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ABSTRACT
Two years into the most significant infectious disease event of
our generation, infections have populated every conversation and
in-depth understanding of host–pathogen interactions has, perhaps,
never been more important. In a successful return to in-person
conferences, the host–pathogen interface was the focus of the third
Cell Dynamics meeting, which took place at the glorious Wotton
House in Surrey, UK. The meeting organised by Michaela Gack,
Maximiliano Gutierrez, Dominique Soldati-Favre and Michael
Way gathered an international group of scientists who shared their
recent discoveries and views on numerous aspects, including cell-
autonomous defence mechanisms, pathogen interactions with host
cytoskeletal or membrane dynamics, and cellular immune regulation.
More than 30 years into the beginning of cellular microbiology as a
field, the meeting exhibited the unique aspect of the host–pathogen
interface in uncovering the fundamentals of both pathogens and
their hosts.

Cellular immune signalling
How eukaryotic cells sense and respond to pathogens and their
molecules is central to understanding host–pathogen interactions.
The meeting showcased the complexity of sensing mechanisms,
which produce variable cellular outcomes.
Interferons (IFNs) are a major family of cytokines produced in

response to microbial challenges and induce an anti-microbial state
driven by hundreds of interferon-stimulated genes (ISGs). However,
how individual ISGs contribute to protection against specific
pathogens is mostly unknown. Joe McKellar (CNRS-University of
Montpellier, France) presented how one ISG, MX1, inhibits both
early and later stages of influenza A virus (IAV) infection. MX1
affects several different cellular pathways that are highjacked by
IAV, including nuclear export and intracytoplasmic trafficking. This
alters the localisation of different viral and cellular proteins and
prevents viral replication (McKellar et al., 2021).
ISGs target all classes of pathogens. Eva Frickel (University of

Birmingham, UK) presented an overview of her impressive work
regarding the protective role of the interferon-inducible GTPases,
guanylate-binding proteins (GBPs), during bacterial (Salmonella
Typhimurium) or parasite (Toxoplasma gondii; Tg) infection
in IFNγ-stimulated macrophages. GBP1 tackles Tg by promoting
the disruption of parasite-containing vacuoles, which exposes the
parasite DNA to the cytosol, leading to caspase-8-driven apoptosis.
In case of Salmonella, GBP1 directly binds to the bacterial surface
when they reach the cytosol, which in turn recruits and activates

caspase-4, the non-canonical inflammasome, leading to pyroptosis,
an inflammatory form of programmed cell death (PGD). The
canonical inflammasome, via caspase-1, negatively regulates the
amount of cell death through cleavage of GBP1. This work
highlighted how GBP1 functions to distinctly recognise different
pathogens and drive host cells into separate forms of PGD (Fisch
et al., 2019, 2020).

Given the importance of IFN in controlling microbial infection, it
is not surprising that pathogens have evolved a variety of mechanisms
that inhibit IFN expression and signalling.Michaela Gack (Cleveland
Clinic Florida, Port St. Lucie, USA) has contributed significantly to
the understanding of the post-translational regulation of RIG-I-like
receptors (RLRs). Activation of these ubiquitously expressed
cytosolic RNA sensors induces IFNs and other cytokines. Michaela
presented an elegant new mechanism that regulates the activation of
MDA5 via conjugation of the ubiquitin-like IFN-inducible protein
ISG15 (ISGylation). ISGylation can be targeted by pathogens, in
particular SARS-CoV-2 utilizes a papain-like protease to directly
promote de-ISGylation (Liu et al., 2021).

The other member of the RLR family, RIG-I, is not activated by
ISGylation but rather by ubiquitylation, a mechanism that is also
targeted by several viruses. Craig Roy (Yale University, USA)
described what is, to our knowledge, the first example of a bacterial
virulence factor that targets RLR signalling. Indeed, Roy and
colleagues found that the causative agent of Q fever, Coxiella
burnetii, encodes two type-IV secretion system effectors that are
required for deubiquitylation and inhibition of RIG-I. The resulting
inhibition of IFN induction is predicted to prevent host clearance
because treatment of infected cells with IFN resulted in decreased
bacterial replication. Finally, Charlotte Odendall (King’s College
London, UK) identified how Shigella blocks signalling downstream
of IFN receptors, inhibiting ISG expression. This is mediated via
inhibition of Ca2+ signalling by the conserved OspC family of
virulence factors. Importantly, inhibition of IFN byOspCs or genetic
deletion of IFN receptors promotes bacterial replication within host
cells and colonisation of the murine gut (Alphonse et al., 2022).

A theme that became apparent from this discussion is the targeting
of Ca2+ signalling pathways by virulence factors. Joana Sa Pessoa
(Queen’s University Belfast, UK) showed that a type-VI secretion
system (T6SS) effector from Klebsiella pneumoniae triggers an
increase in Ca2+ in the mitochondria from endoplasmic reticulum
(ER) resources. This promotes mitochondrial fragmentation and
production of reactive oxygen species (ROS) through the activation
of the mitochondrial immune receptor NLRX1, impairing immune
responses to the pathogen. This work illustrated unexpected
important roles of T6SSs beyond their antimicrobial functions.

Cell death pathways are central defence mechanisms that
contribute to the eradication of many intracellular pathogens. Jae
U. Jung (Cleveland Clinic, USA) presented unpublished work
describing a critical role for OASL, an IFN-induced protein of the
OAS family. OAS-proteins promote antiviral responses upon
sensing of foreign nucleic acids, and OASL was shown to
promote non-canonical necroptosis by recruiting key necroptotic
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components, the innate sensor ZBP1 (also known as DAI), the
RIPK3 kinase, and the effector MLKL, into liquid droplets,
pointing to the importance of IFN in activating non-canonical
necroptosis. Mitchell Pallett (Imperial College London, UK)
described an atypical form of cell death, triggered upon actin
depolymerisation by the Salmonella virulence factor SpvB. This
caspase-independent pathway requires the activation of MAP4
kinase-dependent signalling cascades, culminating in lysosomal
membrane permeabilization and cathepsin-dependent killing of
Salmonella-infected cells.
One more beautiful Salmonella story was presented by Teresa

Thurston (Imperial College London, UK). Its effector SteE
induces phosphorylation of the transcription factor STAT3,
altering the function of macrophages to skew them towards an
anti-inflammatory ‘M2’ polarization. The underlying mechanism of
action is fascinating and unique, with SteE binding the pleiotropic
host serine/threonine kinase GSK3, and ‘forcing it’ to switch its
specificity towards tyrosine 705 of STAT3 (Panagi et al., 2020).
Similarly, by harnessing the power of pooled CRISPR knockout
(Young et al., 2019) screens, Simon Butterworth (The Crick
Institute, London, UK) showed that T. gondii also alters macrophage
polarization by targeting STAT6 phosphorylation (Butterworth
et al., 2022 preprint).
The environmental fungus Cryptococcus neoformans is another

master manipulator of immunity that perturbs phagocyte functions,
by not only evading phagocyte-mediated killing but also blocking
antigen presentation by dendritic cells and T-cell proliferation.
Although the specific mechanism of action has not yet been
identified, Robin May (University of Birmingham, UK) shared that
the capsule probably plays an important role in this process.
Whereas most of the presented studies were carried out

in traditional cellular or animal models, Vivek Thacker (EPFL,
Lausanne, Switzerland) described organ-on-chip methods, in which
the co-culture of different cell types more accurately mimics tissue
environments. Leveraging this model, this approach uncovered key
mechanisms in endothelial cells that are responsible for the
exacerbated immune responses associated with severe SARS-
CoV-2 illness (Thacker et al., 2021).
An in-depth understanding of immune responses to infection is

crucial in our fight against pathogens, as this knowledge can
translate into developing therapies against infectious diseases.
Indeed, as Sara Cherry (University of Pennsylvania, Philadelphia,
USA) insisted, we need more and better antivirals. Because broad-
spectrum antivirals are difficult to engineer owing to the vast
genetic diversity among viruses, one avenue of choice is to boost
the antiviral immune response. Sara described a high-throughput,
imaging-based antiviral screening pipeline used to screen for
compounds or agonists that block viral infection. This led to the
identification of endogenous inducers of the IFN response, which
protected animals from SARS-CoV-2 infection (Li et al., 2021), as
well as a long noncoding RNA that blocked Chikungunya virus
infection.

Selective autophagy in cell-autonomous defences
Macro-autophagy (hereafter autophagy) is essential for eukaryotic
homoeostasis, and enables recycling and degradation of cytoplasmic
content. Since the identification of its conserved core proteins (Atgs),
different pathways have been shown to drive formation of membrane
phagophores, promote cargo sequestration and enable subsequent
fusion of autophagosomes with lysosomes for degradation
(Mizushima, 2018; Ohsumi, 2014). Answering ‘How cells defend
themselves against invasion by cytosolic pathogens’, a question

recalled by Felix Randow (MRC Laboratory of Molecular Biology,
UK), was critical to our understanding of selective autophagy, the
selective engulfment of cargo via specific receptors. Numerous
autophagy receptors were shown to recognise damaged vacuoles and
exposed bacteria (Randow and Youle, 2014); this remarkably
evergrowing list includes ubiquitin, galectin 8, optineurin, NBR1,
GBPs, NDP52, p62, septins and, more recently, the enormous
(584 kDa) E3 ligase RFN123, which displays unusual ubiquitylation
activity towards lipopolysaccharide (LPS). As highlighted by Felix,
RNF213 controls cytosolic targeting of Salmonella by promoting the
direct ubiquitylation of LPS and favouring the recruitment of another
E3 ligase, LUBAC, which increases pre-existing ubiquitin platforms.
This work identified yet another element of host cytosolic defence
mechanisms and points to the importance of non-protein
ubiquitylation (Otten et al., 2021).

The ability of so-called professional cytosolic pathogens
to promote infection within the cytosol inspired cellular
microbiologists to search for host defences. Serge Mostowy
(London School of Hygiene & Tropical Medicine, UK) shared
with us his enthusiasm in following up those studies, which led him
to the discovery that septins, considered the fourth component of the
cytoskeleton, entrap Shigella within cage-like structures, limiting
their replication and promoting their autophagic destruction
(Lobato-Márquez et al., 2021). Serge described his novel in vitro
approach to elucidate mechanisms underlying septin cage
entrapment of Shigella, highlighting molecular details that will
guide future findings, including the septin amphipathic helix
domain, which plays a key role in recognisingmicron-scale bacterial
curvature. Finally, analysis by cryo-electron tomography (cryo-ET)
showed that septins assemble with a non-random architecture, with
barbwire-like entanglements around the bacterial surface that are
inhibited by the presence of LPS. Bacterial escape to the cytosol
often occurs through the activity of type III secretion systems
(T3SS), as for Shigella and Salmonella. Léa Swistak (Institut
Pasteur, Paris, France) aims to characterize such vacuolar disruption
events at the molecular resolution in a near-native state by using
an automated workflow that also combines cryo-ET but with cryo-
focused ion-beam sample milling (Swistak et al., 2021). Both
presentations further highlighted the value of cutting-edge imaging
techniques in illustrating the heterogeneity of lifestyles displayed by
intracellular bacteria.

This heterogeneity has been investigated in depth by the group
of Maximiliano Gutierrez (The Francis Crick Institute, London,
UK), which follows the life cycle of Mycobacterium tuberculosis
(Mtb), the causative agent of Tuberculosis or ‘the other pandemic’,
still one the world’s most significant infections, and one that
disproportionally affects poor countries, further driving inequality
(Moutinho, 2022). Mtb has been one of the paramount pathogens
in the quest to understand host cytosolic defences and the
heterogeneity of lifestyles displayed by intracellular bacteria
(Gutierrez and Enninga, 2022). Mtb is found within enclosed or
damaged vacuoles, surrounded by membrane remnants, or
displaying autophagosomal targeting. Max presented a
combination of high-resolution live microscopy and genetic
studies, using infection of human induced pluripotent stem cell-
derived macrophages as a model to identify the pathways that
govern intracellular Mtb phenotypes (Pellegrino and Gutierrez,
2021). We learned that Atg7 and Atg14 restrictMtb replication with
distinct dynamics and effectiveness. Naomi Okugbeni
(Stellenbosch University, South Africa) complemented these
findings by extensively tracking autophagy progression during
macrophage infection withMtb. Different dynamics of p62 and LC3
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recruitment to bacteria correlate with variations in both bacterial
replication and intracellular phenotypes (cytosol versus vacuole).
Damage to bacteria-containing vacuoles is an established feature

of the cellular pathogenesis of various Mycobacterium species that
also occurs through the activity of secretion systems, specifically
the type VII secretion system ESX1 and the abundantly secreted
pore-forming protein ESAT6. ESX1 and ESAT6 are required
for virulence of different Mycobacterium species, including
Mycobacterium marinum during infection of animal macrophages
and of Dictyostelium discoideum (Dicty for short), the professional
phagocyte amoeba model. Damages to endolysosomal membranes
of Dicty caused by M. marinum led to the identification of a
conserved ubiquitin E3-ligase (TrafE) as a relevant factor
for sensing and repair of damaged compartments. Thierry Soldati
(University of Geneva, Switzerland) presented detailed in vivo
live-imaging experiments of membrane damage events, which
revealed the role of TrafE in promoting K63-ubiquitylation within
sites of endosomal damage (sterile or through the action of ESAT6).
TrafE promotes both endosomal ESCRT-mediated membrane
repair and selective autophagy of cytosolic bacteria, protecting
Dicty during M. marinum infection (Raykov et al., 2021 preprint).
Pathogens have evolved multiple sophisticated mechanisms

to curb autophagy, revealing important insights into the regulation
of host autophagy processes. Maria Mota (University of Lisbon,
Portugal) reminded us of the significant challenges with malaria,
underscoring the importance of characterising the life-style
transitions of the parasite in vivo, in order to uncover potential
anti-malaria therapies. Plasmodium falciparum is recognised
by selective autophagy; however, its recognition is diminished
by the virulence protein UIS3. This observation prompted the
identification of the compound-C4 (through high-throughput
screening), which blocks the LC3–UIS3 interaction, disrupting
the parasite ability to block autophagy and thus reducing infection
(Setua et al., 2020).
Belinda Hall (Setua et al., 2020; University of Surrey, Guildford,

UK) described how Mycolactone, an exotoxin secreted by
Mycobacterium ulcerans helped uncover a ULK1-independent
autophagy pathway (Hall et al., 2022). This pathway is activated by
ER stress signals upon blockage of protein translocation to the ER
by Mycolactone. Beyond the cytotoxicity of Mycolactone, this
pathway might also be relevant to other physiological processes that
involve the integrative stress response.
The interplay between viruses and host cytosolic defences

was also extensively discussed during the meeting. Damaged
mitochondria can accumulate during viral infections, releasing
damage-associated molecular patterns (DAMPs), such as
mitochondrial RNA, which trigger innate responses. These can be
anti-infectious or exploited by pathogens. Sonja Best (Rocky
Mountain Laboratories of the National Institute of Allergy and
Infectious Diseases, Hamilton, USA) demonstrated how Zika virus
(ZIKV) subverts an uncharacterised element of mitophagy in order
to promote inflammatory responses that contribute to dissemination
in vivo (Ponia et al., 2021). The viral non-structural protein
NS5, which is also a potent IFN antagonist, targets the host protein
Ajuba, preventing its binding to the mitophagy regulator kinase
PINK1. This reduces Ajuba–PINK1–Parkin-mediated autophagy of
damaged mitochondria close to viral replicative niches, which
amplifies specific host immune signalling that is exploited by ZIKV
for dissemination.
Other viral proteins, called viroporins, can induce non-canonical

autophagy. These small proteins form transmembrane channels that
perturb intracellular ion gradients and are crucial for viral assembly

and entry. Rachel Ulferts (The Francis Crick Institute, London, UK)
described a genome-wide CRISPR-Cas9 screen that identified
modulators of LC3 lipidation during non-canonical autophagy
responses to viral porins (M2 from influenza, E from coronaviruses)
or ionophores (Ulferts et al., 2021). Among other factors, Rachel
identified the vacuolar ATPase as general promoter of LC3
lipidation in response to altered pH compartments. The targeting
of this pathway by various pathogens highlighted its significance,
and was also discussed.

Vesicular trafficking and endomembrane organisation
Pathogenic control of host vesicular trafficking is crucial for
infection. This enables phagolysosomal escape and formation
of replicative niches, as well as exploitation of cellular membranes
for pathogen structure and/or release from infected cells. The
identification of these processes helps us to better understand
pathogenesis and uncover fundamental features of eukaryotic
membrane biology.

Nihal Altan-Bonnet [National Heart, Lung, and Blood Institute
(NHLBI), Bethesda, USA] discussed different strategies and
outcomes of non-lytic viral egress mechanisms. Initially focusing
on RNA-enveloped viruses, Nihal summarised recent findings that
describe the unexpected secretion of β-coronaviruses (CoVs) within
secretory lysosomes, showing that virions do not require an intact
biosynthetic pathway and instead depend on small GTPases that
control transport and biogenesis of lysosomes (Arl8b and Rab7).
Through a mechanism yet to be fully characterised, CoVs
manipulate the function of terminal compartments, which enables
their egress via lysosome secretion following budding within the ER
and Golgi intermediate compartment (ERGIC) (Ghosh et al., 2020).
During budding, CoVs also exploit host membrane organisation
and lipid modification pathways. Francisco S. Mesquita (EPFL,
Lausanne, Switzerland) presented details on the formation and
infectivity of SARS-CoV-2 virions, which require massive host-
mediated S-acylation, the reversible post-translational attachment
of fatty acids to proteins. This understudied modification is
increasingly being recognised as a fundamental ubiquitous
eukaryotic process, and is used by CoVs for the modification of
the viral fusion Spike glycoprotein within budding sites. This
involves specific host acyltransferases and regulates the lipid
composition, organization and infectivity of SARS-CoV-2
(Mesquita et al., 2021).

The trafficking mechanisms used by toxins and viruses have long
guided cell biologists to discover vesicular transport routes, and
conversely, uncovering regulators of host membrane sorting has
contributed to finding determinants of pathogenesis. In this context,
the final presentation on SARS-CoV-2 at the conference was given
by James Daly (University of Bristol, UK), who described a
proteomic screen to identify cargoes and regulators of retrograde
transport from endosomes to the trans-Golgi network (TGN), which
led to identification of the endosomal SNX-BAR sorting complex
promoting exit 1 (ESCPE-1) as a regulator of SARS-CoV-2 co-
receptor neuropilin-1 (NRP1). This pathway regulates intracellular
transport of NRP1 ligands and is required for SARS-CoV-2 cellular
infection (Simonetti et al., 2022).

Traditional models of viral budding, egress and dissemination
generally assume release and transmission of individual viral
particles. However, this view is incomplete and does not fully
account for the heterogeneity of egress processes. Nihal also
highlighted that non-enveloped viruses benefit from host-derived
extracellular vesicles that are released within vesicle-cloaked
clusters. Such vesicles consist of host membranes that contain
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fully infectious viral particles, as well as non-encapsulated
genomes. Although the formation, release and uptake of such
vesicles is poorly defined, Nihal demonstrated that membrane-
enclosed viral clusters are released in stool, enable enhanced
transmission and cell-to-cell spreading, and also provide protection
against environmental damages (Santiana et al., 2018; Zhang et al.,
2021).
Florence Niedergang (Institut Cochin, Paris, France) presented

their work using human rhinovirus 16 (HRV16) to identify
regulatory mechanisms of phagosome formation. Infections with
HRV16 lead to defects in phagocytosis and bacterial clearance,
causing macrophages to accumulate stalled phagocytic cups that
fail to internalise bacteria. This phenotype revealed a role for
arpin, a negative regulator of Arp2/3, during phagocytosis. Arpin
localizes to membrane extensions within phagocytic cups and is
required for efficient internalisation. HRV16 downregulates arpin,
reducing phagocytic uptake during chronic obstructive pulmonary
disease (Jubrail et al., 2020). Additional mechanisms implicated in
phagosome maturation and manipulation of pathogen intracellular
vacuoles were also discussed. Aby Anand (University of
Osnabrück, Germany) described the hijacking of oxysterol-
binding proteins (OSBPs), typically located at membrane contact
sites, by pathogenic mycobacteria such as M. marinum in Dicty
infections. OSPBs are lipid transfer proteins (LTPs) that shuttle
sterols and phosphatidylinositol phosphates between membranes.
OSBP8 accumulates at the Mycobacterium vacuoles and its
depletion promotes mycobacteria replication through mechanisms
that remain to be defined. Arthur Bienvenu (CNRS and University
ofMontpellier, France) identified a newCoxiella effector, Vice, that
recruits lysobisphosphatidic acids (LBPAs) to bacterial vacuoles.
LBPA is a major component of multivesicular endosomes and
induces formation of luminal vesicles (Matsuo et al., 2004). Vice
manipulates the biogenesis of multivesicular bodies and the protein
profile of secreted extracellular vesicles, which might contribute to
maturation of bacterial vacuoles. Similarly, Plasmodium parasites
also modulate their intracellular niche. Maria Mota showed that
P. berghei secretes a homologue of the host Rab5 GTPase,
PbRab5b, which competes with its host counterpart to recruit the
endocytic regulator APPL1. This competitive recruitment is
important for the development of parasite exoerythrocytic forms
within the parasitophorous vacuole (Lahree et al., 2022).

Cytoskeletal dynamics
The host cell cytoskeleton is a common target of all pathogens in
order to promote or block intracellular access, subvert immunity, or
enable pathogen spread. The study of cytoskeletal manipulation by
pathogens has prompted the discovery of key cellular processes
central to actin, microtubule, intermediate filaments and septin
dynamics.
Host-pathogen interactions are characterized by a mutual

manipulation of hosts and pathogens in complex biomechanical
environments. Using traction force microscopy, Effie Bastounis
(University of Tübigen, Germany) described interactions of
Borrelia burgdorferi with endothelial cells and the activation
of the immune system (Yuste et al., 2022). Daria Bonnazi (Institut
Pasteur, Paris, France) focused on another model, meningococcal
infection, and addressed the biophysics of vascular colonization
by looking at changes in actomyosin and cell contractility.
Daria showed that bacterial adhesion rapidly triggers a
massive enrichment of Myosin-2 at the infection site and that
Neisseria meningitidis-mediated remodelling of the endothelial cell
surface induces changes in traction stresses exerted onto the

extracellular matrix, impacting cell focal adhesions dynamics and
cell shape. This points to a mechanism whereby meningococcal
infection leads to the generation of contractile pulses through
local actomyosin accumulation affecting cellular forces and tissue
integrity. This work will pave the way to better understand the
mechanical sensing and adaptation of the host cell to bacterial
infection, a potential means for microbes to determine disease
progression.

Matt Welch’s (University of California, Berkeley, USA)
pioneering work identified actin subversion by pathogens through
a role of the Arp2/3 complex in Listeria monocytogenes actin-based
motility. This time focusing on baculoviruses, he described how
these viruses use Arp2/3-mediated actin-based motility to enter
into and egress from the nucleus. Baculoviruses invade the nucleus
through nuclear pore complexes, and following replication they
recruit and engage nuclear actin to disrupt the nuclear envelope and
escape from the nucleus. The molecular mechanism underlying
nuclear envelope disruption remains uncharacterized but will be an
interesting question for the future.

Using a pipeline of deep-learning analysis of automated
microscopy, Derek Walsh (Northwestern University, Chicago,
USA) described an interesting mechanism through which human
cytomegalovirus (HCMV) provokes nuclear rotation (Procter
et al., 2020). The cytoplasmic HCMV-assembly compartments
function as microtubule-organizing centers that promote
microtubule acetylation. In turn, acetylated microtubules enable
dynein motors to pull and rotate the nucleus by binding to the
linker of nucleoskeleton and cytoskeleton (LINC) complexes.
This mechanism revealed a role for acetylated microtubules in
controlling nuclear polarity which re-organizes nuclear actin to
separate viral from host DNA facilitating viral replication (Furey
et al., 2021; Procter et al., 2020). Microtubules are also targeted by
HIV. Mojgan Naghavi (Northwestern University, Chicago, USA)
illustrated that the microtubule end-binding protein (EB1)
contributes to HIV infection by stabilizing microtubules; this not
only promotes motility, but also delivers microtubule plus-end
tracking proteins (+TIPs), such as CLIP170, which then bind to the
viral particle and promote both its trafficking and uncoating. This
may occur through structural mimicry of protein complexes with the
HIV capsid that appear to have +-TIP-binding motifs (Santos da
Silva et al., 2020).

Yue Zhang (Institute Pasteur of Shangai, China) presented the
important role of the third cellular cytoskeletal polymer, the
intermediate filaments, by demonstrating that vimentin coordinates
the structural organisation of viral replication complexes. Vimentin
is required for infection and, in addition to its structural role, also
appears to bind ER-localized RNA-binding proteins and act as an
RNA-binding-regulating hub in ZIKV infection (Zhang et al.,
2022).

Finally, closing the chapter on virus-mediated targeting of
cytoskeletal dynamics, Michael Way (The Francis Crick Institute,
London, UK) summarized key findings regarding the interplay
between vaccinia virus and all components of the cytoskeleton.
These studies on the role of vaccinia actin tail motility in promoting
cell-to-cell transmission were crucial to determining the
various components of the signalling network that induce actin
polymerization, as well as their dynamics. Similarly, vaccinia has
been a paradigm in our understanding of clathrin-mediated sorting
mechanisms and targeting of cytosolic pathogens by septins, which
results in reduced viral release. A more recent focus for the Way lab
has been the in vitro transport of vaccinia on purified microtubules.
Reconstitution of microtubule motility of intracellular mature and
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enveloped virions (IMVs and IEVs) allowed them to quantitatively
dissect the role of kinesin-1 motors by describing the number of
motors involved, virion velocities and other quantitative parameters.
This model is an invaluable tool to study microtubular motors in a
quantitative manner (Xu et al., 2022 preprint).
The Apicomplexa phylum includes obligate intracellular

parasites, such as Plasmodium spp., the causative agent of
malaria, and T. gondii, an opportunistic pathogen. These protozoa
have their own cytoskeleton, but also interact with host cytoskeletal
dynamics. First, MariaMota presented work showing that formation
of host actin rings around the plasmodium vacuole precedes
parasite clearance. In the liver stages of P. berghei, the parasite
vacuole membrane protein UIS4 interacts with actin and suppresses
such still mysterious killing mechanism, which increases parasite
survival and development (M’Bana et al., 2022). Friedrich
Frischknecht (Heidelberg University, Germany) showed that
Plasmodium sporozoites are fast moving in skin, the first barrier
of infection for the parasite. For their motility, parasites require
highly stable microtubules and unstable actin filaments linked to
different surface proteins, the TRAP family adhesins, which have
different roles during motility and infection (Frischknecht and
Matuschewski, 2017).
Protozoans from the Apicomplexa phylum have evolved motile

developmental stages unified under the term zoite. The polarized
tachyzoite stage of T. gondii serves as a prototype to study
the molecular machines that direct a specific type of adhesion-
dependent and high-speed motility known as helical gliding.
Using a combinatorial approach of force microscopy, expansion
microscopy and high-speed live imaging, Isabelle Tardieux
(Université Grenoble Alpes, France) and her team identified a
timely interplay between the actomyosin motor and the peculiar
helical microtubule cytoskeleton of the parasite that drives gliding.
Using quantitative interference reflection contrast microscopy
(qRICM), they demonstrated that the dynamics of surface–
tachyzoite body contact could be mapped with high resolution
and, by using traction force microscopy, the forces underlying
gliding mobility could be monitored in real time (Pavlou
et al., 2020). Dominique Soldati-Favre (University of Geneva,
Switzerland) dissected in depth the structure of the conoid in
T. gondii, a dynamic and enigmatic organelle. The conoid is
formed by a cone of spiralling tubulin fibres that are associated
with preconoidal rings (PCRs). Using ultrastructure expansion
microscopy (U-ExM) and reverse genetics, they mapped five
components of the PCRs and elucidate that the conoid extrusion is
actomyosin driven and controls the F-actin flux during motility and
invasion (Dos Santos Pacheco et al., 2022 preprint).

Concluding remarks
In summary, this latest edition of the Cell Dynamics meeting
brought together scientists working at the forefront of host–
pathogen interactions and was further proof that pathogens and
their molecules guide researchers through the complexity of the
mechanisms that coordinate disease and cell homeostasis. The field
of cellular microbiology will not only continue to uncover
fascinating fundamental cellular biology processes, but should
also play a critical role in the quest of better understanding host–
pathogen interactions, a key aspect to our preparedness for
global infection challenges. Emerging questions will benefit
from multidisciplinary approaches, cutting edge technologies, and
creative and more-accurate model systems, which will certainly
contribute to conceptual advances. Beyond this, a conclusion
remains clear – cellular microbiology, encompassing viruses,

bacteria, fungi and parasites, will continue to equip scientists with
the most versatile and ingenious tools to understand all aspects of
fundamental eukaryotic cell biology.
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