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The muscle stem cell niche at a glance
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ABSTRACT
Skeletal muscle stem cells (MuSCs, also called satellite cells) are
the source of the robust regenerative capability of this tissue.
The hallmark property of MuSCs at homeostasis is quiescence, a
reversible state of cell cycle arrest required for long-term preservation
of the stem cell population. MuSCs reside between an individual
myofiber and an enwrapping basal lamina, defining the immediate
MuSC niche. Additional cell types outside the basal lamina, in the
interstitial space, also contribute to niche function. Quiescence is
actively maintained by multiple niche-derived signals, including

adhesion molecules presented from the myofiber surface and basal
lamina, as well as soluble signaling factors produced by myofibers
and interstitial cell types. In this Cell Science at a Glance article and
accompanying poster, we present themost recent information on how
niche signals promote MuSC quiescence and provide perspectives
for further research.
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Introduction
Stem cells reside in a specific microenvironment, or niche, which
provides regulatory signals that sustain their stem cell properties
(Scadden, 2014). Niche-derived signals arise from direct contact
between stem cells and niche cells, as well as from soluble factors
and extracellular matrix molecules secreted by multiple cell types
that contribute to niche function. Muscle stem cells (MuSCs, also
called satellite cells) are the source of the remarkable regenerative
capability of skeletal muscle (Relaix et al., 2021; Sousa-Victor et al.,
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2022). MuSCs reside in a well-defined anatomical location,
sandwiched between skeletal muscle fibers (myofibers) and a
basal lamina that ensheathes each myofiber (Evano and Tajbakhsh,
2018; Mashinchian et al., 2018) (see poster). The myofiber and the
basal lamina define the immediate MuSC niche, and MuSCs
express adhesion molecules and signaling receptors that interact
with factors provided by them. Additional cell types reside outside
the basal lamina, in the interstitial space, and some can function as
niche components that, in contrast to myofibers and the basal
lamina, do not physically contact MuSCs (Evano and Tajbakhsh,
2018; Mashinchian et al., 2018).
A hallmark property of MuSCs at homeostasis is quiescence,

a state of reversible cell cycle arrest. Quiescence is actively
maintained by a combination of cell-autonomous factors and niche-
derived signals (Ancel et al., 2021). Among the former are specific
transcriptional regulators, including the transcription factor Pax7,
which is expressed by all MuSCs and required for their quiescence,
while the latter are the topic of this article. Following injury, MuSCs
break quiescence in a poorly understood process called activation
(see Box 1). Activated MuSCs enter the cell cycle, proliferate and
differentiate to regenerate muscle; additionally, some MuSCs self-
renew to replenish the stem cell compartment (Hardy et al., 2016;
Schmidt et al., 2019). The MuSC niche undergoes substantial
changes during muscle regeneration, with cellular composition
changing over time after muscle injury (Evano and Tajbakhsh,
2018; Fuchs and Blau, 2020; Kann et al., 2021; Mashinchian et al.,
2018; Wosczyna and Rando, 2018). For example, circulating
neutrophils and macrophages infiltrate the damaged muscle area
within hours of injury (Evano and Tajbakhsh, 2018; Fuchs and
Blau, 2020; Kann et al., 2021; Mashinchian et al., 2018; Wosczyna
and Rando, 2018). By the time regeneration is complete, some

MuSCs have self-renewed, repopulated a restored homeostatic niche
and returned to quiescence, but the timing of these steps is
unresolved (Cutler et al., 2022; Evano et al., 2020; Kuang et al.,
2007). During injury repair, MuSCs and other muscle-resident
and infiltrating cells undergo multiple transient and complex
interactions with each other. The MuSC niche also undergoes
changes during muscle disease and aging, but discussion of these
aspects is beyond the scope of this article. Readers are directed to
other reviews on the topic of the cellular environment encountered
by MuSCs during these processes (Evano and Tajbakhsh, 2018;
Fuchs and Blau, 2020; Kann et al., 2021; Mashinchian et al., 2018;
Wosczyna and Rando, 2018). In this Cell Science at a Glance
article, we discuss the mechanisms by which the MuSC niche
promotes homeostatic maintenance of stem cell quiescence. Most
work on quiescent MuSCs has been performed with mice, and the
data referred to in the article come from studies in mice.

Adhesion of MuSCs to components of the immediate niche
MuSCs are polarized cells, due in part to differential adhesion to
myofibers and the basal lamina at their apical and basal surfaces,
respectively (see poster). MuSCs and myofibers each express
several different cadherins, including N-, M- and VE-cadherins,
which bind in a homophilic fashion, bringing the myofiber
sarcolemma and MuSC apical plasma membrane into close
proximity (Goel et al., 2017; Kann and Krauss, 2019). Genetic
removal of M-cadherin has little effect on MuSCs, whereas removal
of N-cadherin renders the cells prone to breaking quiescence in the
absence of injury (Goel et al., 2017). Despite this propensity,
MuSCs lacking N-cadherin remain polarized and under the basal
lamina, successfully participate in muscle regeneration and are
proficient at self-renewal (Goel et al., 2017). These capabilities are
due to partial compensation by other cadherins, as complete loss of
cadherin-based adhesion results in loss of MuSC polarity, exit from
the niche and MuSC attrition (Hung et al., 2023 preprint).

Quiescent MuSCs have long heterogeneous projections that are
proposed to act as sensors of niche signals that differentially regulate
quiescence versus activation (Kann et al., 2022; Krauss and
Kann, 2023; Ma et al., 2022). Different cadherins display distinct
localizations. M-cadherin, which is dispensable for MuSC
quiescence, is found at high levels around the body of the MuSC,
as well as on projections (see poster). N-cadherin, which is
required for stable quiescence, is often enriched on projections,
including at their tips; furthermore, loss of N-cadherin leads to loss
of projections (Kann et al., 2022). Therefore, maintenance of MuSC
projections correlates with a maintenance of quiescence. MuSC
projections have a core of microtubules that is surrounded by a ring
of cortical F-actin. The catenin proteins that link cadherins to the
cytoskeleton are also localized at the cortex of the MuSC apical
membrane (Goel et al., 2017; Hung et al., 2023 preprint; Kann et al.,
2022). We speculate that cadherin-based junctions link to
cytoskeletal F-actin and microtubules to promote a quiescent
MuSC structure and function, including projection outgrowth and/
or maintenance.

On the basal membrane of MuSCs are receptors for laminin,
notably α7β1 integrin (Sacco et al., 2008). Genetic removal of β1
integrin fromMuSCs leads to loss of apical-basal polarity, a break in
quiescence, cell differentiation and fusion with the adjacent
myofiber (Rozo et al., 2016). β1 integrin also heterodimerizes
with other α-integrin subunits to form receptors for fibronectin and
several types of collagen that are found in either the basal lamina or
interstitial extracellular matrix (ECM) (Schüler et al., 2022).
However, quiescent MuSCs do not express high levels of such

Box 1. Monitoring MuSC quiescence and activation
MuSCs in a healthy adult mammal are quiescent until the muscle is
injured. In response to muscle injury, MuSCs become activated and
proliferate to produce muscle progenitors (myoblasts) to repair the
damage. Agents of injury used in experimental settings include physical
injury and lethal myofiber depolarization with BaCl2 or snake venom
toxins (Hardy et al., 2016). Very vigorous muscle exercise can also
activate MuSCs (Fukada and Nakamura, 2021). Mice have been the
animal model of choice to study this process, in part due to the availability
of good markers of quiescence and the various stages of muscle
regeneration (Schmidt et al., 2019). All quiescent MuSCs express the
transcription factor Pax7, which serves as a marker of MuSCs in
uninjured animals and is also the basis for Cre drivers that allow specific
conditional mutation of genes in these cells (Lepper and Fan, 2010;
Murphy et al., 2011). Additional markers of quiescent MuSCs include α7
integrin, VCAM1, CD34 and M-cadherin; these can be used to identify
MuSCs on muscle sections and some can be used for purification of
MuSCs by fluorescence-activated cell sorting (Liu et al., 2015). As
MuSCs enter the activation process, changes in morphology and gene
expression occur in distinct stages. The first de novo change to gene
expression is induction of immediate early genes, such as Fos (Almada
et al., 2021; Machado et al., 2017). Expression of the myogenic
determinant proteins Myf5 and MyoD (also known as MyoD1) follows, as
does expression of markers of cell proliferation such as Ki67 (also known
as Mki67). Each of these factors have been used as markers of MuSC
activation. These cells proliferate as transit-amplifying myoblasts. When
sufficient myoblast progeny are produced, the muscle differentiation-
promoting transcription factor myogenin is induced and Pax7 is fully
downregulated; these cells differentiate and fuse to form new myofibers
or repair damaged ones, which express markers of mature muscle, such
as myofiber-specific myosin isoforms.
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heterodimers (Schüler et al., 2022), so loss of laminin receptor
function is the most likely driver of the β1 integrin mutant
phenotype. Quiescent MuSCs also express a second laminin
receptor, dystroglycan, a key component of the dystrophin
glycoprotein complex (DGC), mutations of which produce
various forms of muscular dystrophy (Dumont et al., 2015).
These diseases appear to arise from combined loss of DGC
functions in myofibers and MuSCs (Dumont and Rudnicki, 2016).
Both integrins and DGC link the cell surface to the intracellular F-
actin cytoskeleton, promoting adhesion-mediated cell polarity and
structural integrity. In addition to their cytoskeletal linkages,
cadherins and integrins regulate signaling pathways, both directly
and indirectly (Parsons et al., 2010; Priya and Yap, 2015), but there
is little information on pathways downstream of these adhesion
molecules in quiescent MuSCs.
The interstitial ECM is a complex mixture of collagens and

proteoglycans that interact to provide a structural network of
appropriate tissue pliancy [see Schüler et al. (2022) for a detailed
review of MuSCs and the ECM]. This interaction is likely to be very
important for homeostatic MuSC regulation, but could occur
indirectly, with local and overall tissue stiffness sensed by MuSCs
via mechanisms that have not yet been identified.

Signaling to MuSCs from the immediate niche
Maintenance of quiescence is critical for long-termMuSC function,
and a deregulation of MuSC quiescence can result in premature
differentiation or cell death, in turn impairing regeneration after
injury. Quiescence is actively maintained by multiple signaling
pathways, with niche-derived ligands presented to receptors
expressed by MuSCs (see poster). Myofibers express the Notch
ligand Dll4, which activates Notch receptors on quiescent MuSCs
(Eliazer et al., 2020; Kann and Krauss, 2019). This leads to
proteolytic cleavage and cytoplasmic release of the Notch
intracellular domain (NICD), which interacts with the transcription
factor Rbpj to drive expression of Notch pathway target genes.
Conditional mutation of Rbpj in adult mouse MuSCs leads to a break
in quiescence, rapid differentiation and fusion with myofibers
(usually without completing a full cell cycle), and eventual loss of
more than 95% of MuSCs (Bjornson et al., 2012; Mourikis et al.,
2012). Conditional mutation of Dll4 in myofibers leads to a similar, if
somewhat weaker, phenotype and a strong reduction of Notch-
dependent gene expression in MuSCs (Eliazer et al., 2020). These
results argue that Dll4 is the major Notch ligand and myofibers the
major source forNotch activity inMuSCs at homeostasis. Theweaker
phenotype, relative to MuSC-specific loss of Rbpj, might be due to
Dll4 provided by endothelial cells, ligand-independent Notch
signaling or Notch-independent Rbpj functions (Tao et al., 2023;
Verma et al., 2018). These phenomena have been observed in vitro
but require further experimentation to assess their in vivo
contribution. Quiescent MuSCs express multiple Notch isoforms
(Gioftsidi et al., 2022), withNotch1 andNotch2 acting redundantly to
maintain the quiescent MuSC pool (Fujimaki et al., 2018).
Notch–Rbpj signaling induces expression of transcriptional

regulators of the Hes/Hey family in all Notch-responsive cells
(Weber et al., 2014), including Hesr1 (also known as Hey1) and
Hesr3 (also known as Heyl) in MuSCs (Mourikis et al., 2012).
Combined germline mutation of Hesr1 and Hesr3 leads to postnatal
loss of MuSCs via premature differentiation (Fukada et al., 2011).
However, additional direct Rbpj target genes in MuSCs are critical
for maintenance of quiescence, including those encoding collagen
V (ColV) (Baghdadi et al., 2018a). ColV secreted by MuSCs acts
via an autocrine mechanism by binding to calcitonin receptor

(Calcr), a G protein-coupled receptor (GPCR) long known to be a
marker of quiescent MuSCs (Baghdadi et al., 2018a; Fukada et al.,
2007). Conditional mutation ofCol5a1 orCalcr inMuSCs results in
a phenotype similar to that of loss-of-function mutations of the
Notch pathway (Baghdadi et al., 2018a; Yamaguchi et al., 2015).
Calcr signals to maintain quiescence via generation of cAMP, which
activates protein kinase A. Protein kinase A in turn stimulates
activity of the Lats1 and Lats2 protein kinases, which phosphorylate
the transcriptional regulator Yap1, preventing its translocation to the
nucleus, where it promotes MuSC activation (Zhang et al., 2019).
Notch signaling also drives expression of miR-708, a microRNA
that targets tensin 3, a focal adhesion protein that inhibits migration
of MuSCs and stabilizes their retention in the immediate niche
(Baghdadi et al., 2018b).

Wnt4 is another myofiber-derived quiescence-promoting factor.
Myofibers secrete Wnt4, which stimulates a non-canonical Wnt
signaling pathway in MuSCs that involves activation of the
small GTPase RhoA, ultimately repressing expression of Yap1 by
mechanisms that are not yet clear (Eliazer et al., 2019). The Wnt4–
RhoA signaling axis is also important for retention ofMuSCs within
the immediate niche, as a high percentage of MuSCs deprived
of Wnt4 or RhoA are found in the interstitial space outside the
basal lamina and in between myofibers. Accordingly, Wnt4–RhoA
signaling might impact MuSC adhesion within the niche. Consistent
with this, MuSCs deprived of myofiber-derived Wnt4 have reduced
levels of phosphorylated focal adhesion kinase, a target of integrin
signaling, which is critical for basal lamina adhesion (Eliazer et al.,
2019).

The cell surface receptor Gpr116 (also known as Adgrf5) has
recently been reported to promote MuSC quiescence (Sénéchal et al.,
2022). Gpr116 is a member of the adhesion GPCR subfamily; these
are seven-transmembrane receptors with very long N-terminal
ectodomains that can bind ECM proteins (Vizurraga et al., 2020).
The N-terminal region is also subject to autoproteolysis, exposing a
short peptide sequence, the so-called Stachel peptide, that acts as a
signaling ligand for the receptor (Vizurraga et al., 2020). Genetic
removal of Gpr116 from adult MuSCs leads to a break in quiescence
and entry into the cell cycle, resulting in slow attrition ofMuSCs; here,
loss ofGpr116-nullMuSCs occurs over 6 to 12 months, as opposed to
just a few weeks observed for various Notch pathway mutants
(Bjornson et al., 2012; Eliazer et al., 2020; Mourikis et al., 2012;
Sénéchal et al., 2022; Yamaguchi et al., 2015). Treatment of MuSCs
with Gpr116 Stachel peptide stimulates a signaling pathway whereby
the GPCR regulator and signal transducer β-arrestin translocates to the
nucleus and associates with the transcription factor Creb1 to promote
expression of quiescence-associated genes, including Pax7, the cell
cycle inhibitor p27 (also known as Cdkn1b) and Gpr116 itself
(Sénéchal et al., 2022). Many adhesion GPCRs are regulated by
binding to components of the ECM (Vizurraga et al., 2020), and
identifying whether this plays a role in Gpr116 action in MuSCs, and
if so, which ECM factors are involved, will be important.

Quiescent MuSCs express multiple receptor tyrosine kinases
(RTKs), including the hepatocyte growth factor receptor (Met; also
known as hepatocyte growth factor receptor), fibroblast growth
factor receptors (FGFRs) and epidermal growth factor receptor
(EGFR) (Wang et al., 2019; Webster and Fan, 2013; Yablonka-
Reuveni et al., 2015). It appears that these receptors have only a
minor role in homeostatic maintenance of quiescence, but they are
important for timely activation, proliferation and migration of
MuSCs following injury. A similar situation appears to be true for
Hedgehog (Hh) pathway signaling (Brun et al., 2022; Cruz-Migoni
et al., 2019 preprint; Jaafar Marican et al., 2016; Palla et al., 2022).
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Quiescent MuSCs express components of the Hh signaling
machinery, and they possess a primary cilium, an organelle
required for both the repressive state of the pathway in the
absence of Hh ligand and the activated state in the presence of ligand
(Gigante and Caspary, 2020). In quiescent MuSCs, Gli3 is
phosphorylated and processed into a repressor form at the primary
cilium, leading to repression of Hh pathway target genes and
maintenance of the quiescent state (Brun et al., 2022). In contrast,
activation of Hh signaling might be important during regeneration.
Interestingly, aberrant regulation of RTK and Hh pathways
underlies some of the reduction in stem cell activity observed in
aged mice of ∼2 years of age (Bernet et al., 2014; Chakkalakal
et al., 2012; Palla et al., 2022). Finally, quiescent MuSCs express
syndecan-3 and syndecan-4, transmembrane cell surface proteins
that serve as coreceptors and regulators of Notch, RTKs, Wnt and
additional signaling pathways (Bentzinger et al., 2013; Cornelison
et al., 2001; Pisconti et al., 2012). Syndecan-3 and syndecan-4
provide non-redundant and complex functions to MuSCs in vivo,
including regulation of quiescence, activation and regeneration, but
the relative importance of the various pathways syndecans regulate
during these events is not clear (Cornelison et al., 2004; Pisconti
et al., 2016).

Other niche cells and factors
Multiple cell types reside near MuSCs, but outside the basal lamina
in the interstitium between myofibers; these include fibroadipogenic
progenitors (FAPs), macrophages and cells associated with the
vasculature (Relaix et al., 2021) (see poster). Capillaries are found in
close proximity to most MuSCs, and several studies indicate that
MuSCs communicate with both endothelial cells (ECs) and pericytes
during muscle development and regeneration (Abou-Khalil et al.,
2009; Christov et al., 2007; Kostallari et al., 2015). MuSCs express
vascular endothelial growth factor A (VEGFA), whereas ECs express
VEGF receptors (Verma et al., 2018). MuSC-specific genetic
removal of VEGFA reduces the proximity between MuSCs and
blood vessels at homeostasis (Verma et al., 2018). A population of
MuSCs that appear to have themost quiescent stem cell-like character
were found to be in the closest proximity to blood vessels (Verma
et al., 2018). These results suggest that MuSCs help sculpt their own
niche by attracting and retaining local microvasculature, which in turn
contributes tomaintenance ofMuSC quiescence. The identities of the
vasculature-derived factors that promote MuSC quiescence are
unknown. It has been proposed that Notch ligands might be
provided to MuSCs by ECs (Verma et al., 2018), but, as discussed
above, the major source of these ligands appears to be the myofiber
(Eliazer et al., 2020; Verma et al., 2018).
In mice, the adult compliment of quiescent MuSCs is established

in the early postnatal period, up to 8 weeks after birth (Gattazzo
et al., 2020; White et al., 2010). During this time, a subset of
pericytes (cells embedded in the capillary basal lamina) secrete
angiopoietin-1 (Angpt1), whereas MuSC progenitor cells express
the Angpt1 receptor Tie2 (also known as Tek) (Kostallari et al.,
2015). Pericyte-derived Angpt1 promotes entry of MuSC
progenitors into quiescence, thereby participating in establishment
of the adult MuSC population (Kostallari et al., 2015). It is not
known whether sustained Angpt1–Tie2 signaling is required for
maintenance of quiescence of adult MuSCs, but if this is the case, it
could reflect a mechanism through which the microvasculature acts
in the MuSC niche to promote homeostatic stem cell properties.
In addition to cells associated with blood vessels, the muscle

interstitium also harbors multiple types of connective tissue cells,
including FAPs (Theret et al., 2021). It is well established that FAPs

communicate with MuSCs during muscle regeneration, and mice in
which FAPs have been selectively killed, display inefficient
regeneration (Murphy et al., 2011; Wosczyna et al., 2019). In the
absence of injury, loss of FAPs has little effect on muscle or MuSC
numbers in the short term (2 weeks), but by nine months results in
muscle atrophy (Wosczyna et al., 2019). This is accompanied by a
reduction in MuSC number, but it is not known whether this is
based on direct effects of FAPs on MuSCs or on muscle tissue more
generally.

In summary, the preceding discussion offers a view of the
complex relationship between MuSCs and the niche that sustains
their hallmark property at homeostasis – quiescence. Multiple
distinct niche cues are required for maintenance of quiescence,
including adhesion molecules and secreted factors derived from
several cell types.

Perspectives
As discussed here, during muscle homeostasis, the MuSC niche
provides polarized adhesion surfaces and multiple signaling factors
that are essential for the maintenance ofMuSC quiescence and long-
term preservation of the stem cell compartment. These observations
also raise several questions. First, why are so many different
pathways employed in the maintenance of quiescence, and yet why
is quiescence broken when individual pathways are genetically
removed? This points to only limited compensation between these
pathways, but it seems likely that the identified niche signals work
in an integrated fashion to maintain quiescence. If so, it is important
to probe how this is accomplished. Second, how many more
niche-derived signaling pathways that maintain quiescence remain
to be discovered, in addition to the many major adhesion and
signaling pathways already identified; how close are we to a
complete list? It is highly likely that biomechanical cues derived
from the niche will be important regulators of MuSC behavior,
but little is known of how this occurs (Krauss and Kann, 2023).
Another important issue is how quiescence-promoting pathways
are downregulated or overridden during injury-stimulated MuSC
activation. Thus far, mouse genetic approaches have been critical for
the identification of MuSC niche factors and the mechanisms by
which they exert their effects. More recently, ex vivo preparations
that accurately replicate critical features of MuSC quiescence are
being developed (Jacques et al., 2022; Quarta et al., 2016), which
should provide more efficient means to address the questions posed
here. A complete understanding of how the niche maintains
homeostatic MuSC behavior is relevant to the potential use of
MuSCs for cell therapies in diseases such as Duchenne muscular
dystrophy. In mice, freshly isolated MuSCs retain aspects of the
quiescent phenotype and engraft efficiently into injured muscles,
whereas their cultured myoblast progeny only do so inefficiently
(Montarras et al., 2005; Sacco et al., 2008). Understanding how to
maintain the features of quiescence that permit engraftment,
especially those from niche-derived signals, could therefore pay
dividends in translational settings.
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High-resolution poster and poster panels
A high-resolution version of the poster and individual poster panels are available for
downloading at https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.
261200#supplementary-data.
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