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ABSTRACT
Tensins are a family of focal adhesion proteins consisting of four
members in mammals (TNS1, TNS2, TNS3 and TNS4). Their
multiple domains and activities contribute to the molecular linkage
between the extracellular matrix and cytoskeletal networks, as well as
mediating signal transduction pathways, leading to a variety of
physiological processes, including cell proliferation, attachment,
migration and mechanical sensing in a cell. Tensins are required for
maintaining normal tissue structures and functions, especially in the
kidney and heart, as well as in muscle regeneration, in animals. This
Review discusses our current understanding of the domain functions
and biological roles of tensins in cells andmice, as well as highlighting
their relevance to human diseases.

KEY WORDS: Tensin, CTEN, SH2, PTB, Focal adhesion, Mitral valve
prolapse, Cystic kidney, Nephrotic syndrome, Cancer

Introduction
Tensin was first reported in 1991 as an actin-binding focal-adhesion
protein containing a Src homology 2 (SH2) domain, a newly
identified binding motif specific for phosphotyrosine (pTyr) at the
time, suggesting an interesting role of tensin in bridging signal
transduction pathways with the cytoskeletal networks (Davis et al.,
1991). The first complete cDNA of tensin was isolated from chicken
(Lo et al., 1994a), and most of the early studies were performed
using recombinant chicken tensin. It took a decade to realize that
there are more than one tensin in mammals. The original tensin was
then named tensin-1 (TNS1), and three additional members tensin-2
[TNS2; also known as C1-Ten (TENC1)], tensin-3 (TNS3) and
C-terminal tensin-like [CTEN; also known as tensin-4 (TNS4)],
were subsequently identified, which all have extensive similarity to
TNS1 (Chen et al., 2002; Cui et al., 2004; Lo and Lo, 2002). Tensins
typically reside at focal adhesions, which connect the extracellular
matrix (ECM) to the cytoskeletal networks, mainly through integrin
receptors and their associated protein complexes (Critchley, 2000;
Geiger et al., 2001; Zamir and Geiger, 2001). Focal adhesions
mediate both outside-in and inside-out signaling pathways that
regulate cellular events, such as cell attachment, migration,
proliferation, apoptosis, gene expression and differentiation
(Hynes, 2002; Legate and Fässler, 2009; Winograd-Katz et al.,
2014), in response to cues from either the outside environment or
within the cell. This Review offers details on our current
understanding of tensins at molecular, cellular and animal levels,
as well as highlighting their relevance in human diseases.

Domain functions of tensins
Tensins are large proteins, ranging between 170 kDa and 220 kDa
except for CTEN, which is ∼80 kDa (Chen et al., 2002; Cui et al.,
2004; Lo et al., 1994a; Lo and Lo, 2002). They are multidomain
proteins consisting of homologous protein kinase C conserved
region 1 (C1), protein tyrosine phosphatase (PTP), C2, Src
homology 2 (SH2) and phosphotyrosine-binding (PTB) domains,
in addition to functional domains involved in binding to actin and
focal adhesion proteins (Fig. 1) (Lo, 2004). These domains allow
tensins to anchor actin cytoskeletons to integrin receptors, and to
transduce various types of signaling pathways through their binding
partners (Table 1), giving rise to a variety of cellular events.

Actin-binding domains
Tensin was initially discovered in a fraction of proteins exhibiting
actin-binding activities that co-existed with purified vinculin, another
focal adhesion protein (Wilkins and Lin, 1986). By experiments
using recombinant full-length TNS1 protein that had been expressed
and isolated from a baculoviral expression system and by co-
sedimentation, electron microscopy, dynamic light scattering and
polymerization assays, TNS1 was shown to directly bind to and
crosslink actin filaments, as well as reduce the actin polymerization
rate (Lo et al., 1994b). The two actin-binding domains (ABDs) were
further defined using bacterially expressed TNS1 fragments. ABD I is
located near the N-terminus of TNS1 and binds to the side of actin
filaments, whereas ABD II interacts with the barbed end of actin
filaments and modulates the actin polymerization rate (Lo et al.,
1994b) (Fig. 1). These actin-binding activities were only fully
validated in chicken TNS1 (Chuang et al., 1995; Lo et al., 1994b),
and the assignment of ABD I in TNS2 and TNS3was purely based on
their high sequence similarities. Nonetheless, the ABD I of TNS3 can
interact with Dock5, a guanine nucleotide exchange factor (GEF) for
the GTPase Rac, and modulate its activity in osteoclasts
(Touaitahuata et al., 2016). The centrally located ABD II of TNS1
is not found in TNS2, TNS3 and CTEN.

Focal-adhesion-binding domains, nuclear localization sequence and
nuclear export sequence
As a focal adhesion molecule, TNS1 contains two independent
focal-adhesion-binding (FAB) sites. FAB-N is localized within the
ABD I region that includes the PTP and C2 domains, near the N-
terminus, while FAB-C overlaps with the SH2 and PTB domains at
the C-terminus (Chen and Lo, 2003; Hong et al., 2019). Although
CTEN only shares the FAB-C site with other tensins, it also contains
a second FAB site, but its sequence is different from that in other
tensins (Hong et al., 2019). In addition, CTEN contains a nuclear
export sequence (NES) within its unique FAB region and a
nuclear localization sequence (NLS) within the PTB domain
(Hong et al., 2019) (Fig. 1). Intriguingly, this NLS is conserved
among tensins and exogenous GFP fused with the SH2-PTB
domains of other tensins can be detected at focal adhesions and in
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the nucleus (Chen and Lo, 2003; Hong et al., 2019 and our
unpublished data). However, CTEN is the only member that is
currently known to translocate to the nucleus (Hong et al., 2019). It
is possible that the other tensins are too large or contain an
‘inhibitory sequence’ so that this NLS is not functional in cells.
Alternatively, the NLS sites could only be unmasked and become
functional under yet-to-be identified conditions.

C1 domain
C1 domains are found exclusively in all three human TNS2 splice
variants (Hong et al., 2016). Because GFP–C1 domain fusion
proteins are detected in the nucleus, the C1 domain was thought to
guide TNS2 to the nucleus (Hafizi et al., 2010). However,
endogenous TNS2 has not been found in the nucleus and all
full-length TNS2 isoforms display the same distribution at focal
adhesions (Hafizi et al., 2010; Hong et al., 2016). The function of
the C1 domain therefore remains unknown.

PTEN-PTP and C2 domains
TNS1, TNS2 and TNS3 harbor a PTEN-like cysteine-based PTP
domain and a PTEN homology C2 domain, which is known to bind
phospholipids (Zhang and Aravind, 2010) (Fig. 1). Whether the

PTP-C2 region of tensin can bind to phospholipids is currently
unknown. However, the C2 domain of TNS1 binds to and recruits
the serine/threonine protein phosphatase 1α (PP1α) to focal
adhesions (Eto et al., 2007). This is unique to TNS1 since its C2
region contains the essential PP1α-binding 299KVXF302 site that is
not conserved in other tensins (Hall et al., 2009). Additionally, the
C2 region is sufficient for the interaction of TNS1 with the sterile
alpha motif (SAM) of deleted in liver cancer 1 (DLC1), a Rho
GTPase-activating protein (GAP) and tumor suppressor (Shih et al.,
2015). Besides the C2 region, the SH2 and PTB domains of tensins
also bind to DLC1 at separate sites (Chen et al., 2012; Dai et al.,
2011; Liao et al., 2007; Qian et al., 2007; Shih et al., 2015; Yam
et al., 2006), and the interaction between DLC1 and TNS1, TNS2 or
TNS3 has been shown to suppress the GAP activity of DLC1 toward
RhoA in HEK293 and endothelial cells (Shih et al., 2015). This is in
agreement with additional reports showing that TNS1, TNS2, and
TNS3 negatively regulate DLC1 GAP activity in fibroblasts, breast
cancer cells and lung cancer cells (Clark et al., 2010; Hall et al.,
2009; Tripathi et al., 2014). Nevertheless, TNS3 has been reported
to enhance the GAP activity of DLC1 in osteoclasts (Touaitahuata
et al., 2016), glioblastoma cell lines (Chen et al., 2017) and
EGF-treated MCF10A non-malignant mammary cells, which
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Fig. 1. Domain structures of human tensins and their binding partners. The domains of tensins are represented by colored rectangles. The N-terminal
regions of TNS1, TNS2 and TNS3 contain the actin-binding domain I (ABD I) that overlaps with the focal-adhesion-binding (FAB-N) site, as well as a
PTEN-like protein tyrosine phosphatase (PTP) and C2 domains. The C-terminal regions of all tensins share the Src homology 2 (SH2) and phosphotyrosine-
binding (PTB) domains that possess the FAB activity (FAB-C). The ABD II and the sequences required for proper cell–cell junction localization are unique to
TNS1. The protein kinase C conserved region 1 (C1) is only present in TNS2. The N-terminal of CTEN (TNS4) contains a unique FAB domain, which
includes a nuclear export sequence (NES), whereas a nuclear localization sequence (NLS) is located within the PTB domain. The binding partners of
tensins mentioned in the main text are indicated in blue.
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require a specialized medium to grow (Cao et al., 2015, 2012). This
might represent a unique function of TNS3 in these cell types or
under EGF treatment.
Most cysteine-based PTPs contain the signature motif C-(X)5-R,

and the PTP motif in PTEN is 124CKAGKGR. Although TNS3 is
the only tensin member that contains both essential cysteine and
arginine residues in the signature motif (107CRGGKGR), it has not
yet been reported to have PTP activity (Alonso and Pulido, 2016).
The PTP motif in TNS1 (113NKGNRGR) lacks the critical cysteine
residue is thus considered an inactive PTP (Alonso and Pulido,
2016). Unexpectedly, although the motif in TNS2 (231CKGNKGK)
lacks the conserved arginine residue, TNS2 has been demonstrated
to have PTP activity that is comparable to that of PTEN in vitro
when using pTyr-containing peptides as substrates (Koh et al.,
2013). Furthermore, TNS2 can dephosphorylate pTyr-612 residue
of insulin receptor substrate-1 (IRS-1), which decreases IRS-1
stability and, in turn, inhibits the activation of Akt and AMP-
activated protein kinase (AMPK) pathways (Jeong et al., 2017; Koh
et al., 2013), showing the biological function of TNS2 PTP activity.

SH2 and PTB domains
All four tensins contain the closely spaced SH2-PTB tandem
domains at their C-termini, which is a unique structural feature of
the tensin family (Fig. 1). The SH2 and PTB domains are integral
for tensin-mediated pTyr-based signal transduction and anchoring
tensins to focal adhesions.
SH2 domains are well-known binding motifs for pTyr, and, as

shown more recently, for lipids (Park et al., 2016). SH2 domains
interact with lipids through surface cationic patches away from
pTyr-binding pockets, allowing SH2 domains to bind to pTyr and
lipids independently (Park et al., 2016). The cationic patches may
form grooves for specific lipid headgroup recognition or flat
surfaces for non-specific plasma membrane (PM) binding. SH2

domains of all tensins bind to PM-mimetic vesicles with Kd values
ranging between 180 and 350 nM (Park et al., 2016). The
SH2 domain of TNS2 exhibits a high binding affinity for
phosphatidylinositol (3,4,5)-triphosphate (PIP3) through a three-
lysine cationic patch (K1147, K1155, K1157). Mutations of these
lysine residues block the PIP3-binding of TNS2, but not its binding
to pTyr nor its PTP activity (Kim et al., 2018). Nonetheless, the
phosphorylation levels of IRS-1 Y612 and Akt1 T308/S473 upon
insulin stimulation are significantly increased in cells with
mutations in these three lysine residues of TNS2, indicating that
recognition of PIP3 by the TNS2 SH2 domain is essential for its
signaling function (Kim et al., 2018). As expected, the SH2 domains
of tensins recruit pTyr-containing proteins, such as epidermal growth
factor receptor (EGFR), MET (also known as hepatocyte growth
factor receptor), Axl, Src, focal adhesion kinase (FAK; also known as
PTK2) and p130Cas (also known as BCAR1), and these interactions
transduce signaling cascades that are mediated by protein tyrosine
kinases (Cui et al., 2004; Davis et al., 1991; Hafizi et al., 2002;
Muharram et al., 2014). Interestingly, unlike the SH2 domains of
other proteins that only bind to pTyr sites, the SH2 domains of tensins
can also interact with their partners, such as DLC1, when the tyrosine
sites are not phosphorylated (Liao et al., 2007). This adds a
uniqueness to the SH2 domain of tensins.

The PTB domains of tensins directly interact with the NPXY
motifs present in the cytoplasmic tails of integrin β1, β3, β5 and β7
in a pTyr-insensitive fashion (Calderwood et al., 2003; Katz et al.,
2007; McCleverty et al., 2007), allowing tensins to bring actin
filaments, through their ABDs, to focal adhesion sites.
Interestingly, the PTB domain of TNS1 can also bind to lipids,
including PI(4)P and PI(4,5)P2, and this binding pocket is distinct
from the β-integrin recognition site (Leone et al., 2008), indicating
that both SH2 and PTB domains of tensins are able to interact with
lipids.

Table 1. Known binding molecules of tensins and their binding domains on tensins

Binding
domain ABD I, PTP and C2 SH2 PTB

Without identified binding
domain

TNS1 Actin (Lo et al., 1994a,b) PP1α
(Eto et al., 2007; Hall et al.,
2009)
DLC1 (Shih et al., 2015)

PI3K (Auger et al., 1996)
PDK-1, Dok-2 (Wavreille and Pei,
2007) DLC1, DLC3 (Qian et al.,
2007, Liao et al., 2009)

p130Cas, FAK (Hall et al., 2010;
Zhao et al., 2016)
Membrane lipids (Park et al., 2016)
Hic-5 (Goreczny et al., 2018)

β1, β3, β5, β7 integrins
(Calderwood et al., 2003)
DLC1, DLC3 (Qian et al., 2007)
PI(4,5)P2, PI(4)P (Leone et al., 2008)

Nephrocystin (Benzing et al.,
2001)

TNS2 – Axl (Hafizi et al., 2002)
DLC1 (Liao et al., 2007;
Dai et al., 2011)
Mpl (Jung et al., 2011)
PIP3 (Kim et al., 2018)
Membrane lipids
(Park et al., 2016)

DLC1 (Yam et al., 2006; Chan et al.,
2009; Clark et al., 2010)
DISC1 (Goudarzi et al., 2013)

DLC2 (Kawai et al., 2009)
C-terminal region of TNS2)

Syk (Moon et al., 2012)
(C-terminal region of TNS2)

IRS-1 (Koh et al., 2013)

TNS3 DLC1 (Cao et al., 2012)
PI3K (Cao et al., 2015)
Dock5 (Touaitahuata et al., 2016)

EGFR, p130Cas,
FAK (Cui et al., 2004)
DLC1 (Liao et al., 2007)
Src, p130Cas, FAK, Sam68, ILK,
DLC1 (Qian et al., 2009)

MET (Muharram et al., 2014)
Membrane lipids (Park et al., 2016)

β1 integrin (Georgiadou et al., 2017)

CTEN – DLC1 (Liao et al., 2007)
Cbl (Hong et al., 2013)
MET (Muharram et al., 2014)
Membrane lipids (Park et al., 2016)

β1 integrin (Katz et al., 2007)
β4 integrin (Seo et al., 2017)

β-catenin (Liao et al., 2009)
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The middle non-conserved region
Themiddle regions of tensins do not display any sequence similarity
to each other and are not expected to share common functions.
TNS1 contains ABD II, which interacts with the barbed end of actin
filaments (Lo et al., 1994b), and the region spanning amino acids
882–1032 is necessary, but not sufficient, for the localization of
human TNS1 to cell–cell junctions (Wu et al., 2019).

The role of tensins in biological processes
Tensins are major components at focal adhesions, which regulate a
variety of biological processes in response to external or internal
signals. In addition to more anticipated roles of tensins in cell
adhesion, migration and proliferation, emerging findings
demonstrate the critical functions of tensins in mechanical
sensing. Although discussed separately below, these roles of
tensins are highly linked to these other cellular events.

Cell adhesion
Cell adhesion allows cells to integrate into tissues and provides a
platform for bidirectional signal transduction. Dynamic changes in
cell adhesion are crucial to morphogenesis and play an essential role
in the regulation of fundamental cellular processes, such as cell
migration, proliferation and mechanical sensing. Cell–matrix
adhesions are mainly provided by integrin-based adhesions,
including focal adhesions in most cell types, hemidesmosomes in
epithelial cells and podosomes in Rous sarcoma virus-transformed
cells, osteoclasts and macrophages (Hynes, 2002). Note that ‘focal
adhesion’ is commonly used as an umbrella term to refer to various
subtypes of adhesion structures. Fibroblasts bound to the ECM, for
example, initiate the formation of nascent adhesions, which develop
into dot-like focal complexes, which further mature into larger focal
adhesions and then into highly elongated fibrillar adhesions
(Parsons et al., 2010) (Fig. 2A). TNS1, TNS2 and TNS3 are
found at focal and fibrillar adhesions in fibroblasts, although to
different degrees. TNS2 is localized mainly at focal adhesions,
while TNS3 is mostly found at fibrillar adhesions, and TNS1 is
found at both (Clark et al., 2010).
Tensins regulate cell adhesion (Fig. 2B). It has been shown that

expressing a dominant-negative chicken TNS1 fragment impairs
fibrillar adhesion formation and fibronectin fibrillogenesis in
human fibroblasts (Pankov et al., 2000), although it was later
found that the fragment sequence is not conserved in human TNS1
(Clark et al., 2010). Cancer-associated fibroblasts (CAFs) lacking
Hic-5 (also known as TGFB1I1), a LIM domain-containing protein,
exhibit a disability in forming fibrillar adhesions, which can be
rescued by Hic-5 re-expression (Goreczny et al., 2018). This rescue
effect requires the mechanosensitive Src-dependent Hic-5 and
TNS1 interaction, since the fibrillar adhesion formation in Hic-5 re-
expressing CAFs is impaired by TNS1 knockdown or Src
inactivation, and is markedly reduced when plated onto soft
(polydimethylsiloxane) compared with hard (glass) substrates
(Goreczny et al., 2018). Silencing of TNS1 or TNS3 in AMP-
activated protein kinase (AMPK)-knockout (knockout for both α1
and α2 subunits) fibroblasts reduces fibrillar adhesion formation
and fibronectin fibrillogenesis (Georgiadou et al., 2017). These
findings suggest a positive role of TNS1 and TNS3 in promoting
fibrillar adhesion formation. However, other reports show that
knockdown of TNS1, TNS2, or TNS3, either all together or
individually, has no effect on the assembly of fibrillar adhesions in
fibroblasts (Clark et al., 2010; Rainero et al., 2015). It is possible
that tensins do have a positive role in fibrillar adhesion formation
and fibrillogenesis, but their function is compensated by other

regulators, such as AMPK, when tensins are downregulated. This
may explain the fibrillar adhesion formation defects of TNS1 or
TNS3 knockdown that are detected in AMPK-knockout fibroblasts
or in CAFs, which are modified by tumor cells to provide them with
a favorable microenvironment, but not observed in normal
fibroblasts.

Osteoclasts form a specialized cell–matrix adhesion called the
sealing zone, which defines the resorption area of the bone.
When grown in cell culture, osteoclasts form a unique structure
named the podosome belt, instead of sealing zone (Takito et al.,
2018). In osteoclasts, TNS3, but not TNS1 or TNS2, binds to and
activates Dock5 GEF activity toward Rac and organizes
podosomes into the belt. Silencing of TNS3 reduces the
formation of the podosome belt and the bone-resorption
activity of osteoclasts (Touaitahuata et al., 2016). Interestingly,
a similar finding has been reported for p130Cas, a focal adhesion
protein that binds to the SH2 domain of TNS3 (Qian et al., 2009),
in that p130Cas promotes podosome belt formation through a
Src-dependent interaction with Dock5 and activation of Rac
activity (Nagai et al., 2013). These findings lead to a mechanistic
model whereby, during podosome belt formation, TNS3 recruits
pTyr-p130Cas phosphorylated by Src to link the actomyosin
network and Dock5 to activate Rac and drive the formation of the
podosome belt (Touaitahuata et al., 2016). However, whether
TNS3, pTyr-p130Cas and Dock5 do form a complex remains to
be investigated.

In the suspension subpopulation of MDA-MB-468 breast cancer
cells, loss of cell–matrix adhesion results in a dramatic
downregulation of TNS3, whereas TNS1, TNS2 and other main
cell matrix adaptor proteins, such as vinculin and the talins, are not
affected (Veß et al., 2017). Re-expressing TNS3 in the suspended
MDA-MB-468 cells rescues their adhesion, whereas knockdown of
TNS3 in the adherent parental MDA-MB-468 cells reduces their
attachment (Veß et al., 2017), demonstrating that TNS3 is a positive
regulator of cell adhesion.

CTEN expression is directly regulated by ΔNp63α, the
predominant isoform of the transcription factor p63 (also known
as TP63) in epithelial cells (Yang et al., 2016). Knockdown of
ΔNp63αmarkedly impairs cell adhesion and reduces CTEN level in
RWPE-1 non-malignant prostatic epithelial cells, and the reduced
cell adhesion is restored by CTEN re-expression (Yang et al., 2016).
Silencing of ΔNp63α also decreases MCF-10A cell adhesion and
levels of several receptors, including that of β1 integrin, β4 integrin
and EGFR (Carroll et al., 2006). Here, re-expression of individual
receptor partially rescues the cell adhesion defects caused by
ΔNp63α knockdown (Carroll et al., 2006). Interestingly, CTEN is
known to both interact with integrins (Katz et al., 2007; Seo et al.,
2017) and to inhibit EGFR degradation (Hong et al., 2013),
suggesting that CTEN promotes cell adhesion likely by stabilizing
β1 integrin, β4 integrin and EGFR.

Migration, invasion and epithelial-to-mesenchymal transition
Tensins also play roles in cell migration and invasion (Fig. 3). TNS1-
knockout mouse fibroblasts and endothelial cells migrate slower than
controls, and overexpression of GFP–TNS1 or GFP–TNS2 promotes
HEK293 human embryonic kidney cell migration (Chen et al., 2002;
Shih et al., 2015). Both the FAB domains and a functional SH2 of
TNS1 are required for promotingmigration (Chen and Lo, 2003); this
is likely due to their binding to DLC1 and suppressing its GAP
activity toward RhoA (Shih et al., 2015), and/or by linking pTyr-
p130Cas to the inwardly moving actin cytoskeleton (Zhao et al.,
2016). TNS1, TNS2 and TNS3 are critical for Rab25-dependent
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internalization of active integrins, and this internalization is required
for focal adhesion turnover. Thus, knockdown of tensins, either
individually or in combination, impairs integrin internalization and
results in reduced invasiveness of Rab25-transfected A2780 ovarian
cancer cells (Rainero et al., 2015). Depletion of TNS3 in MDA-MB-
231 and MDA-MB-468 breast cancer cells suppresses cell invasion
and migration (Shinchi et al., 2015; Veß et al., 2017). These results
support the idea that TNS1, TNS2 and TNS3 positively regulate cell
migration. However, other reports show that TNS1 overexpression
reduces MDA-MB-231 cell invasion (Hall et al., 2009), that
overexpression of TNS2 or TNS3 inhibits HEK293 cell migration
(Hafizi et al., 2005; Martuszewska et al., 2009), and that TNS3

knockdown promotes cell migration in WM793 melanoma, 05MG
glioblastoma and MCF10A cells (Cao et al., 2012; Chen et al., 2017;
Katz et al., 2007). These findings indicate that TNS1, TNS2 and
TNS3 negatively regulate cell migration in these cell lines.
Altogether, the roles of these tensins in migration appear to be cell
context dependent.

In contrast to the conflicting findings on TNS1, TNS2 and TNS3 in
regulating cell migration, CTEN has been consistently reported to
promote cell migration and invasion of colon, lung, breast, pancreas,
skin, liver and gastric cancer cells (Al-Ghamdi et al., 2011, 2013;
Albasri et al., 2011a, 2009; Aratani et al., 2017; Asiri et al., 2019;
Bennett et al., 2015; Chan et al., 2015; Katz et al., 2007; Liao et al.,

Nascent
adhesions

Focal
complexes Focal adhesions Fibrillar adhesions

1 1

2

3

AMPKSrc ΔNp63a

CTEN

Cell adhesion

TNS1 TNS3

β1 integrin stablization
and activation

Fibrillar adhesion formation

TNS3

Podosome belt
formation

Hic-5
Do

ck
5

AMPK Src

β1, β4 integrin, EGFR
binding and stablization

β1 integrin
stablization

A

B

1

3

1

3

2

3

2

2

TNS1
P

Fig. 2. Cell adhesion structures and roles of tensins in cell adhesion. (A) Schematic representation of different subtypes of cell adhesion structures. Adherent
cells initially form small nascent adhesions (orange dots), which develop into dot-like focal complexes (brown dots). Focal complexes progressively grow in size
and mature into focal adhesions (green ovals), which then transform into elongated fibrillar adhesions (dark green oval). TNS1 (1), TNS2 (2), and TNS3 (3) are
found in both focal and fibrillar adhesions. TNS2 is localizedmainly in focal adhesions, TNS3 is mostly found in fibrillar adhesions, and TNS1 is distributed in both.
(B) Tensins are required for cell adhesion. Src-dependent phosphorylation of Hic-5 interacts with TNS1 to promote β1 integrin stability and fibrillar adhesion
maturation. AMP-activated protein kinase (AMPK) negatively regulates TNS1- and TNS3-dependent β1 integrin stabilization and activation, which is critical for
fibrillar adhesion formation. TNS3 promotes podosome belt formation through a Src-dependent interaction with Dock5 in osteoclasts. CTEN expression is
positively regulated by ΔNp63α, a transcription factor, and promotes cell adhesion through stabilizing β1 integrin, β4 integrin and EGFR.
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2009; Lo, 2014; Lu et al., 2018; Thorpe et al., 2017). EGF treatment
activates a transcriptional switch that results in TNS3 downregulation
and CTEN upregulation (Cao et al., 2012; Katz et al., 2007).
Upregulated CTEN binds to β1 integrin through its PTB domain, but it
lacks the ABD found in other tensins. Therefore, this transcriptional
switch allows CTEN to displace TNS3 from actin and disrupt its links
to the actin cytoskeleton, leading to actin fiber reorganization and cell
migration (Katz et al., 2007). In addition, a functional SH2 domain is
essential for promoting cell migration, invasion and colony formation,
since a CTEN R474A mutant lacking the SH2-pTyr-binding activity
has no effect on migration (Hong et al., 2013). Furthermore, CTEN
may promote cell migration, invasion and epithelial-to-mesenchymal
transition (EMT) by upregulating integrin-linked kinase (ILK) (Albasri
et al., 2011a), FAK (Al-Ghamdi et al., 2013) and Src (Asiri et al.,
2019). These three kinases are known focal adhesion proteins that
promote migration, invasion and EMT. All these effects are likely
attributed to CTEN-mediated upregulation of TGF-β (Lu et al., 2018),
a potent inducer of EMT (Katsuno et al., 2013), and Snail (also known
as SNAI1) (Thorpe et al., 2017), a transcriptional repressor controlling
EMT during embryogenesis and tumor progression (Barrallo-Gimeno
and Nieto, 2005). Interestingly, CTEN expression is also enhanced by
TGF-β (Lu et al., 2018), thus forming a positive-feedback loop
promoting cell migration, invasion and EMT.

Cell proliferation
Tensins regulate the proliferation of normal and cancer cells (Fig. 4).
Endothelial cells isolated from TNS1-knockout mice proliferate and
migrate markedly slower than controls. Concomitantly, the RhoA
activity is downregulated in these knockout cells, and this reduction

can be restored by further silencing of DLC1, suggesting that TNS1
promotes endothelial cell proliferation and migration through
inhibiting DLC1-GAP activity toward RhoA (Shih et al., 2015).
TNS1 knockdown also reduces the proliferation of SW620 colon
cancer cells (Zhou et al., 2018), and U937 and HL60 acute myeloid
leukemia cell lines by suppressing the Akt-mTOR signaling
pathway (Sun et al., 2020). TNS2 overexpression reduces
HEK293 cell proliferation and survival (Hafizi et al., 2005).
Silencing of TNS2 promotes cell proliferation, colony formation
and xenograft growth of HeLa cervical cancer cells and A549 lung
cancer cells. The levels of phosphorylated IRS-1, Akt family
proteins, MEK proteins (MAP2K1 and MAP2K2) and ERK
proteins (MAPK3 and MAPK1), and total IRS-1 are significantly
increased in these TNS2-knockdown cells (Hong et al., 2016).
Similar results have been reported in myotubes (Koh et al., 2013).
Taken together, TNS2 negatively regulates cell proliferation likely
by suppressing IRS-1, Akt and MEK-ERK signaling pathways.

TNS3 knockdown in tonsil-derived mesenchymal stem cells
(TMSCs) results in an increase in the cyclin-dependent kinase
(CDK) inhibitors p16 and p21 (CDKN2A and CDKN1A), and
reduces cell proliferation (Park et al., 2019). Silencing of CTEN also
enhances the accumulation of the CDK inhibitors p21 and p27
(CDKN1B) and attenuates RWPE-1 non-malignant prostate
epithelial cell proliferation (Wu and Liao, 2018). Additional
reports have shown that knockdown of CTEN reduces
proliferation in keratinocytes and various cancer cell lines (Hong
et al., 2019; Muharram et al., 2014; Seo et al., 2017). These data
suggest that TNS3 and CTEN are positive regulators of cell
proliferation. Mechanistically, CTEN may promote both cell
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Fig. 3. Roles of tensins in the regulation of cell migration, invasion and EMT. TNS1 promotes migration by interacting with DLC1, thereby suppressing the
GTPase-activating protein (GAP) activity of DLC1 toward RhoA, and/or by linking pTyr-p130Cas to inwardly moving actin cytoskeleton. TNS1, TNS2 and TNS3
are critical for Rab25-dependent internalization of active integrins and this internalization is required for focal adhesion (FA) turnover and cell migration. EGF
treatment activates a transcriptional switch that results in CTEN upregulation and TNS3 downregulation. Increased CTEN displaces TNS3 by binding to β1
integrin, but not actin filaments, leading to actin fiber reorganization that favors cell migration. Additionally, CTEN promotes cell migration, invasion and EMT by
upregulating transforming growth factor β (TGF-β) and downstream effectors, including ILK, FAK, Src, Snail, Smad2 and α-smooth muscle actin (α-SMA).
Moreover, TGF-β also induces CTEN expression, thus forming a positive-feedback loop.
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proliferation and migration by prolonging the duration of signaling
cascades induced by receptors, such as EGFR, MET and β1 integrin
in cancer cells. CTEN reduces ligand-induced EGFR degradation
by binding to the E3 ubiquitin ligase c-Cbl and decreasing the
ubiquitylation of EGFR (Hong et al., 2013). CTEN also forms a
stable complex with MET and β1 integrin and prevents
internalization as well as degradation of these receptors
(Muharram et al., 2014). Interestingly, while knockdown of TNS3
or CTEN reduces proliferation, overexpression of TNS3 or CTEN
does not further promote cell growth in numerous cell lines (Asiri
et al., 2018; Hong et al., 2013, 2019; Martuszewska et al., 2009),
except for CTEN in normal keratinocytes and nuclear CTEN in
HeLa cells. In human keratinocytes, CTEN binds to and activates β4
integrin, instead of β1 integrin. This interaction triggers FAK and
ERK activation and promotes cell proliferation (Seo et al., 2017).
Expression of NES-deleted or NLS-tagged CTEN enhances HeLa
cell proliferation (Hong et al., 2019). Since CTEN interacts with β-
catenin, a cell–cell adhesion protein and transcriptional factor, only
in the nucleus (Liao et al., 2009), nuclear CTEN may enhance
proliferation by retaining of β-catenin in the nucleus and/or
regulating its transcriptional activity.

Mechanical sensing
Tensins respond to various mechanical stimuli (Fig. 5). AMPK not
only functions as an energy sensor but also inhibits β1 integrin
activity by transcriptionally reducing TNS1 and TNS3 levels in
fibroblasts (Georgiadou et al., 2017). In AMPK-knockout (α1 and
α2 subunits) fibroblasts, upregulated TNS1 and TNS3 bind to and
active β-integrins, thus supporting integrin-mediated processes,
including cell spreading, ECM assembly, mechanotransduction and
intracellular stiffness (Georgiadou et al., 2017). TNS1 silencing
markedly shortens the length of fibrillar adhesion in fibroblasts
plated on the stiffness-gradient gels, indicating that TNS1 is
required for the stiffness-induced adhesion elongation (Barber-
Pérez et al., 2020). Additionally, TNS1 senses and responds to the
extracellular mechanical stimuli by modifying its protein turnover
rate, which is significantly slower with increased substrate stiffness

(Stutchbury et al., 2017). This critical sensing response allows for
FAK- and Src-mediated tyrosine phosphorylation within focal
adhesions and leads to fibroblast spreading and migration
(Stutchbury et al., 2017). Consistent with these findings, TNS1
binds to Hic-5 in a Src-dependent and substrate stiffness-sensitive
manner, and this TNS1–Hic-5 interaction stabilizes β1 integrins and
promotes fibrillar adhesion formation and fibronectin
fibrillogenesis in CAFs (Goreczny et al., 2018). Furthermore,
TNS1 is a critical effector of p130Cas force sensing. p130Cas
becomes tyrosine phosphorylated in response to physical stretching
(Sawada et al., 2006); subsequently, TNS1 anchors pTyr-p130Cas
to the inwardly moving actin cytoskeleton and mediates the
disassociation of p130Cas from focal adhesions, thus promoting
fibroblast migration (Zhao et al., 2016). In epithelial cells, both the
actin cytoskeleton and keratin intermediate filaments are highly
responsive to physical stretching (Cheah et al., 2019). CTEN rapidly
accumulates along tension-bearing keratin fibers, but not actin
filaments, during stretching. Dissociation of CTEN from tension-
free keratin fibers depends on the duration of cell stretch, indicating
that physical stretching favors the establishment of stable CTEN–
keratin network interactions over time (Cheah et al., 2019). These
findings reveal an unexpected role of CTEN in keratin-based
mechanotranduction and start shedding light on how the keratin
network responds to mechanical stimuli.

Animal models to study tensin function
Genetically modified animal models greatly facilitate the analyses
of tensin function in the context of a whole organism. Unlike
mammals, which have four tensins, Drosophila melanogaster and
Caenorhabditis elegans only possess one tensin each.
Intriguingly, worm tensin is more similar to TNS1, TNS2 and
TNS3 (Bruns and Lo, 2020), whereas the fly tensin is shorter,
similar to CTEN (Lee et al., 2003). Flies lacking tensin display a
wing-blister phenotype (Lee et al., 2003; Torgler et al., 2004) and
lay abnormally shaped eggs with a decreased hatching rate (Cha
et al., 2017). Rescue experiments have demonstrated the
requirement of both the N-terminal region and the SH2 domain,
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Fig. 4. Roles of tensins in the control of cell
proliferation. TNS1 promotes cell proliferation
through inhibiting the GAP activity of DLC1
toward RhoA and activating the Akt-mTOR
signaling pathway. TNS2 negatively regulates
cell proliferation by suppressing insulin receptor
substrate-1 (IRS-1), Akt family proteins and the
Mek-Erk pathway. TNS3 and CTEN prevent the
accumulation of cyclin-dependent kinase
(CDK) inhibitors (p16, p21 or p27), implicating
positive roles of TNS3 and CTEN in cell
proliferation. CTEN expression is induced by
EGFR activation through the mitogen-activated
protein kinase kinase (MEK)-extracellular
signal-regulated kinase (ERK) pathway and
upregulated CTEN prevents active EGFR from
degradation by binding to the E3 ubiquitin ligase
c-Cbl and decreasing the ubiquitylation of
EGFR. Similarly, CTEN can form a stable
complex with MET and β1 integrin (β1) to
prevent these receptors from internalization and
degradation. Additionally, CTEN can bind to
and activate β4 integrin (β4), which triggers FAK
and ERK activation, and thus promotes
keratinocyte proliferation.
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but not the PTB domain, for fly tensin to prevent the wing-blister
defects (Lee et al., 2003). Nevertheless, the requirement for the
PTB domain, the N-terminal region and a functional SH2 domain
has been reported in another rescue study (Torgler et al., 2004).
Tensin knockout in C. elegans, which has no impact on
development and survival, results in slowed defecation and
increased pharyngeal pumping rates (Bruns and Lo, 2020).
Another C. elegans tensin mutant (ok80), likely expressing a
truncated tensin lacking the C-terminus, also shows no
physiological abnormality under normal conditions, but displays
reduced axon regrowth after injury (Hisamoto et al., 2019).
Mice lacking TNS1 expression develop renal interstitial fibrosis,

inflammatory cell infiltration and tubular dilation, which gives rise
to cystic kidney disease (Lo et al., 1997). TNS1-knockout mice also
show premature skeletal muscle fibers and delayed skeletal muscle
regeneration (Ishii and Lo, 2001), as well as enlarged posterior
mitral leaflets with abnormal collagen and proteoglycan deposits in
the heart (Dina et al., 2015). A deficiency in TNS2 results in the
development of glomerular sclerosis, leading to nephrotic

syndrome and renal failure; however, this is only the case in
specific mouse strains, such as FVB inbred mice, whereas other
genetic backgrounds including C57BL/6 and sv129 are
apparently normal, indicating that the phenotypes of TNS2-
knockout mice are dictated by genetic differences among mouse
strains (Cho et al., 2006; Kato et al., 2008; Uchio-Yamada et al.,
2013). Furthermore, the SH2 and PTB domains of TNS2, but not
its PTP activity, are required for preventing TNS2-knockout renal
defects (Marusugi et al., 2016; Sasaki et al., 2020). TNS3-
knockout mice die 3 weeks postnatally, showing defects in lung,
small intestine and bone development in C57BL/6 and sv129
mixed genetic backgrounds (Chiang et al., 2005). However, when
TNS3-knockout mice are backcrossed to either C57BL/6 or sv129
inbred strains, the defects are no longer present (our unpublished
observations). Loss of CTEN in mice does not cause obvious
defects, likely due to its restrictive expression pattern (our
unpublished observation).

These animal studies have demonstrated that individual tensins
are not essential for embryonic or tissue development, but are
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required for maintaining the normal structure and function of the
kidney and heart, as well having a role in wound regeneration
processes. The results also illustrate the powerful roles of yet-to-be
identified genetic factors in dictating phenotypes.

Tensins in human diseases
The involvements of tensins in human diseases are suggested by
analyses of animal models, genome-wide association studies
(GWAS) and expression patterns in patients. Below, the relevance
of tensins in lung function, kidney diseases and cancers are
discussed.
Through GWAS, TNS1 has been identified as one of highly

susceptible genes for mitral valve prolapse (MVP) (Dina et al.,
2015), lung function (Panasevich et al., 2013; Repapi et al., 2010),
chronic obstructive lung disease (COPD) (Artigas et al., 2011; Yang
et al., 2014) and asthma with hay fever phenotype (Ferreira et al.,
2014). The involvement of TNS1 in MVP has been demonstrated in
zebrafish and mouse-knockout models (Dina et al., 2015). Aligned
with the observation that TNS1-knockout mice develop cystic
kidneys, TNS1 is downregulated in patients with autosomal
dominant polycystic kidney disease (Dixon et al., 2020).
Mutations in TNS2 along with five other functional associated

genes, including DLC1, were reported to be the likely causes of
renal malfunction of 17 families with partially treatment-sensitive
nephrotic syndrome (Ashraf et al., 2018). An involvement of TSN2
in human nephrotic syndrome is clearly supported by the phenotype
of the TNS2-knockout mice (Cho et al., 2006; Uchio-Yamada et al.,
2016, 2013). Surprisingly, overexpression of TNS2 by injecting
adenoviruses carrying TNS2 into mouse kidneys also leads to
nephrotic syndrome (Lee et al., 2017). These mouse studies indicate
that both overexpression and lack of TNS2 results in nephrotic
syndrome.
The results from the two GWAS suggest that TNS3 is associated

with pancreatic cancer (Klein et al., 2018). However, we did not
observe the development of pancreatic cancer in our TNS3-
knockout mice (our unpublished data). High levels of CTEN are
reported to be prognostic markers for patients with melanoma
(Sjoestroem et al., 2013), breast cancer (Albasri et al., 2011b),
gastric cancer (Aratani et al., 2017; Sakashita et al., 2008; Sawazaki
et al., 2017), colorectal cancer (Albasri et al., 2011a), hepatocellular
carcinoma (Chen et al., 2014) and lung adenocarcinoma (He et al.,
2018; Misono et al., 2019).
Based on the literature, the role of tensins in tumorigenesis

appears somewhat controversial. Expression data showing the up-
or down-regulation of the different tensins have been reported and
are sometimes contradictory. This is likely due to the use of different
cohorts, sample numbers, threshold measurements and cancer
types, among other reasons. To obtain a clearer picture, we analyzed
the expression of each tensin in various types of cancer using
datasets and tools at Oncomine (https://www.oncomine.org/) with
high stringencies (P-value ≤0.0001, fold change ≥2, gene rank
within top 10%) (see Table S1 for a snapshot). TNS1 is
downregulated in 12 cancer types and upregulated in five cancer
types. TNS2 is only found to be downregulated in 11 cancer types,
whereas TNS3 is upregulated in some cancers and downregulated in
others. TNS4 is upregulated in colorectal, gastric, lung and
pancreatic cancer, but downregulated in kidney cancer and
melanoma. Interestingly, overexpression of TNS1 and TNS3
(both ranked in the top 1% of nine and ten datasets, respectively)
are found in lymphoma (Table S1). Despite the fact that
upregulation of TNS1 was reported to be associated with poor
prognosis for colorectal cancer (Burghel et al., 2013; Zhou et al.,

2018, 2016), 47 cancer datasets, including four colorectal cancer
datasets, at Oncomine show that TNS1 is in the top 1% or 5% of
downregulated genes. TNS1 and TNS2 are in the top 1% of
downregulated genes in sarcoma, while all TNS members are
downregulated in kidney cancer. In lung cancer, TNS1, TNS2 and
TNS3 are downregulated, whereas CTEN is upregulated. As an
example, we further examined the relevance of this expression
patterns for disease prognosis of lung cancer. By using lung
adenocarcinoma datasets with nearly 2000 patients collected from
KMPlot (https://kmplot.com/analysis/), low levels of TNS1
(P<0.000001), TNS2 (P<0.0005) and TNS3 (P<0.000001) or
high level of CTEN (P<0.005) are individually associated with poor
prognosis of lung adenocarcinoma. These findings suggest that the
expression levels of tensin genes are highly promising prognostic
markers for lung adenocarcinoma and warrant the extensive analysis
of tensins as biomarkers in other relevant cancers. Based on mutant
mouse studies, aberrant expression of a single tensin by itself does
not appear to be sufficient to initiate tumor formation, for instance
lung cancer, because none of the TNS-knockout mice display a
higher rate of tumor formation than the control mice (our
unpublished observations). Therefore, tensins are not cancer-
driver genes, at least not in mice. Nonetheless, they are likely to
play a critical role in accelerating tumor progression and metastasis.

Concluding remarks
Over three decades of studies, we have gained better understanding
on overall functions of the tensin family, yet open additional
questions to be answered. At the protein level, both the N-terminal
and C-terminal regions of tensins possess multiple binding and/or
enzymatic activities. How these activities are coordinated within the
molecule, and among different tensins, are intriguing questions to be
addressed. Animal studies have revealed the critical roles of tensins in
the kidney and heart, as well as dramatic impacts of genetic factors on
mouse phenotypes. Whether tensins share redundant roles in other
tissues or embryogenesis, as well as the identities of genetic factors
are interesting questions to be explored. In addition, any disease
associations that are implicated by GWAS results remain to be
experimentally validated. Finally, the involvement of tensins in
various cancers, together with their potential use as diagnosis and
prognosis markers, or indeed as therapeutic targets, is another
important research avenue and warrant extensive efforts.
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