee et al., 2007), and carried out co-IP. In
contrast to the effect of the GluA1 S831A mutation, TPA treatment
significantly decreased the binding of β-adaptin to GluA1 (control,
1.00; TPA, 0.41±0.07; P=0.0013) (Fig. S1D). This suggests that
PKC activity can regulate the interaction between β-adaptin and
GluA1, but this regulation is unlikely to be mediated by GluA1
S831 phosphorylation.

DISCUSSION
Synaptic plasticity is an activity-dependent alteration in synaptic
strength by means of control of the number of AMPARs at synapses
(Park, 2018). In particular, hippocampal synaptic plasticity has long
been considered a synaptic correlate for learning and memory (Park,
2018). GluA1-containing AMPARs have been suggested to play an
important role in hippocampal synaptic plasticity, including LTP and
synaptic scaling (Díaz-Alonso et al., 2017; Diering et al., 2014;
Hayashi et al., 2000; Jia et al., 1996; Kim and Ziff, 2014; Shi et al.,
2001; Zamanillo et al., 1999). Importantly, the interplay between
synaptic phosphorylation and dephosphorylation of GluA1 is central
to regulation of AMPAR synaptic expression and synaptic plasticity
(Diering and Huganir, 2018; Purkey and Dell’Acqua, 2020). During
synaptic plasticity, synaptic strength can be enhanced by an increase
in GluA1-containing AMPAR surface expression, which can be
promoted by either increased receptor forward trafficking to the
synaptic membrane or decreased internalization of the receptors.
However, the molecular mechanisms of how AMPAR trafficking is
regulated by GluA1 phosphorylation are not completely understood.
In this study, our FRAP experiments demonstrate that the kinetics
of cLTP-induced forward trafficking of both GluA1WT- and mutant
GluA1 S845A-containing AMPARs are similar, whereas the
recovery of mutant GluA1 S845A-containing receptors is higher
than that of GluA1 WT-containing receptors (Fig. 1; Table S1).
Interestingly, under basal conditions, FRAP kinetics of GluA1 WT-
and mutant GluA1 S845A-containing AMPARs are significantly
different (Fig. 1; Table S1). This suggests that mutant GluA1 is
largely mobile on spines compared with GluA1 WT under both
conditions. Given that retention of GluA1 at the surface is likely
due to protein interactions and clustering of the receptor by
phosphorylation (Purkey and Dell’Acqua, 2020), retention of
mutant GluA1 at the surface could be decreased, which would
contribute to increased mobility of mutant GluA1-containing
AMPARs. Taken together, our data suggest that GluA1 S845
phosphorylation is unlikely to have a major role in receptor forward
trafficking, but in fact affects receptor internalization.

The requirement for the GluA1 CTD for LTP has been challenged
by a report showing that LTP requires AMPAR trafficking,
independent of subunit type (Granger et al., 2013). In addition,
recent studies have demonstrated that the extracellular amino-
terminal domains of AMPARs govern their trafficking for synaptic
plasticity in a manner that is dependent on the AMPAR subunit type
(Díaz-Alonso et al., 2017; Watson et al., 2017). Moreover, a study
has reported that the levels of GluA1 phosphorylation are too low to
regulate GluA1-dependent synaptic plasticity (Hosokawa et al.,
2015). However, another study has demonstrated that significantly
higher levels of GluA1-containing AMPARs are phosphorylated
at either S845 or S831 under basal conditions (Diering et al., 2016).
Nonetheless, LTP expression has been thought to be dependent on
the rapid synaptic insertion of GluA1-containing AMPARs
(Hayashi et al., 2000; Shi et al., 2001), whereas internalization of

Fig. 5. GluA1 S845A shows reduced β-adaptin binding. (A) Representative
immunoblots and quantitative analysis of co-IP of HA–GluA1 WT and HA–
GluA1 S845A with β-adaptin virally expressed in cultured cortical neurons.
Mean±s.e.m. of n=6 different cultures. (B) Representative immunoblots and
quantitative analysis of co-IP of GluA1 with β-adaptin from cultured cortical
neurons in the presence or absence of PKA activation by 8-Br-cAMP.
Mean±s.e.m. of n=3 different cultures. GluA1 is shown as a loading control
used for normalization. Molecular mass markers are indicated in kDa. *P<0.05
(unpaired two-tailed Student’s t-test).
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AMPARs is important for LTD expression (Beattie et al., 2002;
Carroll et al., 1999; Ehlers, 2000; Lee et al., 2003; Man et al., 2000).
A study using phosphomutant (S831A and S845A) GluA1mice has
demonstrated that LTP is not completely absent, but LTD is
completely dependent on the capacity for GluA1 phosphorylation
(Lee et al., 2003), supporting our idea that that GluA1
phosphorylation primarily regulates receptor internalization and is
less important for receptor forward trafficking at excitatory
synapses. Interestingly, PKA and calcineurin are targeted to
GluA1 via the interaction with A-kinase anchoring protein 150
(AKAP150, also known as AKAP5) in the PSD of excitatory
synapses, where they regulate GluA1 phosphorylation (Sanderson
et al., 2012). A study using mutant AKAP150 lacking the
calcineurin-anchoring motif also shows an increase in GluA1
S845 phosphorylation and the inhibition of LTD (Sanderson et al.,
2012), emphasizing the role of S845 phosphorylation in receptor
internalization. Additionally, AMPAR trafficking in neurons can be
constitutive or activity-dependent during synaptic plasticity
(Anggono and Huganir, 2012). However, roles in AMPAR
internalization during LTP have not been fully investigated. A
previous study suggests that AMPAR internalization in dendrites
provides receptor pools for forward trafficking during LTP (Zheng
et al., 2015). This thus suggests that both internalization and forward
trafficking of AMPARs are associated with LTP, but the detailed
mechanisms need to be investigated in further studies.
Our findings reveal that synaptic plasticity that increases synaptic

strength, such as cLTP and synaptic upscaling, significantly increases
GluA1 S845 phosphorylation by either increasing kinase activity or
decreasing phosphatase activity (Fig. 3B,D), which in turn reduces the
interaction between GluA1-containing AMPARs and β-adaptin
(Fig. 3C,E), contributing to a decrease in receptor internalization
(Fig. 4C). Ultimately, AMPAR surface expression is increased
(Fig. 4B), thus synaptic strength is enhanced during this synaptic
plasticity. Interestingly, we find that GluA1 S831 phosphorylation is
unlikely to be involved in the interaction between GluA1 and β-
adaptin (Fig. S1C); however, PKC activity may play another
important role in GluA1-containing receptor internalization (Fig.
S1D). In fact, PKC can phosphorylate serine 818 (S818), S831, and
threonine 840 (T840) of the GluA1 CTD (Diering and Huganir,
2018). Importantly, PKC-mediated S818 phosphorylation increases
GluA1 interaction with 4.1N (also known as EBP41L1), a
cytoskeletal scaffold protein, which indirectly affects AMPAR
surface retention and/or forward trafficking (Diering and Huganir,
2018; Lin et al., 2009). Therefore, it is possible that PKC can regulate
GluA1 internalization by phosphorylating S818,which is located near
to the KRMK motif, but not S831. Moreover, GluA1 internalization
has been shown to be regulated by other forms of GluA1 CTD
posttranslational modification, including nitrosylation and
palmitoylation (Diering and Huganir, 2018; Lin et al., 2009; Man
et al., 2000; Selvakumar et al., 2013; Widagdo et al., 2015).
Therefore, our current report and previous studies demonstrate that
internalization of GluA1-containing AMPARs is likely mediated by
not only S845 phosphorylation but also additional posttranslational
modifications of the GluA1 CTD.
Bidirectional changes in synaptic function are related to the

reversible regulation of AMPAR phosphorylation (Diering et al.,
2014; Lee et al., 2000). For example, high-frequency stimulation in
hippocampal CA1 neurons increases phosphorylation of GluA1
S831, resulting in LTP, whereas low-frequency stimulation activates
a phosphatase that dephosphorylates GluA1 S845, promoting LTD
(Lee et al., 2000). Another study has demonstrated that the GluA1
S845A mutant is unable to display TTX-induced synaptic

upscaling, but not bicuculline-induced synaptic downscaling
(Diering et al., 2014). This suggests that the requirement for
GluA1 S845 phosphorylation in regulating AMPAR trafficking is
dependent on the type of synaptic plasticity.

GluA1 homomeric AMPARs are Ca2+ permeable, which plays
important roles in several different types of synaptic plasticity,
including homeostatic synaptic plasticity (Kim and Ziff, 2014),
drug-related incubation of craving (Conrad et al., 2008) and NMDA
receptor-mediated LTP (Barria et al., 1997; Diering and Huganir,
2018; Purkey and Dell’Acqua, 2020). However, the mechanism that
enables the minority population of GluA2-lacking AMPA receptors
to be accumulated at synapses during synaptic plasticity is not
known. Interestingly, a study using mice specifically lacking
phosphorylation of the GluA1 S845 site (GluA1 S845Amutant) has
demonstrated that this phosphorylation is required for GluA1
homomeric AMPAR surface retention (He et al., 2009).
Specifically, in GluA1 S845A mutant neurons, homomeric
receptors are removed from synapses mainly due to clathrin-
mediated internalization and subsequent lysosomal degradation (He
et al., 2009). This could be explained by the inability of PKA to re-
phosphorylate S845, an essential step for promoting the recycling of
GluA1 back to the plasma membrane and maintaining the pool of
surface AMPARs (Fernandez-Monreal et al., 2012). Therefore, our
findings further provide a mechanism that explains how GluA1
homomers can accumulate at synapses during synaptic plasticity.

GluA1 S845 phosphorylation is also implicated in several brain
disorders (Zhang and Abdullah, 2013). β-amyloid peptide (Aβ)
has been recognized as a causative factor for the cognitive
impairments in Alzheimer’s disease (AD), and several studies
have shown that Aβ leads to an increase in intracellular Ca2+

activity in cortical and hippocampal neurons (Brown et al., 2011;
Busche et al., 2012, 2008; Harris et al., 2010; Hartley et al., 1999;
Kuchibhotla et al., 2008; Liu et al., 2013; Minkeviciene et al.,
2009; Palop et al., 2007; Palop and Mucke, 2009; Roberson et al.,
2011; Sun et al., 2019; Verret et al., 2012). In particular, Aβ-
induced Ca2+ hyperexcitation in hippocampal neurons stimulates
the Ca2+/calmodulin-dependent protein phosphatase calcineurin,
which dephosphorylates GluA1 S845 phosphorylation, enabling
GluA1-containing AMPARs to be internalized from the plasma
membrane (Lee et al., 1998; Roberts et al., 2021; Sanderson et al.,
2012; Sun et al., 2019). This leads to a reduction of synaptic
strength and ultimately disrupts synaptic plasticity and cognitive
function in AD (Forner et al., 2017). Another example is cocaine
craving, a cue-induced cocaine-seeking behavior that is intensified
after withdrawal from chronic exposure to cocaine. The expression
of incubated craving is mediated by GluA1 homomeric AMPARs
in the nucleus accumbens (Conrad et al., 2008). In fact, elevated
synaptic levels of GluA1 homomeric receptors result in part from
an increase in GluA1 S845 phosphorylation (Ferrario et al., 2011).
Furthermore, enhanced GluA1 S845 phosphorylation and surface
expression play important roles in the antidepressant effects of
ketamine (Zhang et al., 2016). Taken together, these findings
indicate that GluA1 S845 phosphorylation has a unique role in
various brain disorders and may serve a novel therapeutic target for
these diseases.

Finally, we would like to note the limitations of our study. First,
our study uses overexpression of various exogenous forms of
GluA1, such as SEP–GluA1, GluA1WT, GluA1 S845A and GluA1
S831A, in several experiments in addition to endogenous GluA1.
Thus, it is still unknown how much endogenous GluA1 is involved
in our experimental readouts. This limitation could be overcome by
expressing exogenous GluA1 in GluA1-knockout neurons. Second,

7

RESEARCH ARTICLE Journal of Cell Science (2021) 134, jcs257972. doi:10.1242/jcs.257972

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.257972
https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.257972
https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.257972


without electrophysiological data, our conclusions based on
biochemical and cell biological data are limited.

MATERIALS AND METHODS
Expression vectors
Plasmids and viral vectors expressing HA–GluA1, GST–GluA2C and
GST–GluA1C have been described previously (Greger et al., 2003; Osten
et al., 2000; Srivastava et al., 1998). Rat sequences were used for GluA1 and
GluA2. GST–GluA1Cmutants were cloned by PCR and ligated into pGEX-
4T1 (Pharmacia). The HA–GluA1 S831A and S845A mutants were
generated using a QuikChange Site-Directed Mutagenesis kit (Agilent).
SEP–GluA1WT plasmid was a gift from Dr Thomas Blanpied at University
of Maryland School of Medicine, Baltimore, MD, USA, and has been
described previously (Kerr and Blanpied, 2012). SEP–GluA1 S845A was
generated using a PCR-based QuikChange Site-Directed Mutagenesis kit
(Agilent) according to the manufacturer’s protocol. All mutants were
confirmed by sequencing.

Antibodies
The following antibodies were used: purified mouse anti-β-adaptin clone
74/β-adaptin (RUO) (BD Biosciences, 610381); anti-glutamate receptor 1
antibody (Millipore, AB1504); anti-GluR1-NT antibody, clone RH95
(Millipore, MAB2263); anti-glutamate receptor 1 antibody, phosphoSer
845 (1:1000; Millipore, AB5849); anti-phospho-GluR1 (Ser831) antibody,
clone N453, rabbit monoclonal (1:1000; Millipore, 04-823); anti-GluR1
antibody (Calbiochem, PC246); purified anti-MAP2 antibody (Biolegend,
822501; previously Covance, PCK-554P); HA-probe antibody (Y11) (Santa
Cruz, sc-805); anti-actin antibody [ACTN05(C4)] (1:2000; Abcam,
ab3280).

Viral production and neuronal infection
Baby hamster kidney (BHK) cells (Invitrogen) were electroporated with
RNA of pSinRep5-HA–GluA1 or the C-terminal mutants and the helper DH
(26S), according to the Sindbis Expression System manual (Invitrogen) and
as previously described (Osten et al., 2000). The pseudovirion-containing
medium was collected after 24 h, and the titer for each construct was tested
empirically in neuronal cultures. For experimental expression, neurons were
infected at DIV14–21 with a titer resulting in infection of 5–10% of neurons
(typically 5–20 ml of a-MEM virus stock diluted in 600 ml conditioned NB-
B27 medium per well of a 6-well dish). The infectious medium was applied
for 16 h. Expression with no obvious adverse effects on morphology of the
infected neurons was observed the next day. For immunoprecipitation
experiments, neurons were cultured at 1 million cells per 6 cm dish and
infected at DIV13 with 60–100 μl of virus stock in 3 ml of conditioned NB-
B27 medium for 16 h.

Primary hippocampal and cortical neuronal culture
Primary rat hippocampal and cortical neuron cultures were prepared by a
previously described protocol (Lu et al., 2014; Osten et al., 1998; Restituito
et al., 2011). Animal experiments were conducted in compliance with the
Institutional Animal Care and Use Committee at the New York University
School of Medicine. The day before dissection, coverslips or 6 cm Petri
dishes were coated with poly-L-lysine in boric acid buffer at 37°C overnight.
Before dissection, coverslips or dishes were washed twice with phosphate-
buffered saline (PBS) and stored in the incubator ready for plating neurons.
Primary hippocampal and cortical neuron cultures were obtained from
Sprague Dawley rat embryos at embryonic day (E)18–19. Pregnant rats were
anesthetized with CO2, and embryos were then removed. Dissection was
carried out in ice-cold PHG buffer (10 mM HEPES and 0.6% glucose in
PBS, pH 7.35). After decapitation of the head, cortices and hippocampus
were isolated under a dissection microscope in a sterile hood. Hippocampi
and cortices were separately trypsinized for 15 min at 37°C, washed three
times in PHG buffer, and then resuspended in 5 ml of plating medium
[minimal essential medium (Invitrogen), 10% horse serum (Invitrogen),
0.45% glucose, 1 mM pyruvate, 1% penicillin-streptomycin (Invitrogen)]
warmed to 37°C. Hippocampi and cortices were triturated with a 5 ml sterile
pipette until the cell suspension appeared homogeneous, and cells were then
counted with a hemocytometer. Cells were plated at a density of 120,000 per

coverslip or 1,000,000 per 6 cm Petri dish in plating medium. 2–4 h after
plating, all media were removed and replaced with Neurobasal medium
supplemented with B27 supplement (Invitrogen), glutamine (500 μM) and
antibiotics. Every 4 d, half of the volume of medium remaining on the cells
was removed and replaced with fresh Neurobasal medium. Anti-glia growth
drug (3 μM cytosine β-D-arabinofuranoside; Millipore Sigma) was usually
added to coverslips into growth medium after DIV8.

For FRAP experiments, mouse hippocampal neuron cultures were
prepared as described previously (Roberts et al., 2021; Sun et al., 2019;
Sztukowski et al., 2018). Hippocampi were isolated from postnatal day 0
(P0) CD-1 mouse (Charles River) brain tissues and digested with 10 U/mL
papain (Worthington Biochemical Corp., Lakewood, NJ). Mouse
hippocampal neurons were plated on poly-lysine-coated glass-bottom
dishes (500,000 cells), transfected using Lipofectamine 2000 (Invitrogen)
with 2 µg DNA of SEP–GluA1 WT or SEP–GluA1 S845A on DIV4, and
imaged on DIV14. Cells were grown in Neurobasal Medium (Life
Technologies, Carlsbad, CA) with B27 supplement (Life Technologies,
Carlsbad, CA), 0.5 mM Glutamax (Life Technologies) and 1% penicillin-
streptomycin (Life Technologies). Colorado State University’s Institutional
Animal Care and Use Committee reviewed and approved the animal care
and protocol (16-6779A).

Neuronal immunocytochemistry
Cells were initially treated with 2 µM TTX for 48 h before the experiment,
as previously described (Pick et al., 2017). After drug treatment, DIV14–17
hippocampi cultures were stained live with an anti-GluA1 antibody (GluA1
Calbiochem PC246; rabbit; 1:20) for 15 min at 37°C in a humidified
chamber, to allow for antibody binding and antibody–receptor complex
internalization (endocytosed receptors). Cells were then washed with an
acidic buffer (0.5 M NaCl and 0.2 M acetic acid in PBS) for stripping of
remaining antibodies at the cell surface, followed by three quick washes in
PBS and fixation for 10 min at room temperature using 4%
paraformaldehyde (PFA) and 0.12 M sucrose in PBS. Cells were then
incubated with a different anti-GluA1 antibody (Millipore, MAB2263;
mouse; 1:500) to allow for staining of the remaining surface GluA1 (not
endocytosed receptor). Cells were permeabilized for 5 min in 0.2% Triton
X–100 and washed three times with PBS for 5 min at room temperature.
Cells were blocked in 10%BSA in PBS for 1 h at room temperature and then
incubated with an anti-MAP2 antibody diluted in 3%BSA (MAP2, chicken;
1:10,000; Biolegend) for 60 min at room temperature. Cells were washed
three times in PBS with 5 min washes and incubated with secondary
antibody diluted in 3% BSA for 60 min at room temperature. Secondary
antibodies were conjugated to fluorophores (Alexa Fluor 488, Alexa Fluor
568 or Alexa Fluor 647) either from Molecular Probes (1:1000) or from
Jackson ImmunoResearch (1:300). Cells were then washed three times with
PBS for 5 min, mounted on coverslips, and stored. Immunofluorescence
images were acquired on a Nikon PCM 2000 confocal microscope using a
60× objective. All images were acquired using the same settings for one
experiment.

Fluorescence recovery after photobleaching
FRAP experiments were performed as previously described (Kim et al.,
2016; Sole et al., 2019) using a spinning-disk confocal microscope based on
a Yokogawa CSUX1 system built on an Olympus IX83 inverted stand
coupled to an Andor laser launch containing 405, 488, 561 and 637 nm
diode lasers, 100–150 mW each. Images were collected using a 60× Plan
Apo N 1.4 NA objective and two iXon EMCCD cameras (DU-897, Andor).
The system was equipped with the ZDC constant focus system and a Tokai
Hit chamber and objective heater. The stage and objective were heated to
37°C. Photobleaching was performed as previously described (Kim et al.,
2016; Sole et al., 2019) using the FRAPPA system (Andor). Images were
acquired every 2 s during 3 min, and the recovery of SEP–GluA1 WT and
SEP–GluA1 S845A fluorescence within the bleached region (elliptical,
10×10 pixels) was quantitated as described below.

Image analysis and quantitation
Images were analyzed using ImageJ software (NIH, Bethesda, MD). For
immunocytochemistry, the areas of three dendrites on each image were
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manually defined by outlining the MAP2 signal, and the intensity of the
fluorescence of surface GluA1 or endocytosed GluA1 was divided by total
GluA1 intensity (the sum of surface GluA1 and endocytosed GluA1
fluorescence intensity) within the outlined dendrites. For FRAP, three
regions of interest (ROIs) – the bleach region (BL), which was used to test
for recovery; the background region (BG), which was used to correct for
noise; and the reference region (REF), which was used to show internal
photobleaching during acquisition – were measured. To eliminate noisy
signals from the data and normalize corrected bleach to corrected reference,
we used the following formula that has been used previously (Webster et al.,
2015): FRAP=(BLt−BGt)/(REFt−BGt). All data was plotted in GraphPad
Prism 9, and a one-phase association nonlinear fit was performed.

Co-immunoprecipitation
Cells were initially treated with drugs as described for each figure (TTX,
Tocris Biosciences; FK506, Abcam; Dynole, Abcam; 8-Br-cAMP, Tocris
Biosciences; and phorbol ester TPA, Millipore Sigma). Co-
immunoprecipitation was carried out as described previously (Sathler
et al., 2016), with some modifications. Briefly, DIV14–17 cortical cultures
were collected, homogenized in 1 ml of radioimmune precipitation assay
buffer containing 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% Nonidet P-
40, 0.5% deoxycholate, 0.1% SDS, 10 mM EGTA, 10 mM EDTA,
phosphatase inhibitor cocktails I and II (Sigma) and Protease Inhibitor
Complete (Roche Applied Science, Indianapolis, IN, USA). For the input
sample, 50 μl of protein lysate was removed, rocked for 60 min at 4°C, and
boiled in an equal volume of 2× loading buffer. The immunoprecipitation
was performed by incubating the protein lysate with 1 μg of anti-GluA1
antibody (Millipore, AB1504) or 1 μg anti-HA antibody (Santa Cruz,
sc-805) for 16 h at 4°C followed by binding to Protein A Plus agarose beads
(Santa Cruz) at 4°C for 60 min. Beads were then pelleted by centrifugation
and washed three times in wash buffer (50 mM Tris-HCl, pH 7.4, 300 mM
NaCl, 5 mM EGTA and 0.1% Triton X-100), suspended in 1× loading
buffer (30 μl) and boiled (immunoprecipitated sample). Equal volumes were
loaded for western blotting, and all membranes were probed with anti-β-
adaptin antibody (1:1000, BD Biosciences), and anti-GluA1 or anti-HA
(1:1000) antibody to control for amount precipitated.

GST pulldown
GST fusion proteins were expressed and purified as described (Osten et al.,
1998). GST, GST–GluA2C, GST–GluA1C or GST–GluA1C mutants
(10 μg each) bound on Glutathione Sepharose (Pharmacia) beads were
incubated with rat whole brain cytosolic fraction for 3 h at 4°C, as described
previously with modifications (Osten et al., 1998). Beads were then pelleted
by centrifugation and washed three times in wash buffer (20 mM HEPES,
150 mM NaCl and 0.1% Triton X-100), suspended in 1× loading buffer
(30 μl), boiled and equal volumes were loaded for western blotting. The
bottom half of the acrylamide gel was stained with Coomassie Blue, and the
bands were used as loading control.

Chemically induced LTP protocol
cLTP protocol was followed as previously described (Roberts et al., 2021).
Briefly, DIV14–17 cortical cultured neurons were washed three times in
Mg2+-free buffer (150 mM NaCl, 2 mM CaCl2, 5 mM KCl, 10 mM
HEPES, 30 mM glucose, 1 μM strychnine and 20 μM bicuculline) and
incubated in glycine buffer (Mg2+-free buffer with 0.2 mM glycine) at 37°C
for 5 min. Then, Mg2+ buffer (Mg2+-free buffer with 2 mM MgCl2) was
added to block NMDARs, and cells were incubated at 37°C for 30 min
before being processed for co-immunoprecipitation or FRAP.

Synaptosome fraction preparation
Synaptosomal preparation was carried out as described previously (Kim and
Ziff, 2014). Cortical cells in 150 mm dishes were rinsed with PBS, collected
to 15 ml tubes and spun at 700 g for 5 min at 4°C. The pellet was
resuspended in solution A (320 mM sucrose, 1 mMNaHCO3, 1 mMMgCl2
and 0.5 mM CaCl2) and centrifuged at 1,400 g for 10 min at 4°C. Then the
pellet (P1) was discarded, and the supernatant was centrifuged at 13,800 g
for 20 min at 4°C. The pellet (P2) was homogenized in solution B (320 mM

sucrose, 1 mMNaHCO3), placed on top of a 1 M sucrose and 1.2 M sucrose
gradient, and centrifuged at 82,500 g for 2 h at 4°C. The resulting interface
between the gradient was centrifuged at 200,000 g for 45 min at 4°C after a
six-fold dilution with solution B. The pellet corresponds to the synaptosome
fraction, which was resuspended in 2% SDS and 25 mM Tris. Protein
content was measured by the BCA method (Thermo Scientific).

Statistics
All statistical comparisons were analyzed using GraphPad Prism 9. Unpaired
two-tailed Student’s t-tests were used in single comparisons. For multiple
comparisons, we used one-wayANOVA followed by Fisher’s Least Significant
Difference (LSD) test to determine statistical significance. Results are
represented as a mean±s.e.m., and P<0.05 is considered statistically significant.
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