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Summary
Skeletal muscle fibres are very large and elongated. In response to excitation there must be a rapid and uniform release of Ca2+

throughout for contraction. To ensure a uniform spread of excitation throughout the fibre to all the Ca2+ release sites, the muscle

internalizes the plasma membrane, to form the tubular (t-) system. Hence the t-system forms a complex and dense network throughout
the fibre that is responsible for excitation–contraction coupling and other signalling mechanisms. However, we currently do not have a
very detailed view of this membrane network because of limitations in previously used imaging techniques to visualize it. In this study

we serially imaged fluorescent dye trapped in the t-system of fibres from rat and toad muscle using the confocal microscope, and
deconvolved and reconstructed these images to produce the first three-dimensional reconstructions of large volumes of the vertebrate t-
system. These images showed complex arrangements of tubules that have not been described previously and also allowed the association

of the t-system with cellular organelles to be visualized. There was a high density of tubules close to the nuclear envelope because of the
close and parallel alignment of the long axes of the myofibrils and the nuclei. Furthermore local fluorescence intensity variations from
sub-resolution tubules were converted to tubule diameters. Mean diameters of tubules were 85.966.6 and 91.268.2 nm, from rat and

toad muscle under isotonic conditions, respectively. Under osmotic stress the distribution of tubular diameters shifted significantly in
toad muscle only, with change specifically occurring in the transverse but not longitudinal tubules.
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Introduction
The tubular (t-) system of skeletal muscle is an internalization of

the plasma membrane and remains continuous with the
extracellular space. This membrane system reaches the Ca2+

release sites on the repeating contractile unit of the fibre, the
sarcomere. This arrangement effectively solves a surface area to

volume problem for the fibre, allowing the fast and uniform
propagation of excitation to these sites virtually simultaneously,
reducing the delay to Ca2+ release activation to the briefest

possible time (Melzer et al., 1995). There are several obstacles to
the t-system forming the required network for this function. In the
fibre there are densely packed myofibrils that are not always

aligned. In addition there are membrane bound organelles that the
t-system maintains a close spatial association with, such as the
sarcoplasmic reticulum (SR) at each sarcomere, or otherwise

navigate around, such as nuclei and mitochondria. The t-system
must also maintain its integrity during contraction and stretching
of the muscle so that muscle function is not compromised.
Skeletal muscle has evolved a dense and highly structured t-

system membrane network to achieve this.

The t-system network primarily consists of transverse tubules
that extend transversely along the A–I boundary of the sarcomere

in mammals (Eisenberg and Kuda, 1975; Eisenberg and Kuda,
1976; Franzini-Armstrong et al., 1988) or z-lines in other
vertebrate muscle (Peachey, 1965; Eisenberg and Eisenberg,

1968; Franzini-Armstrong et al., 1975). Thus mammalian skeletal
muscle t-system is distinguished from that of other vertebrates by
having two compared to one transverse tubule per sarcomere. In

each case the transverse tubule docks with the terminal cisternae
of the SR at these sites on the sarcomere. Infrequently, transverse

tubules are connected by longitudinal tubules and at junctions of
misaligned myofibrils where the t-system realigns itself with
tubules that in an array form helicoid structures (Peachey and
Eisenberg, 1978; Launikonis and Stephenson, 2004; Edwards and

Launikonis, 2008).

Because the t-system maintains an extracellular–intercellular
interface throughout the fibre and the normal separation of

charges, all tubule membranes are excitable. Action potentials
can propagate solely within this network for long distances
(Posterino et al., 2000; Edwards et al., 2012) while its lumen

restricts the movement of solutes along the long axis of the fibre
(Edwards and Launikonis, 2008). The latter property underscores
the role of the t-system in compartmentalizing its luminal solutes

that would otherwise affect its excitability. The t-system is also a
dynamic structure, changing its volume or vacuolating with
osmotic stress or other factors (Krolenko et al., 1995; Krolenko
and Lucy, 2001; Launikonis and Stephenson, 2002a; Launikonis

and Stephenson, 2004).

What we know of the t-system structure is mostly from
imaging of fixed fibres by electron microscopy (EM) or lower

resolution fluorescence imaging. A limitation of thin-section EM
is shrinkage of fixed and dehydrated preparations, which under-
estimate spatial dimensions (Eisenberg et al., 1974) and exclude

the possibility of observing dynamic changes in the t-system.
Optical studies could measure fluorescent dyes in the
extracellular space of isolated and functional muscle fibres.
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These studies consistently calculated larger spatial dimensions of

the t-system compared to EM studies (Endo, 1964; Soeller and

Cannell, 1999; Launikonis and Stephenson, 2002b). Furthermore

the advantage of imaging muscle cells with an applied

extracellular dye was reconstructions of large volumes of the t-

system were made possible because of the imaging range of

fluorescence microscopes, as performed in cardiomyocyte

(Soeller and Cannell, 1999). Large volume 3D reconstructions

using fluorescence microscopy provides contrasting and

complimentary information compared to the 3D reconstructions

from EM, which are limited to working within much smaller

volumes (Peachey and Eisenberg, 1978; Wagenknecht et al.,

2002).

Fluorescence optical imaging of the skeletal muscle t-system

has been performed using techniques of dye-trapping facilitated

by mechanical skinning (Edwards et al., 2012). Trapping dye in

the t-system of skinned fibres offers the advantage for optical

microscopy of removing an otherwise thick layer of fluorescence

from around the fibre, which bleeds into the optical layers of

intact fibre preparations (Lamb et al., 1995; Launikonis and

Stephenson, 2002a). However a problem that has not been

addressed by optical imaging studies is the asymmetric blurring

of the sub-resolution tubular structures and the challenge in

calibrating intensity information from the local sub-resolution

tubule volumes of such images (Soeller and Cannell, 1999). In

the present study, we have combined fluorescent-dye trapping in

the sealed t-system with image analysis protocols used previously

(Soeller and Cannell, 1999) that we have improved upon here.

Confocal imaging and image deconvolution of this study has
produced the first 3D reconstructions of the t-system of

functional skeletal muscle fibres. This technique also allows
the t-system to be viewed with associated organelles on an
appropriate scale while also allowing determination of local

tubular spatial dimensions (to a detection threshold of 40 nm),
which we found to vary along tubules and change with osmotic

stress.

Results
Morphology of the mammalian tubular system

Trapping of membrane-impermeable fluorescent probes within
the t-system by the means of mechanical skinning was used as the

primary approach for imaging the t-system in skeletal muscle
fibres. Fluo-5N was used as the preferred volumetric marker of
the t-system because it is a small molecule that diffuses easily

into all compartments of the t-system and the green emission
(,530 nm) provides superior resolution in imaging compared to
other probes with longer emission wavelengths. Z-stacks of

longitudinal confocal sections of skinned fibres with 5 mM Fluo-
5N salt trapped within the sealed t-system were obtained. Fig. 1A

shows a single confocal section from a deconvolved image stack
of an extensor digitorum longus (EDL) fibre from an adult rat. As
expected, doublets of fine transverse tubules were observed in

sarcomeric periodicity.

Fig. 1B illustrates a surface-rendered reconstruction of a 3D
skeleton constructed from the Fluo-5N fluorescence in a

38620610 mm volume of the fibre shown in A. The periodic

Fig. 1. Reconstruction of a 3D skeleton of the

mammalian skeletal muscle t-system. (A) A

single confocal section of a mechanically skinned

adult rat EDL fibre with 5 mM Fluo-5N trapped

within the t-system. Scale bar: 6 mm. (B) 3D

surface rendered skeleton of the t-system

reconstructed from a 38620610 mm deconvolved

confocal image volume illustrates the connectivity

of the mammalian t-system across the width of the

fibre. Note that the rows of tubule doublets are

clearer in some regions of the 3D skeleton than

others because of angled alignment of sarcomeres

across the width of the fibre. Scale bar: 5 mm.

(C) The magnified view of a 668610 mm sub-

volume of the skeleton. Also indicated are the

longitudinal tubules extending across the A-band

(arrowheads) and I band (asterisks). Scale bar: 2

mm. (D) A histogram of the percentage of tubules

as a function of the directional angle in relation to

the transverse plane of the fibre indicates 4.9% of

tubules extend longitudinally either across the A-

band or the I-band.

Skeletal muscle t-system in 3D 4049
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morphology of tubule doublets flanking each z-line was apparent

in the surface-rendered skeleton. However, the strength of the

periodicity observed was highly dependent on the tilt angle of the

volume, due to the non-planar configuration of z-lines (Peachey

and Eisenberg, 1978). A notable subset of tubules appeared to

extend in the longitudinal direction, further contributing to the

dense mesh-like appearance of the t-system skeleton. Fig. 1C

illustrates a higher magnification of a 668610 mm sub-volume of

the skeleton shown in B. This view of the t-system reveals a more

complex geometry of the longitudinal tubules than previously

reported. Tubules extending across the A-band (arrowheads)

could join adjacent transverse tubules and others were blind-

ended. Shorter longitudinal tubules extending across the I-band

were also detected (asterisk). The directionality analysis of the

skeletons is shown as a histogram of the percentage of tubular

connections as a function of their angle relative to the transverse

plane. In addition to the large primary peak at 0˚ relating to

tubules extending transversely at the A–I boundaries, a secondary

peak was observed at ,90 .̊ 15.8860.34% (mean 6 s.e.m.) of the

tubular connections extended between angles of 75˚ and 110˚
from the transverse plane of the fibre. This is illustrated by the

shaded bars of the histogram of the percentage of tubules as a

function of their relative directionality angle shown in Fig. 1D.

Analysis of manually selected regions exclusively consisting of

transverse tubules reported no secondary peak at ,90 ,̊ although

a uniform tubule distribution between 75˚and 110˚accounted for

,10.98% of all tubules in these regions. The fraction of tubules

extending in the longitudinal direction can be corrected by

subtracting this uniformly distributed baseline from the overall

distribution of tubule directionality between the angles of 75˚and

110˚ (supplementary material Fig. S2). Therefore, the corrected

percentage of tubules identified as ‘longitudinal’ was ,4.9%.

Morphology of the amphibian tubular system

The same approach was used for imaging and reconstructing the

tubular system of toad iliofibularis fibres. Fig. 2A is a single

confocal image from a z-series of confocal images of a

mechanically skinned fibre from toad with 5 mM Fluo-5N

trapped within the t-system. In contrast to the t-system in rat EDL

muscle, the toad t-system consisted of a single row of tubules

extending transversely at each z-line, as expected (Eisenberg and

Eisenberg, 1968). Similar to the rat t-system, tubules extending

longitudinally were observed. Most longitudinal tubules spanned

the entire length of the sarcomere to connect with flanking

transverse tubules while notably some were much shorter and

blind-ended (arrowheads). A distinct feature of the toad t-system

was regions within the fibres containing high densities of

longitudinal tubules that extended across several sarcomeres

bridging many transverse tubules at consecutive z-lines. These

‘bundles’ of longitudinal tubules were typically observed for

lengths of 10–30 sarcomeres and were not exclusive to regions of

sarcomere misregistration [which usually gives rise to oblique

branching of the transverse tubules (Launikonis and Stephenson,

2004)]. An example is indicated by asterisks in a surface-

rendered 3D skeleton of a 3462667 mm region in a toad fibre

(Fig. 2B). The magnified view of the skeleton (Fig. 2C) shows

that longitudinal tubules in these fibres may have complex

tortuosity or angles. The histogram of the percentage of tubules

plotted as a function of the directional angle relative to the

transverse plane (Fig. 2D) shows a large primary peak near 0˚

Fig. 2. Reconstruction of a 3D skeleton of the

amphibian skeletal t-system. (A) A single

confocal section of a mechanically skinned toad

iliofibularis fibre with 10 mM Fluo-5N trapped

within the t-system. Scale bar: 5 mm. (B) A 3D

surface rendered skeleton of the toad t-system

reconstructed from a 3462667 mm deconvolved

confocal image volume illustrating the 3D

geometry of tubules. Regions containing a high

density of longitudinal tubules (asterisk) were

observed. Some of the longitudinal tubules

(arrowheads) also appeared to be blind-ended at

one end. Scale bar: 4 mm. (C) The magnified view

of a 96566 mm sub-volume of the 3D skeleton

further illustrates the geometries of the

longitudinal tubules and transverse tubules seen at

the z-lines. Scale bar: 2 mm. (D) Directionality

analysis illustrated by a histogram of the

percentage of tubules as a function of the angle

relative to the transverse plane shows that a

minimum of 2.2% of tubules of the t-system were

longitudinal tubules.

Journal of Cell Science 126 (17)4050
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and a smaller secondary peak at 90 .̊ The secondary peak

appeared broader than that observed in the same analysis in rat

fibres (Fig. 1D). It comprises 12.6860.27% of tubules between

the angles of 75˚ and 110˚ (shaded bars). Analysis of regions

devoid of longitudinal connections still detected ,10.5% of all

tubular connections between these angles. Therefore, the

corrected percentage of tubules identified as ‘longitudinal’ was

,2.2%.

Spatial association between the t-system and the nucleus

Nuclei of mechanically skinned fibres were stained with

propidium iodide (PI) in order to visualize the tubular

geometries in reference to nuclei. Fig. 3A shows the lateral

view of the surface of a rat fibre. The peripherally located nuclei

(surface rendered in transparent blue) appear to be exposed on its

lateral surface in the mechanically skinned fibre while the dense

tubular network (skeleton shown in orange) extends around and

medially to the nuclei. The tubules observed near the surface of

the fibre appeared to be denser and less organized into transverse

rows, bearing the structural hallmarks of the sub-sarcolemmal

tubular network (SSTN) (Jayasinghe et al., 2013). However, in

the lateral view of the 10 mm deep volume it was also possible to

view the double rows of transverse tubules (arrowheads). The x–z

view of the same volume across a 5 mm deep slice is shown in

Fig. 3B. The peripherally located nuclei appeared to be partially

chaliced by the t-system around its medial side. Overlapping

loops observed in the t-system skeleton in regions around the

nucleus illustrate t-tubules wrapping around the myofibrils

running orthogonally to the image plane.

In longitudinal view of nuclei in toad fibres (Fig. 3C), a dense

mesh of tubules appears to closely wrap around the centrally

located nuclei. The nuclear spaces are among the largest regions

within the myoplasm devoid of tubules (Fig. 3D). Similar to the

x–z view in the mammalian fibres, loops of t-tubules outline the

myofibrils. The densities of tubules at a given distance from the

edge of each nucleus (regions of PI labelling) were measured

using a 3D Euclidean distance map of the cytoplasmic space. In

plots of the densities of the tubules as a function of distance to the

edge of the PI stained nuclei in rat and toad fibres, an increase in

the tubular density was observed between 250 and 450 nm

(Fig. 3E and Fig. 3F, respectively). PI stains DNA, not the entire

nucleus (LePecq and Paoletti, 1967), and so probably under-

estimates the true boundary of this organelle (i.e. nuclear

envelope). The distance between the tubules and the nuclear

envelope can therefore be assumed to be shorter, which probably

form a junction (Peachey, 1965). The dense packing of tubules at

the nuclear envelope is a result of several myofibrils encasing the

nucleus. The dense cage of tubules could either fully

Fig. 3. Spatial relationship between the t-system

and nuclei of mammalian and amphibian skeletal

muscle. (A) The longitudinal lateral view of a

peripherally located nucleus vitalized with PI (blue)

and the skeleton of the t-system (orange) in a

mechanically skinned rat EDL fibre. (B) The

orthogonal (transverse view) of a 5-mm-deep volume

illustrates that the nucleus is closely surrounded by

tubules that extend deeper into the fibre. Arrowheads

indicate previously reported sub-sarcolemmal tubules

that extend near the periphery of the fibre. (C) The

longitudinal view of a centrally located nucleus (blue)

and the skeleton of the t-system (green) in the toad

illustrates the dense tubular mesh wrapping around the

nuclei. (D) The orthogonal (transverse) view of a 5-

mm-deep volume of the skeleton highlights the

cytoplasmic space devoid of tubules, occupied by the

nucleus. (E,F) Analysis of the density of tubules as a

function of the Euclidean distance from the edge of

the region of PI labelling in rat (E) and toad (F) fibres

indicate a near-uniform density of tubules in

cytoplasmic regions further than ,0.75 mm away. In

both species, an ,25–50% increase in the tubule

densities was observed between 0.2 and 0.7 mm from

the edge of the PI staining. Scale bars: 5 mm.

Skeletal muscle t-system in 3D 4051
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circumscribe the nucleus, as in toad fibre preparations (Fig. 3D),

or form a partial ‘basket’ that lines the medial face of the nucleus,

as in the rat fibre preparations (Fig. 3B).

Estimating tubule diameters and reconstructing t-

system ultrastructure

The 3D skeletons constructed out of confocal image stacks of

Fluo-5N were used for tracing the local intensities within the t-

system. Simultaneous imaging of Fluo-5N trapped within the t-

system and lipophilic membrane dye di-4-ANEPPS staining the

tubule membranes allowed us to establish that the local Fluo-5N

fluorescence intensities along the tubular skeleton were a function

of the local tubular volume. See supplementary material Fig. S3.

In image volumes analysed, vacuolated tubules were observed

at low abundance. Examining the intensity profile across such

vacuolated tubules [typically of full width at half maximum

(FWHM) .400 nm] allowed us to study the image properties of

tubules that were above the diffraction-limited resolution of the

microscope (supplementary material Fig. S4). Using the Poisson

distribution of noise estimated by examining vacuolated tubules

in each data volume and a measured point spread function (PSF)

of the microscope, we simulated the confocal image of an in-

plane tubule of variable diameter (d), as illustrated by the

examples in Fig. 4A. The image intensity along the midline of

the tubule appeared to increase steadily with an increase in the

tubular d, although when a non-zero angle between the tubule

orientation and the image plane was introduced to the simulation

(data not shown), tubules with the same d appeared at higher

intensities. This observation was consistent with the previous

observation that transverse tubules running orthogonally to the

image plane appeared brighter in the confocal image (Jayasinghe

et al., 2009), resulting from the interaction between the tubule

geometry and the asymmetric confocal PSF, which is elongated

in the axial dimension (Fig. 4B). The intensity bias towards the

orientation was corrected by re-blurring the confocal image

volumes to achieve an effectively spherical PSF (Fig. 4C) as

proposed by Soeller and Cannell (Soeller and Cannell, 1999).

The mean normalized intensity above background along the

centre line of the tubule (equivalent to its skeleton) is shown as a

function of its diameter d in Fig. 4D. Tubules narrower than

40 nm resulted in no detectable fluorescence above background

while those between ,40 and ,1000 nm showed a steep, near-

linear increase in intensity following the re-blurring of the data.

The shape of this curve, constructed for each data volume

therefore was used for estimating the mean tubule width at each

point along the t-system skeleton. The mean width values in

Fig. 4. Simulation of the relationship between t-

tubule diameter and the convolved image, and

estimation of local tubule diameters of the t-

systems in living skeletal muscle fibres. (A) A

series of simulated images of t-tubules of varying

diameters (d). (B,C) The point spread function of the

imaging system is elongated in the z-dimension

compared to x- and y-dimensions, which accentuates

the intensity of tubules whose orientations have a

non-zero vertical component (B). This is overcome

by convolving the 3D confocal data volumes to

effectively achieve an approximate symmetry in x-,

y- and z-dimensions (C). Scale bar for B and C: 0.5

mm. (D) A plot showing the normalized mean

intensity above background measured along the

centre line of the t-tubule of the confocal

fluorescence image following the re-blurring

(circles). Note that the narrowest detectable t-tubule

corresponds to a diameter of ,40 nm as shown in

the magnified region of the plot (inset).

(E,F) maximum-intensity projections (2-mm-deep)

of 3D t-system skeletons of a rat EDL fibre (E) and a

toad iliofibularis fibre (F), colour-coded for the

estimated mean local tubular diameters.

(G,H) Histograms showing the percentage of tubules

as a function of the mean local diameter in rat

(G) and toad (H) fibres. The range and mean

diameters are similar (rat and toad fibres were

85.4614.4 nm and 91.2620.1 nm, respectively;

means 6 s.d.). Scale bars for E and F: 2 mm.

Journal of Cell Science 126 (17)4052
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regions of the skeleton containing joints, sharp bends or blind

ends were corrected to remove the dependence of the intensity on
the local tubule geometry as shown previously (Soeller and

Cannell, 1999). See supplementary material Fig. S5 for
simulations. Image volumes no deeper than 5 mm were

analysed for estimating tubule diameters to minimize the effect

of time-dependent bleaching and spherical aberration on the
depth-dependent intensity in the confocal z-stacks.

Panels E and F of Fig. 4 illustrate 2D z-projections of the rat
and toad t-system skeletons across a 2 mm deep volume, colour-

coded for the estimated local diameters of the tubules
respectively. In these longitudinal views of the skeletons,

tubule diameters were most commonly observed in the range of

,70–120 nm in both rat and toad fibres. In both species,
longitudinal tubules (extending parallel to the long axes of the

fibres, indicated by the white arrows) reported tubule diameters
similar to that of transverse tubules. Fig. 4G,H are histograms

illustrating the percentage of tubules as a function of the

estimated mean local tubule diameters in rat and toad fibres,
respectively. The tubule diameters followed an approximately

Gaussian distribution in both species, with similar mean tubule
diameters for rat and toad muscle (85.464.9 nm and

91.268.9 nm respectively). However, ,30% of toad t-tubules

were found with diameters larger than 100 nm. This was a larger
fraction than that observed in rat fibres (,15%).

Effect of cytoplasmic osmolarity on tubular diameters

Previous work has shown that the sealed t-system can change

volume in response to changes in osmolarity with minimal change
to dye concentration in the optical slice or tubular Ca2+ for
osmolalities .200 mosmol/kg (Launikonis and Stephenson,
2004). The influx or efflux of water to or from the t-system of

skinned fibres also results in a proportional change in ionic strength
within this sealed compartment, which exponentially affects the
fluorescence intensity of Fluo-5N trapped within the t-system (see

supplementary material Fig. S7) (Launikonis and Stephenson,
2004). The fluorescence intensity of tubules observed in confocal
z-stacks was adjusted to correct for its non-linear dependence on

the ionic strength. This provided a useful assay for examining the
variation in tubule diameters in response to osmotic stress.

The histogram in Fig. 5A (left) shows the percentage of
tubules as a function of the estimated diameters of tubules in rat

fibres incubated in iso-osmotic internal solution (280 mosmol/
kg). A near-Gaussian distribution with a mean of ,86 nm was
observed in the estimated tubule diameters. The cytoplasmic

volume fraction occupied by the t-system (calculated using the
local tubule diameters and lengths) was estimated to be ,0.89%
with a mean length of ,182 nm tubules detected per 1 fl of

cytoplasm. Little detectable change in the mean tubule diameter
of rat fibres was observed between 1000 mosmol/kg (hyper-
osmotic) and 200 mosmol/kg (hypo-osmotic) internal solutions

Fig. 5. The effect of osmolarity on the tubule diameters in the rat and toad t-system. (A–C) Histograms showing the distributions of estimated mean tubule

diameter of mechanically skinned rat EDL fibres that were incubated in (A) isosmotic (280 mosmol/kg); (B) hypo-osmotic (200 mosmol/kg); (C) hyperosmotic

(1000 mosmol/kg) internal solutions are shown on the left. 2-mm-deep projections of the colour-coded maps of the local tubule diameters in the respective

osmolarity conditions are shown on the right. (D–F) Histograms for the estimated mean tubule diameter in skinned toad fibres incubated in (D) isotonic

255 mosmol/kg, (E) hypotonic 200 mosmol/kg and (F) hypertonic 1000 mosmol/kg internal solutions for 15 minutes. The colour-coded maps of the local tubule

diameters in isotonic, hypertonic and hypertonic conditions, shown on the right, illustrate that changes in local diameter in the transverse tubules were typically

larger than those in the longitudinal tubules (arrowheads). Scale bars: 2 mm. Colour scale illustrates estimated mean tubule widths in nm.

Skeletal muscle t-system in 3D 4053
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tested (Fig. 5B,C, left). Therefore, the fractional cytoplasmic

volumes (,0.92% and ,0.95%, respectively) and mean density

(tubule lengths of ,140 nm and ,164 nm per 1 fl of cytoplasm,

respectively) remained unaltered. This was reflected in the lack

of observable shift in colour in the colour-coded maps of the

mean tubule widths (Fig. 5A–C, right). See Table 1 for summary

of measurements in different osmotic conditions.

As above, the distribution of tubule widths in toad fibres

followed a similar mean (,91 nm and s520.1 nm), shown

in Fig. 5D (left). Tubules detected at a density of 420 nm per 1 fl of

cytoplasm occupied ,1.67% of the fibre volume. When fibres

were transferred to a hyper-osmotic internal solution

(1000 mosmol/kg), a clear left-shift and a positive-skewing in

the distribution of tubule diameters were observed (Fig. 5E, left).

The mean tubule diameter in this hyper-osmotic solution dropped

by ,13% (to 79.6 nm) while the standard deviation remained

unchanged (19.9 nm). However, the detected density of tubules

also dropped to ,309 nm per per 1 fl of cytoplasm, suggesting

that ,26% of the tubules that were detectable in the isosmotic

conditions had shrunk below the size threshold for detection

simulated in Fig. 4D. Conversely, an ,7% dilatation of the mean

tubule diameter (to 97.5 nm) resulted from bathing the fibre in a

hypo-osmotic internal solution (200 mosmol/kg). This was

accompanied by a broadening of the percentage distribution of

diameters (Fig. 5F, left), indicated by an ,15% increase in s. This

expansion of mean tubule diameter corresponded to an ,40%

increase in the volume occupied by the t-system in the cytoplasm

(up to ,2.29%). However, the detected tubule density increased

only by ,13% (to ,478 nm per per 1 fl of cytoplasm). In

reference to the colour-coded 2D map reporting estimated local

tubule diameters in iso-osmotic conditions (Fig. 5D, right), a clear

drop in the local diameters in hyper-osmotic conditions (Fig. 5E,

right) was observed. Notably, regions of longitudinal tubules

appeared to retain their diameters (arrowheads). Dilatation in some

of the transverse tubules beyond widths of 120 nm under hypo-

osmotic conditions was observed while the diameters of

longitudinal tubules remained largely unaltered (Fig. 5F, right).

Reconstructing the geometrically realistic t-system

The skeletonization of the 3D confocal data has allowed us to

reconstruct and visualize the connectivity of the overall t-system

in rat and toad fibres (Figs 1, 2). However, in the experiments

and analysis of estimating local tubule widths, a considerable

variation in the local region was observed. These measurements

were therefore useful for reconstructing the realistic micro-

architecture of the t-system by dilating each voxel of the skeleton

with a structuring element (SE). Two approaches of rendering

tubule image volumes are illustrated in Fig. 6. In the first

approach, a symmetric SE was used to dilate the skeleton to a

diameter equal to the estimated mean tubule width d (Fig. 6A).

Fig. 6B,C illustrate tilted views of the t-systems reconstructed

from rat and toad fibres respectively using this approach. These

reconstructions yielded both transverse and longitudinal tubules

with circular cross-sectional profiles. The transverse tubular

networks near the z-lines were observed with great resemblance

to the polygonal shapes of t-tubule loops described previously in

rat sternomastoid muscle (Franzini-Armstrong and Peachey,

1982). A second rendering approach was used to achieve a

more realistic morphology where all transverse tubules were

flattened at an aspect ratio of 3.5, assuming that most transverse

tubules were found in triads (Franzini-Armstrong et al., 1999)

resembling the morphology of a flattened cylinder. This was

achieved by using a SE that dilated the t-system skeleton up to a

longitudinal width of 0.446d and transverse width of 1.546d.

Tilted views of the t-system reconstructions from rat and toad

images are shown in Fig. 5E,F respectively.

Discussion
We have adapted a fluorescence imaging and image analysis

protocol previously used for cardiomyocytes (Soeller and

Cannell, 1999) for reconstructing the skeletal muscle t-system.

However, by trapping dye within the t-system of mechanically

skinned fibres, instead of maintaining intact fibres in a

physiological solution containing a fluorescence indicator

(Soeller and Cannell, 1999; Launikonis and Stephenson, 2002b)

we have been able to eliminate residual bath fluorescence and

obtain greater contrast (hence, greater sensitivity) in detecting

tubules that are typically ,3 times narrower than in cardiac

muscle. The combination of these techniques has allowed us to

reconstruct the vertebrate t-system in 3D and also quantitatively

determine tubular dimensions for the first time. Furthermore, our

large volume reconstructions allow the association between the t-

system and the nucleus to be described in greater detail than

previous imaging studies.

3D ultrastructure of the tubular network

Large areas within the fibres reconstructed here have enabled us

to view the t-system network in 3D. The majority of tubules were

transverse tubules that wrapped around myofibrils and a smaller

fraction of tubules were observed to be extending longitudinally,

parallel to the myofibrils. The loops of transverse tubules in the

reconstructions were not circular (Fig. 3) and closely resemble

Table 1. Tubular properties under varying osmolarities in rat and toad skinned fibres estimated from rendered confocal volumes

Osmolarities

200 mosmol/kg 255 mosmol/kg 280 mosmol/kg 1000 mosmol/kg n (fibres) N (animals)

Estimated tubular diameters (nm) Rat 86.366.0 – 85.966.6 82.265.7 6 2
Toad 97.567.4* 91.268.2* – 72.668.0* 6 3

Estimated percentage of fibre volume
occupied by tubules

Rat 0.9560.09 – 0.8960.09 0.9260.14 6 2

Toad 2.2960.11** 1.6760.10** – 0.6960.09** 6 3
Estimated densities of detected tubules

(nm/fl)
Rat 164621 – 182634 140642 6 2

Toad 309630 420654 *** – 309614 6 3

All values are means 6 s.e.m. Asterisks indicate statistical significance at P,0.05 for each measurement: *, ** and ***, respectively and d.f.515.
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the ‘polygonal’ shapes observed in transverse views of skeletal

muscle fibres obtained through Golgi stained thick-section EM

(Franzini-Armstrong and Peachey, 1981; Franzini-Armstrong and

Peachey, 1982). Directionality analyses of the reconstructed t-

system indicated that mammalian skeletal muscle contained

approximately twice the fraction of longitudinal tubules (,5%)

compared to amphibian skeletal muscle fibres (2.2%). However if

we apply a factor of 2 against the number of longitudinal tubules

in rat and toad muscle to account for the difference in transverse

tubule density per sarcomere (which defines the number of

longitudinal tubules), then the proportion of longitudinal tubules

will be about the same.

The directionality analysis revealed a broad peak in the tubule

angle at 0˚ (transverse plane) in both species analysed. This is a

likely result of the shallow angles of the sarcomeric alignment

that result in vernier formation (Huxley and Taylor, 1958) or

helicoid organization of transverse tubules (Peachey and

Eisenberg, 1978). These pseudo-oblique tubules [identified

previously as z-tubules (Edwards and Launikonis, 2008)] still

remain anchored to the z-line (toad) or the A–I junctions, as

apparent in the 3D examination of the skeletons.

Longitudinal tubule morphology revealed by 3D

reconstruction also showed features not previously resolved.

Longitudinal tubules could be blind ended and also showed

looping or curving around the long axis of sarcomeres in addition

to simple, straight connections between transverse tubules in both

taxa (Figs 1, 2). A pattern to the distribution of longitudinal

tubules in mammalian fibres was not obvious. However, within

the same volumes of amphibian fibres, there were clear areas

devoid of longitudinal tubules and contrasting dense areas of

longitudinal tubules that appear to run along this axis of the fibre

(Figs 1, 2). These dense volumes of longitudinal tubules would

make up the helicoidal structures that allows the t-system to link

across misregistered sarcomeres (Peachey and Eisenberg, 1978)

but as they also appeared across thicker axial sections, it is not

possible to suggest sarcomere misregistration was an underlying

cause. The ability of longitudinal tubules to swell or vacuolate

under conditions such as fatigue probably underlies a

physiological role in temporary storage of metabolites

(Lännergren et al., 2000; Edwards and Launikonis, 2008).

The nucleus and t-system

A distinct advantage of reconstructing muscle fibre membranes

using confocal microscopy is the visualization of the association

of membrane-bound compartments in large volumes. Here we

show that the t-system surrounds the nucleus at a high density

(Fig. 3). This high density of tubules around the nucleus is the

result of abutting myofibrils that run parallel to the long axis of

the nuclei. The transverse tubules (and sarcoplasmic reticulum,

SR) are simply brought into close proximity to the nuclear

envelope by the arrangement. In the reconstructions (Fig. 3), the

t-system of rat and toad fibres were observed to fully or partially

encase the nucleus. Transverse tubules in frog skeletal muscle

have been shown to form dyadic junctions with the nuclear

envelope, with the nuclear envelope also being described as

continuous with the SR (Peachey, 1965). The presence of t-

system junctions with SR and nuclear envelope suggest that EC

coupling and excitation-transcription coupling are active in this

microdomain. We would therefore expect that Ca2+ released from

SR during EC coupling influences Ca2+ levels inside the nuclear

envelope and nucleoplasm. A similar membrane architecture in

cardiac muscle at this site and its relevance to excitation-

transcription coupling has been described (Wu and Bers, 2006;

Wu et al., 2006; Escobar et al., 2011).

Measurements of tubule diameters

The large volume reconstructions of the t-system also allowed

determination of local tubular diameter, determined pixel by

pixel (Fig. 4). The volumetric sensitivity of fluo-5N trapped in

the t-system of skinned fibres was confirmed by simultaneous

Fig. 6. Visualization of geometrically realistic reconstructions of the rat and toad skeletal muscle t-systems. (A) Reconstructions used a structuring element that

dilated the local skeleton symmetrically (aspect ratio of 1.0) by a width equal to the estimated mean tubule width (d) as shown. (B,C) Pairs of tilted views of the

reconstructions in rat EDL fibres and toad iliofibularis fibres, respectively. (D) A more realistic morphology was achieved by dilating the skeleton of transverse

tubules asymmetrically (at 1.54d in the transverse plane and 0.44d longitudinally) to achieve an aspect ratio of 3.5. (E,F) Tilted views of the rat and toad t-systems

rendered assuming that all of the transverse tubules were maintained in a flattened morphology with an average cross-sectional aspect ratio of 3.5. Scale bars: 2 mm.
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measurements of a lipophilic dye (see supplementary material 
Fig. S3). This result also confirmed that the [Ca2+]t-sys was mostly 
uniform throughout the lumen of this structure. This new 
technique of determining tubular diameters offers a resolution 
in the order of nm and a detection threshold of ,40 nm, which 
will be applicable to many situations where the fine morphology 
of the muscle membranes may be changed, such as in training, 
disease and age.

The distribution of diameters showed a greater range in the 
amphibian than the mammalian muscle fibres but the average 
diameters was between 85 and 90 nm (Fig. 4; supplementary 
material Fig. S6). The amphibian fibres had many more tubules at 
larger diameters than the mammalian, which will have 
implications for tubular resistance and rates of action potential 
propagation within fibres (Hodgkin, 1954). Overall, the average 
cross-sectional dimensions of junctional and bare transverse 
tubules reported from thin-section EM (Rapoport et al., 1969; 
Dulhunty, 1984) are typically 50–60% smaller than the above 
estimates. A few considerations are noteworthy in connection to 
this discrepancy. 3D imaging of the t-system has eliminated the 
need for any assumptions that were required for determining the 
orientations of tubules and selecting images in thin-section EM 
analysis (Dulhunty, 1984). Recent super-resolution direct 
stochastic optical reconstruction microscopy (dSTORM) data 
with an in-plane resolution of ,30 nm have demonstrated that 
diameters of transverse tubules in rat EDL fibres fixed with 4%

paraformaldehyde are typically 90 nm in the longitudinal 
dimension (I. J. and Christian Soeller, unpublished data; 
supplementary material Fig. S6). The imaging of freshly 
mechanically skinned fibres also avoids any shrinkage 
associated with gluteraldehyde fixation and dehydration that 
could lead to under-estimating spatial measurements by ,12%
(Eisenberg et al., 1974). The larger tubule diameters estimated 
from the 3D confocal data could arise from micro-branching of 
tubules near junctions, reported previously in frog and toad 
muscle (Peachey and Schild, 1968). If branched tubules remain 
within close proximity of each other, skeletonization of such 
diffraction-limited data would detect these structures as a single 
tubule with a large local volume. However, subsequent EM 
studies of amphibian muscle have not reported this morphology 
(Eisenberg and Eisenberg 1968; Dulhunty, 1984), suggesting that 
these branches may not be as abundant as previously thought. It is 
also noteworthy that some EM measurements of t-tubule widths 
agree better with our estimates than the above reports. Cullen 
et al. estimated the transverse (flattened) width of the transverse 
tubules at the triad to be ,120 nm in rat EDL fibres. This 
measurement compares well with the flattened width of rat EDL 
transverse tubules in our experimental data that measure a mean 
flattened width of ,132 nm (Cullen et al., 1984). This is further 
clarified by dSTORM images that have a resolution of 30 nm that 
show transverse tubules with a resolved diameter of about 90 nm 
(supplementary material Fig. S6). The larger tubule diameters 
measured here are also unlikely to be the result of tubule swelling 
due to the osmotic pressure of any accumulating metabolic 
products within the sealed t-system. This is evident by the lack of 
further shrinkage when rat skinned fibres were exposed to 
solutions with greater osmolarities than 1000 mosmol/kg 
(Launikonis and Stephenson, 2004) and to a slightly larger t-

system volume determined from fluorescence measurements in 
intact fibres from rat (Launikonis and Stephenson, 2002b). No 
discrepancy was found between our measurements of the toad

t-system volume in skinned fibres (Table 1) and that previously
determined in intact fibres from toad (Launikonis and

Stephenson, 2002b). The discrepancy in rat may result from
our method not detecting all tubules or the combined error of the
methods.

An important test of this new technique is to observe tubular

diameter changes of rat and toad fibres in response to changes in
bathing solution osmolality. The sensitivity of the tubule widths
in amphibian skeletal muscle to changes in the osmolality has

been documented, as has the relative insensitivity of sealed t-
system of rat fibres (Launikonis and Stephenson, 2002b;
Launikonis and Stephenson, 2004). We observed a similar

response of the rat and toad sealed t-system to changes in
bathing solution osmolality using our tubular diameter detection
technique as that previously found by averaging all light
collected from t-system trapped dye within a confocal plane

(Launikonis and Stephenson, 2004).

Consistent with the non-linear response in the t-system volume
to changing osmolality, we observed a 7% increase in the tubule

diameter in toad fibres when osmolality was reduced by a mere
20% while only a 13% reduction in diameter was seen at an
osmolality ,300% above normal. Launikonis and Stephenson

(Launikonis and Stephenson, 2002b) observed a 30% increase in
the toad t-system volume in response to a 50% reduction in
osmolarity, which would correspond to a ,14% increase in the
mean tubule diameter, assuming there were no changes in tubular

length. Therefore, our measurements of tubule widths are well
within the expected range of tubule expansion. It is noteworthy
that the distribution of the tubule diameters in toad fibres loses its

bell-shape in the hypertonic conditions, suggesting that some
tubules may shrink beyond detection in confocal data. Therefore,
it is likely that the mean diameter of tubules under osmolalities

approaching 1000 mosmol/kg has been over-estimated in these
experiments. EM analyses of the transverse tubule morphologies
under varying extra-cellular NaCl concentrations have also

shown an expansion of the tubule widths along the longitudinal
axis (Rapoport et al., 1969) and suggest that the longitudinal
sides of the tubular membrane anchoring the junctions are
unlikely to be compliant (Rapoport, 1969). Therefore, it is likely

that a 7% increase in the mean tubule diameter in a 20%
hypotonic solution seen in the above experiments could translate
to ,14% expansion in the tubule width in the longitudinal

dimension.

Importantly, we are able to spatially resolve changes in tubular
diameter (Fig. 4). We have examined the relative changes in the

diameters of transverse and longitudinal tubules to osmotic
changes and found that the latter was less compliant (Fig. 5).
This suggests distinct differences in the transverse and
longitudinal tubules (Edwards and Launikonis, 2008).

Aquaporin1 has been localized to the transverse tubules (Au
et al., 2004), its presence in the longitudinal tubular membranes
is yet unclear, making it a candidate. If the membranes of

longitudinal tubules are indeed water tight, along with the
evidence of restricted diffusion in and out of these tubules
(Edwards and Launikonis, 2008), this further consolidates their

role as a storage compartment for lactate and other metabolites
(Lännergren et al., 2000). However, under hyposmotic
conditions, longitudinal tubules would not resist water influxes

from neighbouring transverse tubules. The little change in their
volume during this process therefore suggests that their
membranes are able to withstand greater osmotic colloid
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pressures (i.e. less compliant than transverse tubules). Hence, it

would be informative to investigate any differences in the

scaffolding or structural proteins between longitudinal and

transverse tubules. The ability of longitudinal tubules to resist

osmolality-dependent volume changes may appear paradoxical

given their high propensity to vacuolation (Fraser et al., 1998).

Stretch, fatigue, temperature and extracellular concentrations of

divalent cations have all been implicated as key factors in the

formation of vacuoles (Lännergren et al., 2000; Cooper et al.,

2002; Edwards and Launikonis, 2008). Our data suggest that

passive expansion due to luminal osmotic colloid pressure is

unlikely to be a major contributor for vacuolation.

What does a tubule look like?

While the simultaneous volumetric and membrane imaging

experiment confirmed that the assumption of cylindrical

geometry of the tubules was reasonable, it is noteworthy that

most tubules, in thin-section EM experiments, have appeared as

flattened tubes. We must be mindful that neither condition can

accurately present to us the physiological condition of the t-

system in the living muscle. To estimate what the t-system in a

living muscle may look like we have reconstructed all

mammalian and toad transverse tubules (Fig. 6) as flattened

cylinders based on previous knowledge of the narrow nearest-

neighbour edge-to-edge distance (,100 nm) reported previously

(Franzini-Armstrong et al., 1999). In connection to this point, the

distributions of tubule diameters would more precisely relate to a

mean diameter and the actual dimensions of the local tubule

would depend on the local aspect ratio. However, previous work

has shown that the cross-sectional aspect ratios of transverse

tubules are highly sensitive to osmolarity and the extracellular

[NaCl] (Rapoport, 1969; Rapoport et al., 1969). This could

explain the high variability of the observed aspect-ratios between

independent EM studies (Rapoport, 1969; Franzini-Armstrong

et al., 1975; Dulhunty et al., 1984) and would warrant a super-

resolution imaging approach in studying the triadic transverse

tubules under controlled osmotic conditions. The cross-sectional

aspect ratios of longitudinal tubules remain poorly documented

and there are no reported association of these tubules with

junctions. Therefore, these tubules were reconstructed with

circular cross-sectional shapes, scaled to the estimated local

diameters.

Here we have reconstructed large volumes of the t-system of

vertebrate skeletal muscle fibres for the first time. By trapping

extracellularly applied fluorescence indicators in the t-system of

skinned fibres a highly contrasted image of the t-system can be

obtained in a functional fibre. Our imaging has shown previously

unresolved details of t-system structure and allowed us to

quantify its orientation and diameter. Furthermore, large volume

reconstruction has also allowed the association of the t-system

within the nucleus to be observed. This technique can also be

used for similar imaging with other intracellular organelles such

as mitochondria.

Methods
Sample preparation

All experiments were conducted at The University of Queensland. Cane toads
(Bufo marinus) were obtained from Shawn, Khim and Michael Denson (Brisbane,
Qld, Australia) or from Peter Krauss (Mareebra, Qld, Australia). Toads were
stunned with a blow to the head and then double pithed in accordance with the
procedures approved by the Animal Ethics Committee at the University of
Queensland. The illiofibularis muscles were dissected, blotted on filter paper

(Whatman No. 1) and pinned out under paraffin oil (Sigma-Aldrich, MO) in a Petri
dish lined by a base of Sylgard 184 (Dow Chemicals, MI). For studying
mammalian muscle fibres, male Wistar rats (250–300 g) were euthanized by CO2

asphyxiation under approved procedures and the extensor digitorum longus (EDL)
muscles were dissected and pinned out under paraffin oil as above. Small bundles
of fibres were dissociated from the muscle and exposed to Na+-based physiological
solution containing 5 mM of membrane-impermeable Fluo-5N pentapotassium salt
(Molecular Probes, Life Sciences). As described elsewhere (Launikonis and
Stephenson, 2004), individual fibres were separated and mechanically skinned,
trapping the dye within the t-system, and mounted onto a chamber built on a
No. 1.5 glass coverslip. The fibre was immersed in a standard internal solution
containing 100 nM free Ca2+ at room temperature (,21 C̊) and clamped at a
sarcomere length of ,2 mm.

Materials and solutions

The dye-containing physiological solution was composed of (mM): NaCl, 112;
KCl, 3.3; CaCl2, 2.5; MgCl2, 1, fluo-5N salt, 5; Hepes, 20 (pH adjusted to 7.4 with
NaOH) for toad or (mM): NaCl, 145; KCl, 3; CaCl2, 2.5; MgCl2, 2; fluo-5N salt, 5;
and Hepes, 10 (pH adjusted to 7.4 with NaOH) for rat. The standard internal
solution used for imaging the mechanically skinned fibre contained (mM): K+,
117; Na+, 30; EGTA, 1; HDTA22 (Fluka, Buchs, Switzerland), 48.5; Ca2+, 0.0001;
Mg2+, 1; Hepes, 60; ATP, 8; and creatine phosphate, 10 for toad; and (mM): Na+,
36; K+, 126; Mg2+, 1; EGTA, 1; HDTA22, 48.5; total ATP, 8; creatine phosphate,
10; Hepes, 90; Ca2+, 0.0001; and pH 7.1 for rat. The pH of the internal solutions
were adjusted to 7.1 using KOH and the osmolality was ,260610 and
280610 mOsmol/kg for toad and rat, respectively.

Image acquisition

Samples were imaged using an Olympus FV-1000 confocal microscope with a 606
1.35 NA oil-immersion objective (Olympus, Tokyo, Japan). The Fluo-5N was
excited using a 488 nm Ar-ion laser (Melles Griot) and the emission detected in
the 500–530 nm range using the FV-1000 spectral detector and a pinhole of 0.7
Airy units. Serial confocal image stacks of longitudinally oriented fibres were
recorded with a z-spacing of 0.25 mm and pixel sampling finer than 90 nm/pixel.
Image stacks were saved as series of 16-bit tagged image file format (TIFF) for
further processing.

Image processing and analysis

Confocal image stacks were deconvolved using iterative maximum likelihood
Richardson–Lucy algorithm [described by Soeller and Cannell (Soeller and
Cannell, 1999)] implemented in IDL 8.2 (Exelis Inc., McLean, Virginia). See
supplementary material Fig. S1 for details.

Deconvolved image volumes were re-sampled onto 50650650 nm voxel grids
in 32-bit TIFF format. A binary mask of the t-system was constructed using the
non-linear thresholding protocol outlined previously (Jayasinghe et al., 2009). The
binary image volumes were used for generating a 3D skeleton in Amira 5.4
(Visage Imaging, Berlin, Germany). 3D surface rendering of image volumes and
reconstructed t-tubular skeletons was performed using Open-dx (Opensource).
Directionality analysis of the tubular skeleton was performed on randomly selected
56565 mm image volumes using the ‘Directionality’ plug-in for Fiji (Liu, 1991;
Schindelin et al., 2012).

Imaging osmolarity-dependent changes in tubule diameters

Rat and toad fibres were mechanically skinned trapping 5 mM Fluo-5N within the
t-system and mounted onto an imaging chamber ensuring they are not stretched
beyond a sarcomere length of ,2 mm. The skinned fibres were bathed in a
standard internal solution as described above. The osmolarity of the standard
(isosmotic) internal solution was adjusted to 280 mosmol/kg or 255 mosmol/kg for
rat and toad fibres respectively. A reference confocal z-stack of the Fluo-5N
fluorescence was acquired prior to replacing the internal solution with one whose
osmolarity had been adjusted to either 200 mosmol/kg (hypo-osmotic) or
1000 mosmol/kg (hyperosmotic) by adding water or sucrose, respectively.
Samples were allowed to equilibrate for 15 minutes at room temperature
(,21 C̊) and a confocal z-stack from an adjacent segment of fibre was acquired.
Mono-exponential dependence of the normalized fluorescence intensity (F/Fmax)
on osmolarity x (Eqn 1 where k50.0057) derived from in vitro calibration of Fluo-
5N (see supplementary material Fig. S7) was used to correct the local Fluo-5N
intensities prior to estimating the tubule diameters as described above.

F=Fmax~(1{F0)e{kxzF0 ð1Þ
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