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ABSTRACT
Clathrin-mediated endocytosis is the main entry route for most cell
surface receptors and their ligands. It is regulated by clathrin-coated
structures that are endowed with the ability to cluster receptors and to
locally bend the plasma membrane, resulting in the formation of
receptor-containing vesicles that bud into the cytoplasm. This
canonical role of clathrin-coated structures has been shown to play
a fundamental part in many different aspects of cell physiology.
However, it has recently become clear that the ability of clathrin-
coated structures to deformmembranes can be perturbed. In addition
to chemical or genetic alterations, numerous environmental
conditions can physically prevent or slow down membrane bending
and/or budding at clathrin-coated structures. The resulting ‘frustrated
endocytosis’ is emerging as not merely a passive consequence, but
one that actually fulfils some very specific and important cellular
functions. In this Review, we provide an historical and defining
perspective on frustrated endocytosis in the clathrin pathway of
mammalian cells, before discussing its causes and highlighting the
possible functional consequences in physiology and diseases.
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Introduction
Endocytosis is the process by which eukaryotic cells internalize
substances from their surroundings. Although different endocytosis
pathways have been described, they all rely on the formation of a
plasma membrane invagination that matures into a vesicle or tubule
budding off in the cytosol (Doherty and McMahon, 2009; Mayor
et al., 2014; Mettlen et al., 2010). These invaginations exhibit huge
variations in size, shape and dynamics, depending on the molecular
machinery involved in shaping them. This reflects the specialization
of different endocytosis pathways in regulating the uptake of
substances that can also dramatically vary in nature, composition
and size (Maldonado-Báez et al., 2013; Traub, 2009). In any case,
the ultimate fate of bona fide endocytic invaginations is to detach
from the plasma membrane, carrying the internalized substances in
their lumen or at their limiting membrane. However, this process is
not necessary unidirectional as some invaginations, such as
caveolae, can flatten up in the plasma membrane, thus aborting
the undergoing internalization (Sinha et al., 2011). It appears that, in
most cases, the formation and maturation of invaginations are
tightly regulated and active processes that require energy in order to
overcome the resistance of the plasma membrane to bending

(Haucke and Kozlov, 2018). Numerous parameters, such as high
membrane tension, internal hydrostatic pressure and properties of
the to-be-internalized cargo, can make membrane bending a
challenging task. Thus, the successful completion of endocytosis
depends on a balance of forces, some of which favor membrane
bending and some others that oppose it (Kaksonen and
Roux, 2018).

Among the many endocytosis pathways described so far,
clathrin-mediated endocytosis (CME) is probably the most
studied and the best understood. The small plasma membrane
invaginations associated with CME were first identified in 1964
(Roth and Porter, 1964), although the major component of the
electron-dense coat seen on their cytosolic side was only identified a
decade later and named clathrin (Pearse, 1975). These structures are
also often referred to as clathrin-coated pits (CCPs) because of the
peculiar shape of these invaginations as seen by electron
microscopy (Pearse, 1975). The clathrin coat, comprising clathrin
and associated adaptors and regulators, generates forces, which
leads to the formation of an invagination and maturation of the pit
(Liu et al., 2010). The forces needed to bend membranes are in the
order of picoNewtons (Stabley et al., 2012) and are generated by
multiple factors involved in CCPs, including BAR-domain proteins
such as the FCHo proteins (Henne et al., 2010) and amphipathic
helix-carrying proteins, such as epsin (Boucrot et al., 2012), as well
as also through clathrin coat polymerization itself, which has been
shown to induce membrane curvature, at least in vitro (Dannhauser
and Ungewickell, 2012). Finally, budding can be assisted by Arp2/
3-mediated actin polymerization at the base of nascent CCPs
(Kaksonen et al., 2006; Perrais and Merrifield, 2005).

The different steps of nucleation, maturation and scission of
CCPs are now quite well defined in molecular terms (Kaksonen and
Roux, 2018) (Fig. 1). In addition to generating membrane
invaginations, the clathrin coat is endowed with the capacity to
recruit cell surface receptors and other proteins, leading to their
packaging into CCPs that bud into the cytosol as endocytic clathrin-
coated vesicles (CCVs) (Pearse, 1975). Cargoes internalized into
CCVs are then delivered to the endosomal system, from where they
can either be recycled to the cell surface or addressed to lysosomes
for degradation (Cullen and Steinberg, 2018).

The canonical role of CCPs in regulating cargo endocytosis is
central to cell homeostasis because it controls nutrient acquisition and
the composition of the plasma-membrane in time and space, as well
as cell surface receptor signaling (Antonescu et al., 2014; Polo and Di
Fiore, 2006; Reider andWendland, 2011). However, over the years, it
has become increasingly clear that the budding ability of CCPs can be
perturbed, resulting in shallow invaginations or flat clathrin lattices
(Baschieri et al., 2018; Bucher et al., 2018a; Elkhatib et al., 2017;
Ferguson et al., 2017). Rather than being just a passive consequence,
the resulting CME ‘frustration’ can actually be used as a mechanism
to convey information to the cell, or as a means to achieve specific
functions (see below). Furthermore, beyond genetic and chemical
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alterations, several environmental factors can prevent or slow down
the membrane-bending process occurring at CCPs (Baschieri et al.,
2018; Baschieri et al., 2019 preprint; Elkhatib et al., 2017; Ferguson
et al., 2017). We propose that frustrated CME is part of the
homeostatic response and can help the cell to adapt to the changing
conditions of its environment. In this Review, we first provide an
overview of the work that has led to the description of frustrated
endocytosis. Focusing on CME, we then describe the different
potential causes and functional consequences of frustrated
endocytosis has in both normal physiology and diseases.

What is frustrated endocytosis?
The use of the adjective ‘frustrated’ associated with endocytosis
processes dates back to the 1970s when investigators analyzed the
behavior of phagocytic cells, such as neutrophils or macrophages,
seeded onto immune complexes that were immobilized on a glass
coverslip (Henson, 1971;Michl et al., 1979).While these cells are able
to generate large invaginations, called phagocytic cups, in order to
internalize large particles opsonized with immune complexes, they
obviously cannot internalize the glass coverslip. As a consequence, the
phagocytic cup spreads out on the glass in a failed attempt to
internalize it. This system has been used consistently to study the
dynamics of molecular factors involved in phagocytosis, as it offers
great advantages for imaging purposes and control of the experimental
system (Henson, 1971; Michl et al., 1979; Rabinovitch et al., 1975).

Although experimental frustrated phagocytosis is clearly
artificial, it illustrates the fact that the cell environment can
impede endocytosis. This notion is particularly important when
attempting to provide a definition of frustrated endocytosis. In a
dictionary, besides its psychological meaning, frustration is defined
as ‘the fact that something prevents plans or efforts from being
successful’. We thus envisage frustrated endocytosis as the
impossibility for an otherwise perfectly fit endocytic structure to
perform endocytosis. This definition excludes any kind of
perturbations that affects a priori the molecular or chemical
composition, and thus functions, of the considered endocytic
machinery. For instance, we do not consider experimental or
pathological genetic alterations (such as mutations in CME players
or their overexpression or knockdown), nor abortive CCPs that
quickly disassemble before producing a vesicle (Loerke et al., 2009)
as proper causes of frustrated endocytosis. Rather, frustrated
endocytosis is considered here as a mechanical obstruction that
prevents the forces developed by endocytic structures from forming
an invagination or proceeding until the scission of the invagination
from the plasma membrane. The phenotypic consequence is that
clathrin-coated structures experiencing frustration are longer-lived
as compared to unperturbed CCPs. The extended lifetimes can be
more or less pronounced, sometimes even giving rise to extremely
long-lived and flat structures called clathrin-coated plaques (see
below). Frustration may also be local or global, depending on
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Fig. 1. Sequential steps of clathrin-coated vesicle formation. Clathrin-mediated endocytosis relies on the assembly of clathrin-coated pits (CCPs) at
discrete regions of the plasma membrane. These small structures (∼100 nm in diameter) are mostly composed of clathrin and clathrin-adaptors. Clathrin itself
assembles into a triskelion composed of three clathrin heavy chains and three clathrin light chains. Several clathrin adaptors are found at CCPs and their role is to
recruit clathrin to the plasma membrane as well as cell surface receptors in order to package them into nascent CCPs. The sequence of events leading
to the release of a fully formed, receptor-containing endocytic vesicles into the cytosol can be divided into four steps: initiation (step 1), maturation (step 2),
scission (step 3) and uncoating (step 4). Initiation is proposed to occur randomly at the internal leaflet of the plasma membrane through the recruitment of the
clathrin adaptor AP-2, which might already be bound to some clathrin triskelions. In addition, the F-BAR domain FCHo proteins are also recruited at this step and
start to bend themembrane. Many additional adaptors are recruited during step 2, including but not limited to, epsin, Hip1R, CALM, Dab2, Numb and ARH, which,
in turn, recruit specific receptors. This maturation phase is accompanied by the progressive bending of the plasma membrane; this is promoted by clathrin
polymerization, as well as by membrane-bending proteins, such as FCHo proteins and epsin. At the end of the maturation step, CCPs are still connected to the
plasma membrane by a thin neck that needs to be resolved in order for the vesicle to bud into the cytosol. This is achieved through the recruitment and
action of dynamin that polymerizes around the neck and constricts it until scission occurs. Finally, shortly after budding of the CCV into the cytosol, uncoating
occurs; this removes clathrin and clathrin adaptors from the vesicle, thus allowing the vesicle to fuse with endosomes, into which receptors are delivered.
If unperturbed, this sequence of events typically takes 30 to 90 s from initiation to uncoating.
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whether only some or all of the considered type of endocytic
structures experience frustration in one given cell.
In the frame of this definition, different examples of frustrated

endocytosis have been described among the different endocytosis
pathways. While experimentally induced frustrated phagocytosis is
used as a tool, it actually also reflects a pathological situation in
which phagocytes cannot proceed to the full engulfment of
extracellular particles that are too large. This has been suggested
to be the case for the uptake of long fibers, such as asbestos (Dörger
et al., 2001; Hansen and Mossman, 1987) or carbon nanotubes
(Poland et al., 2008), as well as also for amyloid fibers (D’Andrea
et al., 2004) and even for some large bacterial biofilms (Leid, 2009;
Thurlow et al., 2011). The incomplete engulfment of the foreign
body leads to the secretion of toxic compounds that damage nearby
healthy tissues and triggers a detrimental inflammation reaction
(Donaldson et al., 2010; Dostert et al., 2008). While frustrated
phagocytosis is toxic for the organism, frustration of other uptake
pathways may play a role in homeostasis. Caveolae are small plasma
membrane invaginations that have long been proposed to support
the endocytosis of various cargoes (Palade and Bruns, 1968; Parton,
2018). However, at steady state, most caveolae are quite stable and
seemingly stay invaginated for long periods of time (Parton, 2018).
Besides their endocytic functions, caveolae are also known to
regulate plasmamembrane tension by flattening up in the membrane
in order to buffer a sudden increase in tension (Sinha et al., 2011).
Conversely, a reduction in plasma membrane tension leads to
caveolae assembly and may also promote the budding of caveolae
from the plasma membrane (Parton et al., 2019). Thus, caveolae
may be constitutively frustrated by membrane tension at steady
state, as their primary role is likely to fine tune this tension (Parton
et al., 2019). In other instances, frustrated endocytosis also plays
fundamental, regulatory roles that help the cell to interpret and adapt
to its environment, as will be discussed below for the case of
frustrated CME.
When applied to CME, the above-mentioned definition of

frustrated endocytosis may help to draw a clearer understanding of
the different dynamic behaviors that are exerted by populations of
clathrin-coated structure at the plasma membrane, not only in
different cell types, but also often within the same cells. Indeed,
from the initial recruitment of the clathrin coat at the plasma
membrane to scission of a fully formed CCV, the lifetime of
canonical CCPs typically ranges from 30 to 90 s (Ehrlich et al.,
2004; Loerke et al., 2009). However, the average lifetime of CCPs
varies from cell type to cell type (Doyon et al., 2011), as well as
within a given cell type (Loerke et al., 2009), depending on the
subcellular localization of the respective CCPs (Liu et al., 2009;
Pelassa et al., 2014), the composition of the substrate on which cells
are seeded (Batchelder and Yarar, 2010) and the progression of the
cell cycle (Hinze and Boucrot, 2018). In addition, besides CCPs,
many cell types display other large or flat clathrin lattices that are
more long-lived – from several minutes to hours (Saffarian et al.,
2009). These particular structures have been named clathrin-coated
plaques (hereafter called plaques) and, as discussed below, most
likely represent an extreme example of frustrated CME.

Causes of endocytosis frustration in the clathrin pathway
CCPs dynamics have been extensively studied and the sequence of
events leading to the formation of CCVs is quite well understood
(Cocucci et al., 2012) (Fig. 1). The clathrin coat together with
clathrin adaptors exert inward forces, orthogonal to the plasma
membrane, in order to form an invagination. Plasma membrane
bending rigidity and tension, as well as cell turgor pressure, are

critical factors that oppose membrane deformation (Kaksonen and
Roux, 2018). Although in yeast and plants, the turgor pressure is an
important parameter that CCPs have to copewith, this is not the case
in mammalian cells and thus will not be discussed here. Bending
rigidity depends on the chemical composition of the membrane,
which is known to vary over the lifespan of a cell (Atilla-Gokcumen
et al., 2014). However, apart from an experimental depletion of
cholesterol, which is known to affect membrane rigidity and has
been shown to impair CME (Subtil et al., 1999), to our knowledge,
there are no available data that link a modification of the lipid
composition to potential CCPs frustration in either a physiological
or pathological situation. The apparent bending rigidity of the
plasma membrane can also be increased by adhesion of the actin
cortex to the lipid bilayer (Charras et al., 2008; Murrell et al., 2011),
and a stiff actin cortex has been linked to a stall in endocytosis in
Drosophila (Lee and Harris, 2013). However, interactions between
the actin cortex and the plasma membrane also impact on the
measured membrane tension (Diz-Muñoz et al., 2013), a critical
parameter affecting membrane bending in living cells. Indeed, if the
membrane rigidity is considered to be constant, the largest energetic
barrier to invagination formation is the in-plane membrane
tension (Charras et al., 2008). As a consequence, an effective way
to obtain frustrated CCPs is through an increase in membrane
tension. In addition, another way CME could experience frustration
is when attempting to internalize cargo, which, for different reasons,
cannot be accommodated into the small, spherical invaginations
formed by CCPs. Below, we will describe and provide examples of
how membrane tension and cargo properties can cause CME
frustration.

Plasma membrane tension
It has long been recognized that CME is particularly sensitive to
membrane tension. Experimental increase of membrane tension
through increasing the swelling of cells by placing them in low
osmolarity buffers completely stalls CCP dynamics (Ferguson et al.,
2017; Wu et al., 2017). The dramatic increase of CCP lifetime
observed under these conditions likely reflects the difficulties of the
clathrin coat to transition from a flat to a curved topology when
tension is high (Bucher et al., 2018a). Although it is highly debated
whether CCPs initially grow in a flat conformation before they
generate curvature (Avinoam et al., 2015; Bucher et al., 2018a;
Larkin et al., 1986), or whether they immediately bend the
membrane as soon as they nucleate (Kirchhausen et al., 2014;
Willy et al., 2019 preprint), it is clear that increasing membrane
curvature is more difficult when tension is high (Hassinger et al.,
2017; Saleem et al., 2015). Membrane tension can be perturbed by
many physiological or pathological factors. One of the most striking
examples is during mitosis when an increased osmotic pressure
causes the cell to round up (Stewart et al., 2011). This leads to an
increased membrane tension that has been shown to negatively
impact the capacity of CCPs to perform endocytosis in mitotic cells
(Kaur et al., 2014; Raucher and Sheetz, 1999). Accordingly,
ultrastructural analyses have shown that clathrin-coated structures
are often flat in mitotic cells (Pypaert et al., 1987, 1991). Membrane
tension is also likely systemically increased in cells subjected to
compressive forces (He et al., 2018). This is, for example, the case in
cancers when the growing tumor is compressed by the surrounding
tissue (Seano et al., 2019), or in asthmatic patients, in which the
airway epithelium constriction squeezes epithelial cells (Park et al.,
2015). Applying uniaxial pressure on adherent cell lines of different
origin has been shown to result in stalling CCP dynamics in vitro
(Baschieri et al., 2019 preprint; Ferguson et al., 2017), most likely as
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a consequence of the elevated membrane tension. In these two
examples of high membrane tension (owing to osmotic pressure and
compression), CCPs can experience a strong frustration with
lifetimes exceeding several minutes on average (Baschieri et al.,
2019 preprint; Ferguson et al., 2017), as measured during mitosis
(Wood et al., 2017).
Apart from the systemic effects of an increase in membrane

tension owing to osmotic pressure or compression, local variations
in membrane tension could also modulate CCPs dynamics. Indeed,
using cell lines of epithelial and mesenchymal origin, as well as in
primary neuronal and endothelial cells, it was recently shown that
membrane tension is not necessarily homogenous over the entire
plasma membrane of a cell (Shi et al., 2018). Furthermore, in
migrating mesenchymal cells, membrane tension has been proposed
to be higher at the leading edge than at the rear of the cell (Fogelson
and Mogilner, 2014; Hetmanski et al., 2019; Lieber et al., 2015).
This most likely results from pushing forces that are applied on the
plasma membrane by the polymerizing actin cytoskeleton at cellular
protrusions. Accordingly, CCPs have been shown to be longer lived
in the vicinity of cell protrusions than at the cell rear (Willy et al.,
2017). The differential dynamics between cell front and rear may
also explain why CCPs tend to accumulate over time at the front of
migrating cells (Montagnac et al., 2013; Rappoport and Simon,
2003). Polarized epithelial cells provide another example of local
CME frustration, which is also driven by differential membrane
tension. Indeed, membrane tension is higher at the apical side
compared to the basolateral side of epithelial cells (Dai and Sheetz,
1999). Strikingly, the lifetime of CCPs at the apical side is longer as
compared to those at the basolateral side, and this was shown to
depend on the difference in membrane tension (Boulant et al.,
2011). In this case, CCP frustration is rather mild, with average CCP
lifetime being ∼40 s on the basolateral side and ∼55 s on the apical
side, where tension is higher. This obviously depends on the
strength of the stress applied on the membrane, which is most likely
weaker within a polarized cell than in the case of cell compression or
raised osmotic pressure in mitotic cells. However, this could also
reflect specific adaptive mechanisms developed by the cell to
counteract an elevation in membrane tension as discussed below.

Cargo properties
Besides membrane tension, the second main cause of CME
frustration in mammalian cells lies in the properties of the cargoes
that the CCPs attempt to internalize. The term cargo generally refers
to receptors or other proteins found at the cell surface that have the
capacity to bind to the coat comprising clathrin and its adaptors in
order to be recruited and internalized at CCPs. We will here extend
this definition to any object that may be linked to the clathrin
machinery through a classical cargo, such as for example
extracellular matrix (ECM) proteins that bind to CCP-localized
integrins. Indeed, while the nature of classical cargoes themselves
could be a cause for a delay in CCP maturation, most often, the
mechanical properties, shape or size of the object they bind to
represent a dramatic limitation for successful endocytosis.
It is now well accepted that cargoes play an active role in CCP

maturation and lifetime. For instance, overexpression of the
transferrin receptor reduces the occurrence of abortive CCPs
(CCPs that disassemble early after nucleation, without forming a
vesicle) and helps them to progress through the sequential steps of
maturation (Loerke et al., 2009). This is most likely the consequence
of a stabilization of clathrin adaptors at the plasma membrane
through cargo engagement (Ehrlich et al., 2004). In addition,
different cargoes recruit different sets of adaptors, and this impacts

on CCP lifetime (Mettlen et al., 2010; Puthenveedu and von
Zastrow, 2006). However, any such effects are not included in our
definition of endocytosis frustration, as such cargoes modulate the
composition and/or activity of the clathrin machinery, and thus, this
issue will not be further discussed here.

CCPs are used for the uptake of many extracellular objects, such
as viruses, bacteria and nanoparticles (Bonazzi et al., 2011; Ding
and Ma, 2012; Hackett and Cherry, 2018). These objects often have
a size that impedes their efficient clathrin-mediated uptake. Indeed,
larger cargoes require a longer time in order to be internalized by
CCPs, most likely owing to steric hindrance issues (DeGroot et al.,
2018; Hackett and Cherry, 2018). Because bacteria are much larger
than the average diameter of CCPs, which is 100 nm (Haucke and
Kozlov, 2018), they should be unable to use CME to infect cells.
Nevertheless, Listeria monocytogenes, Escherichia coli and other
bacteria have been shown to require the clathrin machinery at their
entry sites (Bonazzi et al., 2011; Cossart and Veiga, 2008; Veiga
and Cossart, 2005; Veiga et al., 2007). Depletion of several
components of CME not only delays bacterial infection, but the
lifetime of clathrin-coated structures that form at bacterial entry sites
is considerably longer than the 30 to 90 s that is characteristic for
classical CCPs (Veiga et al., 2007). At least for some bacteria,
clathrin structures that form at contact sites may not directly control
their uptake, but instead provide a platform from which the actin
cytoskeleton reorganizes to form a bacteria-engulfing structure
known as the actin pedestal (Bonazzi et al., 2011; Veiga et al.,
2007). In addition to the size of the cargo, its shape is also
important. For instance, clathrin-coated structures that form around
vesicular stomatitis virus, a bullet-shaped virus with a high length-
to-width ratio (here a length of 180 nm but a width of 70 nm), are
twice as long-lived compared to CCPs not associated with the virus
(Cureton et al., 2009; Johannsdottir et al., 2009), reflecting the
difficulties of the clathrin coat to adapt to such a non-spherical
shape. Similar to what is seen with viruses, the efficiency of
clathrin-dependent uptake of opsonized nanoparticles depends on
their size and also on their shape (Foroozandeh and Aziz, 2018).
Indeed, spherical nanoparticles are internalized faster than rod-
shaped particles (Chithrani and Chan, 2007).

One of the most common causes of frustration occurs when the
clathrin machinery is tethered to the substrate through adhesion
receptors (Baschieri et al., 2018; Batchelder and Yarar, 2010;
Zuidema et al., 2018). In this scenario, the substrate can be
considered a cargo that cannot be internalized owing to its extremely
large size. For instance, nonspecific attachment of the plasma
membrane to a glass coverslip completely stalls CCPs (Batchelder
and Yarar, 2010). It is likely that a strong adhesion to a non-pliable,
large substrate prevents the clathrin and adaptor coat from bending
the membrane and thus its maturation into proper CCPs and CCVs.
More relevant to a physiological setting, adhesion receptors, such as
some integrins, are known to accumulate at CCPs. Indeed, a
population of β1-integrin-enriched CCPs in the vicinity of focal
adhesions shows an increased lifetime compared to CCPs that are
located at other areas of the plasma membrane further away from
focal adhesions (Batchelder and Yarar, 2010). In addition, overall
CCP dynamics slows down and CME is inhibited when cells are
plated on glass covered with an ECM that engages β1-integrin
(Batchelder and Yarar, 2010). These data suggest that integrin-
mediated attachment of the clathrin coat to the substrate prevents
CCPs from budding efficiently. Similarly, we have shown that
clathrin-coated structures accumulate along collagen fibers in cells
seeded in 3D conditions (Elkhatib et al., 2017). This also depends
on β1-integrin, and leads to the formation of peculiar, long-lived
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structures, termed tubular clathrin-AP-2 lattices (TCALs), that wrap
around and pinch collagen fibers (Elkhatib et al., 2017). By
pinching collagen fibers, TCALs function as adhesive structures
that help cells to migrate in complex three-dimensional
environments (Elkhatib et al., 2017). Although topologically
different from a glass coverslip, collagen fibers are far too long to
be internalized into CCVs and thus similarly trigger frustration.
However, for both TCALs and CCPs located close to focal
adhesions, it is not clear whether these structures eventually proceed
to a bud after a period of frustration, possibly internalizing
β1-integrin, or whether they disassemble without generating any
CCVs. The situation appears to be clearer for another class of
clathrin-coated structures, plaques, which are large, flat clathrin
lattices that are highly stable at the plasma membrane (Baschieri
et al., 2018; Grove et al., 2014). Although some canonical CCPs are
detected at the rim of plaques and mediate CME, the core of plaques
is generally considered to be unable to produce CCVs (Gaidarov
et al., 1999; Lampe et al., 2016). Several recent studies showed that
plaque formation depends on αvβ5 integrin, which clearly
accumulates at these structures (Baschieri et al., 2018; Bucher
et al., 2018b preprint; Vassilopoulos et al., 2014; Zuidema et al.,
2018). Accordingly, we showed that acute inhibition of αvβ5
binding to the substrate results in a dissolution of the plaques into
budding CCPs that take up αvβ5 (Baschieri et al., 2018). αvβ5
integrin appears to bemore potent in triggering frustration compared
to β1-integrin, as plaques are much longer-lived (up to several
hours) than TCALs or focal adhesion-localized CCPs (several
minutes). The underlying reasons are not clear, but this could be
based on the differences in affinity of these integrins for the
substrate or the clathrin coat. As a matter of fact, the binding of αvβ5
to a large substrate is not strictly sufficient to mediate efficient
frustration. Indeed, we reported that the elasticity of the substrate is a
key parameter for the cell to develop plaques, and the stiffer is the
substrate, the more plaques assemble (Baschieri et al., 2018).
Integrins establish a peculiar interaction modality with their
substrate, termed catch bond (Kong et al., 2009). Catch bonds
strengthen when a pulling force is applied to them and as a
consequence, integrin activation is linked to substrate rigidity, with
stiffer substrates activating them to a greater extent (Puklin-Faucher

and Sheetz, 2009). Thus it is possible that αvβ5 integrin has a
reduced affinity on a soft substrate that is not sufficient to support
frustration. Overall, CME frustration can have multiple mechanical
causes (summarized in Fig. 2), but although it may lead to reduced
endocytosis fluxes, is not simply a passive process, as stalled
clathrin-coated structures give rise to cellular responses that may
help the cell to adapt to its changing environment.

Functional consequences of frustrated CME
As outlined above, it is conceivable that a number of conditions a
cell experiences results in frustrated CME and that the resulting
defective endocytosis may be detrimental for the cell or for the
cargo (Fig. 2). Indeed, CME is crucial for cell homeostasis, and
prolonged inhibition of endocytosis is lethal (Mitsunari et al.,
2005). Accordingly, frustrated endocytosis is often restricted to a
subset of clathrin-coated structures and might be dampened by
compensatory mechanisms. For example, CCPs located at the apical
side of polarized epithelial cells rely on increased Arp2/3-mediated
actin polymerization at their base to produce the extra forces
required to bud under the high membrane tension at this position
(Biancospino et al., 2019; Boulant et al., 2011). Actin
polymerization is also increased when CCPs experience
frustration while attempting to internalize large viruses (Cureton
et al., 2009). Similarly, clathrin-coated plaques are often associated
with an actin network that appears to help vesicular budding in its
vicinity (Leyton-Puig et al., 2017). It has been proposed that
frustrated endocytosis may actually be sensed at the level of
individual CCPs through unknown mechanisms, thus triggering
local actin polymerization to overcome the mechanical resistance
(Cureton et al., 2009). Such a frustration-sensing module may not
only prove useful in ensuring successful endocytosis, but also in
applying forces for regulatory, endocytosis-independent purposes
(discussed below). Indeed, it appears that frustration is not just a
consequence, but can be used by the cell to gather information about
its surroundings and to perform specific functions. For instance,
CME is instrumental in regulating receptor-mediated signaling, and
frustrated endocytosis modulates these signaling pathways. In
addition, because adhesion receptors accumulate at clathrin-coated
structures, frustrated CME can be used by the cell as a means to
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Actin

Key
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Fig. 2. Overview of the different causes of frustrated CME.
Examples of clathrin-coated structures experiencing frustration at
different cellular locations, such as close to adhesion sites, at the
leading edge of migrating cells and at the apical pole of polarized
epithelial cells, as well as potentially also at cell–cell contacts. In
most cases, the origin of frustration could be an elevated
membrane tension or an engagement of the clathrin coat with a
substrate that cannot be easily accommodated into the small
invaginations formed by CCPs.
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adhere to its environment. Below, we will discuss the known
potential functional consequences of frustrated CME and provide
examples of how they affect different cellular processes.

Consequences for signaling
The classical view of CME-regulated signaling is that once
receptors are activated, endocytosis is used to terminate the signal
from the plasma membrane (Sorkin and Von Zastrow, 2009).
However, many receptors keep signaling from endosomes, and the
quality, strength and duration of the signal may be modulated by the
different environments receptors encounter in these compartments
(Sigismund et al., 2012; Sorkin and Von Zastrow, 2009). However,
endocytosis does eventually result in signal termination when
receptors are degraded in late endosomal compartments. In addition
to the effects of intracellular trafficking, it has recently become clear
that the clathrin and adaptor coat itself can modulate the signal at the
plasma membrane, likely by providing a platform for the
recruitment of adaptors that are relevant for signaling, such as
Gab1 (Eichel et al., 2016; Garay et al., 2015; Kim et al., 2013). In
addition, an increased lifetime of CCPs at the cell surface correlates
with increased signaling (Eichel et al., 2016). Many signaling
receptors, such as receptor tyrosine kinases (RTKs), chemokine
receptors and G-protein coupled receptors (GPCRs), are recruited at
CCPs and signal from there (Eichel et al., 2016; Garay et al., 2015;
Kim et al., 2013; Signoret et al., 2005). In accordance with this, we
have recently shown that systemic frustration of CCPs in
compressed cells increases signaling through the mitogen-
activated protein kinase (MAPK) pathway (Baschieri et al., 2019
preprint). Thus, besides their role in regulating signaling through
endocytosis, clathrin-coated structures themselves are now
emerging as signaling platforms. It is thus not surprising that the
largest and most stable clathrin-coated structures, plaques, greatly
affect receptor-mediated signaling. Indeed, the same receptors that
accumulate in short-lived CCPs also accumulate in plaques
(Baschieri et al., 2018; Grove et al., 2014; Leyton-Puig et al.,
2017), and plaques were shown to boost downstream signaling
pathways (Baschieri et al., 2018; Leyton-Puig et al., 2017). As
mentioned above, plaques are considered mechanosensitive
structures as they assemble in response to substrate rigidity
(Baschieri et al., 2018). As plaques also regulate signaling events,
we have proposed that they are in fact mechanoresponsive, in that
they inform the cell about the substrate elasticity by transforming
mechanical information into a biochemical response that supports
cell proliferation on stiff substrates (Baschieri et al., 2018). Because
the causes of frustrated endocytosis are most often of mechanical
nature, and the resulting long-lived, frustrated clathrin structures
modulate signaling pathways, a major function of frustrated CME
may thus be mechanotransduction. Along these lines, compression-
induced CCP frustration may participate in informing the cell about
the presence of an abnormal plasma membrane tension through the
increased CCP lifetime and subsequent increased signaling
(Baschieri et al., 2019 preprint). Thus, frustrated CME may have
an important role in physiological contexts where cell mechanics are
challenged, as well as in pathological situations in which an
increased tissue rigidity and/or confinement could favor the
development of plaques, such as during fibrosis and cancers
(Henderson et al., 2013; Levental et al., 2009; Nia et al., 2017;
Stylianopoulos et al., 2012; Tse et al., 2012).

Consequences for cell adhesion
As mentioned above, strong adhesion to the substrate is a common
cause of frustrated CME. The canonical role of CME is to

internalize receptors and this requires receptors to be recruited to
CCPs, which usually occurs through direct interaction between
endocytic adaptor proteins and the receptors themselves (Traub and
Bonifacino, 2013). Indeed, integrins can be internalized via CME
(Moreno-Layseca et al., 2019), and integrin clusters at clathrin-
coated structures have been observed in several cases (Baschieri
et al., 2018; Batchelder and Yarar, 2010; Elkhatib et al., 2017). The
clustering of integrins or other adhesion receptors at adhesion
structures is crucial for mediating efficient attachment (Changede
and Sheetz, 2017) and, accordingly, clathrin-coated structures can
function as adhesive structures in a similar manner to focal
adhesions (Elkhatib et al., 2017). This is the case for the previously
mentioned TCALs, tubular clathrin-coated structures enriched in
β1-integrin, that are used as adhesion structures that grab and pinch
collagen fibers (Elkhatib et al., 2017), thereby helping the cell to
migrate in 3D collagen networks (Elkhatib et al., 2017). Similarly,
plaques represent frustrated CME because αvβ5 integrin anchors the
clathrin coat to the stiff substrate, impeding endocytosis. In fact,
plaques have long been proposed to serve as adhesion structures
(Maupin and Pollard, 1983), and have been suggested to slow down
cell migration owing to the firm attachment to the substrate they
provide (Saffarian et al., 2009). Yet, only recently have plaques, or
highly similar structures called reticular adhesions (Lock et al., 2019),
been formally demonstrated asmediating cell adhesion to the substrate
(Lock et al., 2018). Reticular adhesions are αvβ5-rich structures that
do not overlap with focal adhesions and ensure a firm attachment of
mitotic cells to the substrate when their focal adhesions disassemble to
allow cell rounding (Lock et al., 2018). Interestingly, these structures
are enriched in components of the clathrin coat and may actually
correspond to clathrin-coated plaques (reviewed in Lock et al., 2019).
At least in several transformed epithelial cells and in keratinocytes, the
clathrin coat appears to be required for the proper formation of the
αvβ5 reticular pattern (Baschieri et al., 2018; Zuidema et al., 2018),
but further investigations are required to ascertain whether this is
strictly the case in all cells. Nevertheless, it seems reasonable to
propose that integrin clustering at clathrin-coated structures, on the
one hand, causes their frustration, but, on the other hand, also provides
the cell with a new means to adhere to the substratum.

Plaques as a scaffold for the cytoskeleton
In addition to their roles as signaling platform and adhesion
structures, clathrin-coated plaques also provide a scaffold for the
organization of the cytoskeleton, at least in some specialized cells. It
has been shown that plaques are abundant in skeletal muscles and
are required for appropriate sarcomeric actin organization
(Vassilopoulos et al., 2014), as well as for the arrangement of
desmin intermediate filaments (Franck et al., 2019). In the absence
of plaques, muscles can no longer exert forces because sarcomeres
detach from the plasma membrane (Vassilopoulos et al., 2014).

It is important to note that plaques, or reticular adhesions,
assemble in an actin-independent manner and lack most of the
classical adhesion-related proteins known to establish links with
actin fibers (Lock et al., 2019). However, other components of the
clathrin coat, such as dynamin or Huntingtin-interacting protein
1-related protein (HIP1R), could engage with the actin network and
modulate its organization (Kirchhausen et al., 2014; Sun et al.,
2019). In light of their described role in muscles, it is possible that
plaques also help to organize the actin network during mitosis, or at
the end of cell division when cells re-spread on the substrate (Lock
et al., 2019). In any case, it is likely that the stable nature of plaques
is advantageous for the cell in providing a scaffold for the
organization of the cytoskeleton.
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Frustrated CME at cell–cell contacts
We have considered above the case of substrate-immobilized
cargoes, but CME cargoes can also be presented at the surface of
other cells, such as at cell–cell contacts. Whether this actually leads
to frustrated CME has not been formally demonstrated so far.
Nevertheless, there are hints suggesting that frustrated CME is
induced at cell–cell contacts and might fulfill important
physiological functions. For example, both Notch proteins and
their ligands are transmembrane proteins that can engage the
clathrin coat (Windler and Bilder, 2010). A tug-of-war mechanism
has been proposed, in which both the ligand-presenting cell and the
Notch-presenting cell pull on the receptor–ligand pair. The strength
of these pulling forces depends on the engagement of the clathrin
and epsin coat by the ligand and the resulting force induces the
cleavage of Notch and its subsequent activation in the Notch-
presenting cell (Langridge and Struhl, 2017). In the absence of any
force, the cleavage site of Notch, which is located in its extracellular
domain, would be masked and require a force of between 3 and 5 pN
to become exposed (Gordon et al., 2015); this is in the order of force
magnitude that have been shown to be produced by invaginating
CCPs (Stabley et al., 2012), suggesting that the membrane bending
occurring during CME could be the force driving protein unfolding.
However, the formation of such ligand–receptor bonds poses
an energetic barrier to CCP invagination and may thus result in
frustrated CME. Accordingly, endocytosis-mediated Notch
activation also requires actin (Meloty-Kapella et al., 2012),
which, as explained above, could provide the additional force
necessary to accomplish CME in cases of mechanical frustration.
Analogous to the mechanism of Notch activation, ephrin B
receptors (EphB) are a family of receptor tyrosine kinases (RTKs)
that interact in trans with their transmembrane ligand ephrin B
(Kania and Klein, 2016). The most characterized function of
ephrin–Eph is to modulate cellular repulsion during cell migration.
To do so, cells need to internalize the EphB–EphrinB complex as a
whole (Zimmer et al., 2003). The situation can be visualized as a
tug of war between two cells, with one cell eventually trans-
endocytosing both proteins (Zimmer et al., 2003). Some EphB
interacts with the clathrin adaptor Numb (Nishimura et al., 2006),
and it has recently been proposed that trans-endocytosis of EphB–
ephrinB is mediated by clathrin (Evergren et al., 2018).
Internalizing two membranes instead of only one is likely to be
more challenging for CCPs and, accordingly, this trans-
endocytosis process also depends on the actin cytoskeleton
(Marston et al., 2003).
Along this line, the B cell receptor (BCR) and T cell receptor

(TCR) could also rely on frustrated endocytosis. To fulfill their roles
in the immune response, BCRs and TCRs need to extract an antigen
from the surface of antigen-presenting cell in a process that requires
forces (Ma et al., 2019; Spillane and Tolar, 2017). These forces have
been proposed to come at least in part from CME (Ma and Finkel,
2010), which is the preferential way of antigen internalization by
immune cells. Another potential example is the E-cadherin-
dependent recruitment of clathrin-coated structures to the vicinity
of adherens junctions (Levayer et al., 2011), which share similarities
to the accumulation of frustrated CCPs close to focal adhesions
(Batchelder and Yarar, 2010).
In all these examples, however, a formal demonstration that there

is frustrated CME is needed. However, given the susceptibility of
CME to experience frustration in the different examples listed across
this Review, it is likely that frustrated CCPs could indeed exist at
cell–cell contacts, at least in some cases, with potential implications
on intercellular communication.

Perspectives
Frustrated CME is emerging as an important regulator of many
different cellular processes, from signaling to adhesion, and from
cell migration to mitosis, but the underlying mechanisms and its
regulation are still elusive. For instance, enhancing the stiffness of
the clathrin coat could better support the development of forces on
receptor–ligand complexes (Lherbette et al., 2019). Therefore,
frustrated CME could be both a consequence of local mechanical
resistance and a means to achieve the production of local forces that
is required for specific cellular processes. This might be the case for
clathrin-coated plaques where the pulling forces exerted by the
clathrin coat could participate in locally activating αvβ5 or stabilizing
integrin–ECM bonds, thus providing a mechanosensing mechanism
alternative to the ones linked to actin cytoskeleton dynamics (Lock
et al., 2019). Along this line, given the role of frustrated CME in
controlling signaling downstream of RTKs or GPCR (Baschieri et al.,
2018; Baschieri et al., 2019 preprint; Rakesh et al., 2010; Zimmer
et al., 2003) and considering that frustration is often due to
mechanical causes, frustrated CME could represent a new
mechanotransducing pathway. Several pathological situations are
characterized by increased substrate stiffness or increased solid stress
(Kalli and Stylianopoulos, 2018; Levental et al., 2009; Nia et al.,
2017). Notably, hyperactive RTK signaling and high substrate
stiffness have recently been shown to be sufficient to induce
transformation of healthy cells into tumor-initiating cells (Panciera
et al., 2020), thus raising the possibility of frustrated CME being an
important factor in tumorigenesis. Still, evidence for frustrated CME
in vivo is scarce. Thus, efforts should be dedicated in the future to
explore this aspect.

One of the most intriguing observations is that, while actin is in
most cases dispensable for CME itself, actin polymerization is often
increased at frustrated clathrin-coated structures. Identifying a
frustration-sensing module in the clathrin coat, which has been
suggested to exist (Cureton et al., 2009) and that may regulate local
actin polymerization at frustrated CCPs, would provide a great
opportunity to investigate the cellular functions of frustrated CME.
On a similar note, whether frustrated structures share a common
molecular composition that would be different from canonical CCPs
is an open question worth investigating to deepen our understanding
of CME frustration.
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