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SUMMARY

In order for cells to respond to their environment, a series
of regulated molecular events has to take place. External
signalling molecules bind to cellular receptors and thereby
trigger the activation of multiple intracellular pathways,
which modify cellular phenotypes. The cell-surface
receptors for a wide range of polypeptide hormones possess
protein tyrosine Kkinase activity, which is induced by
binding of the appropriate extracellular ligand. Tyrosine
phesphorylation can act as a molecular switch, by initiat-
ing the recruitment of cytoplasmic effector molecuﬂon-

taining Src homology (SH) 2 domains, to activated
receptors. These SH2-containing proteins, in turn, regulate
intracellular signalling pathways. Here, we discuss the role
of tyrosine phosphorylation in triggering signalling
pathways, as well as the functions of SH2 domains, which
mediate these events through phosphotyrosine-dependent
protein-protein interactions.
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RECEPTOR PROTEIN TYROSINE KINASES

Receptor protein tyrosine kinases (RPTKs) are membrane-
spanning molecules, which function as regulators of cell
growth and differentiation. RPTKs contain an extracellular
ligand-binding domain, a transmembrane element, and an
intracellular catalytic region. The extracellular portion is char-
acterized by specific motifs such as cysteine-rich sequﬂ,
immunoglobulin-like loops, fibronectin repeats, and others,
which are apparently involved in growth factor binding. The
transmembrane domain is hydrophobic and plays a crucial role
in receptor dimerization, while the intracellular region contains
the tyrosine kinase domain and non-catalytic sequences that,
following RPTK activation, serve as transphosphorylation syb-
strates (Yarden and Ullrich, 1988; Ullrich and Schlessiﬂ
1990; van der Geer and Hunter, 1994). These characteristics
are common to all RPTKs, but specific features can vary, such
as the type of repeats in the extracellular domain, or the
structure of the kinase domain, and these differences have been
used to define subfamilies of RPTKs (Fig. 1) (van der Geer and
Hunter, 1994). For example, receptors such as the epidermal
growth factor receptor (EGFR), the platelet-derived growth
factor receptor (PDGFR), the insulin receptor (IR), the nerve
growth factor receptor (NGFR), and the fibroblast growth
factor receptor (FGFR) constitute five subfamilies of RPTK.
The EGFR, PDGFR, NGFR, and FGFR vary mostly in their
extracellular ligand-binding domains, although the PDGFR has
an additional kinase insert within its catalytic domain, while
the IR has a different receptor architecture altogether (Fig. 1).

RPTK activation is achieved in the following fashion:
binding of the growth factor to the extracellular portion of a
RPTK induces receptor dimerization, and stimulates kinase
activity, thereby permitting intermolecular autophosphoryla-

tion, which largely occurs within non-catalytic intracellular
sequences. Mitogenic responses mﬂd by activated RPTKs
are dependent upon receptor tyrosine kinase activity. Receptors
in which the kinase domain is mutated and rendered inactive
can no longer induce a mitogenic signal in response to growth
factor stimulation. The importance of tyrosine kinase activity
has also been shown in vivo. Loss-of-function (LOF)
mutations in genes encoding RPTKs, such as c-kit, torso, der,
sevenless, and let23 drastically affect development of distinct
species, such as the mouse, Drosophila, and Caenorhabditis
elegans (Pawson and Bernstein, 1990). LOF mutations in the
mouse kit gene affect hair pigmentation, hematopoiesis, and
fertility depending on the severity of the mutated allele
(Russel, 1979; Reith et al., 1990). The most severe kit allele,
known as WZ2, induces a substitution of an aspartic acid within
the kinas ain, thought to be the catalytic base, leading to
a complete loss of tyrosine kinase activity. In Drosophila,
mutations in the forso tyrosine kinase gene affect terminal
embryonic structure development (Nusslein-Volhard et al.,
1987); while LOF mutations in the Drosophila gene der, affect
head and central nervous system development (Schejter and
Shilo, 1989; Price et al., 1989). The sevenless LOF mutation
specifically affects the development of photoreceptor cell R7,
which normally differentiates into a neuronal retinal cell
(Tomlinson et al., 1987). In C. elegans, let23 mutations affect
the development of the vulval precursor cells, which contribute
to the formation of the hermaphrodite vulva (Ferguson et al.,
1987; Aroian et al., 1991). Consistent with this view, gain-of-
function (GOF) mutations in /er23, which positively affect its
tyrosine kinase activity, contribute to an increase in differenti-
ated vylval precursor cells, and lead to the formation of
multi&ulvae.

The identification of cell-surface receptors for growth


undefined
Text Comparison  Documents Compared  Journal Informatio7.pdf    
  JOCES_1994_S18_0097.pdf      
Summary
  1214 word(s) added
  1711 word(s) deleted


undefined
Information Journal ID ( publisher- id): JCS Journal Title: Journal

undefined
Science Journal Abbreviation: J Cell Sci 0021- 9533 1477- 9137 Publisher Name:

undefined
Ltd Article Information copyright- statement: ©

undefined
by Company of Biologists copyright- year: 1994 License: Print publication date: Month: 01 Year: 1994Electronic publication date: Month: 01 Year: 1994 Article Version: Version of Record Volume: 1994 Issue: s18 First Page: 0097 Last Page: 0104 DOI: 10.1242/ jcs. 1994. S18.0097 Publisher Id: joces_ 1994_ s18_ 0097 RESEARCH ARTICLE

undefined
Author( s):

undefined
Marengere 1,

undefined
Pawson 1,

undefined
Affiliation( s):

undefined
2 Department

undefined
ABSTRACT

undefined
initiat- ing

undefined
kinase ;

undefined
transduction. < H1>

undefined
char-acterized

undefined
sub- strates

undefined
[  JOCES_ 1994_ S18_ 0097F1. tif] Fig. 1. Schematic representation of five subfamilies of receptor protein tyrosine kinases.

undefined
non-catalytic

undefined
W 42 ,

undefined
differenti-ated

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined


98 L. E. M. Marengere and T. Pawson

2

:

AL AT AL RARARARALLAAAAR AR AR AR AR AR RN AN, |

InsulinR NGFR FGFR

SN  kinase domain U Ig-like domain ™= Acid box

) cys-rich regions [ Fibronectin Il repeats \/\/\/ Leu-rich motifs

Fig. 1. Schematic representation of five subfamilies of receptor
protein tyrosine kinases.

factors with intrinsic tyrosine kinase activity, and the discovery
of the role of these receptors in cell growth, differentiation, and
development have triggered great interest in determining their

mechanism of action. j

SIGNALLING MOLECULES

The initial molecular event mediated by RPTKSs after binding
their ligand is autophosphorylation and stimulation of tyrosine
phosphorylation of cellular proteins. Stimulation of quiescent
fibroblasts by PDGF is accompanied by autophA}rylation
of the PDGFR and increased tyrosine-phosphorylation of
cellular proteins (Kazlauskas anﬂoper, 1989). The PDGFR
kinase domain contains an insertion relative to the other
tyrosine kinases, termed the kinase insert (Fig. 1), which
together with other sites on the PDGFR intracellular domain,
become tyrosine-phosphorylated. Autophosphorylation sites
on the human BPDGFR also serve as docking sites for sig-
nalling mglecules. Phosphatidylinositol (PI) 3x-kinase activity
associaty’ “specifically with tyrosine—phoﬁrylated sites
within the kinase insert of the activated BPDGFR. This asso-
ciation is dependent on tyrosine phosphorylation (Kazl S
and Cooper, 1989; Coughlin et al, 1989). The binding of PA3’-
kinase to the BPDGFR was m d to tyrosine residue

and 751 (YXY \d Y2°1) within the kinase insert, and substi-
tuting thes sidu&)phenylalanine was shown tom
the ability of the PDGFR to bind PA3’-kinase (Kazlauskas and
Cooper, 1 Escobedo et al., 19, The PDGEFR binds other
signalling molecules, including p2lras (TPase-activating

phosphotyrosine sites. The SH2-containing proteins become
tyrosine-phosphorylated as a consequence of binding to the
activated PDGFR (Molloy et al., 1989; Meisenhelder et al.,
1989; Kazlauskas et al., 1990; Kaplan and Cooper, 1990;
Morrison et al., 1990; Kazlauskas et al., 1993). In addition,
members of the Src family of cytoplasmic tyrosine kinases, as
well as S nd Nck, all of which contain SH2 domains, can
also bind the activated PDGFR (Kypta et al., 1990; Mori et al.,
1993; Nishimura et al., 1993; Yokote et al., 1994). The cqlony-
stimulating factor 1 receptor (CSF-1R) (Fig. 1) can ind -
liferation of mouse fibroblasts engineered to express

receptor, in response to CSF-1. Consistent with the view that

activated RPTKSs, which have undergone tyrosine-aytophos-
phorylation, can bind signalling molecules, the activi SCSF-

IR associates with PI3’-kinase, and Grb2 in a g?osphotyrosine-
dependent fashionﬁwning etal., 1989; Rey/ \k et al., 1990,
1992; van der Geer and Hunter, 1993).

The IR has a similar mechanism for activating effector
molecules upon insulin stimulation. Although the IR has
tyrosine kinase activity, SH2-containing signalling molecules
do not associate directly with the activated receptor. Activa-
tion of thg IR leads to autophosphorylation and to tyrosine-
phosphoAion of the insulin receptor substrate (I 1,
which in turn binds SH2-containing signalling moleculy’ \uch
as P13’-kinase, Grb2, Syp and Nck (Lavan et al., 1992; Myers
et 992; Yamamoto et al., 1992; Backer et al., 1992; KuhneA
et al., 1993; Lee et al., 1993; Tobe et al., 1993; Pronk et al.,
1994). The association of effector molecules with specific
tyrosine-phosphorylated sites on activated RPTKs suggests a
general mechanism by which RPTKs couple to intracellular

signalling molecules. j

SH2 BINDING

Receptor autophosphorylation acts as a switch to induce
physical association between activated receptor and signalling
molecules. Although these signalling proteins vary in their
catalytic activities, structures, and cellular functions, they all
share a common region termed the SH2 domain. The SH2
domain was initially identified as a common 100 amino acid
sequence in the Src and Fps oncoproteins (Sadowski et al.,
1986; Pawson, 1988). SH2 domains are highly conserved
(approximately 35% identical amongst all SH2 domains),
associate specifically with phosphotyrosine in a sequence-
dependent manner, and are found in one or two copies in many
cytoplasmic signalling molecules (Pawson and (zish, 1992).
These SH2-containing proteins can be classi&into two
groups; the first group includes signalling proteins that contain
intrinsic catalytic activity, and includes the Src, Fps and Abl
families of intracellular tyrosine kinases, PLCyl and 2, GAP
and tyrosine-specific phosphatases such as the SH2-containing
tyrosine phosphatase Syp, amongst others. The second group
includes molecules such as Grb2, SHC, Nck, Crk and the p85
subunit of PI3’-kigase, which do not have detectable intrinsic
catalytic activi but apparently function as molecular
adaptors to couple RPTKs to signalling proteins that them-
selves may lack SH2 domains (Fig. 2).

The SH2 domains of proteins such as GAP, PLCyl, PI3’-

kinase, and Src were shown to be directly involved in protein-

protein (GAP), phospholipase C-y (PLCyl)" \d the Syp pRos-
photyrosine phosphatase. These interactions involve thg/ N2
domain(s) of the signalling molecules and specific receptor

protein interactions with activated receptors. The binding sites
of these and other SH2-containing molecules have been
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Fig. 2. Structures of SH2-containing proteins. These molecules are
divided into two groups: Group 1 Ancludes proteins with intrinsic
catalytic activity, while Group 2, udes proteins without intrinsic
catalytic activity, serving an adaptor function, coupling RPTKs to
downstream effector molecules. The catalytic activities, and adaptor
functions are listed on the right. Kinase, the tyrosine kinase domain;
PTPase, the phosphotyrosine phosphatase domain; PLC, the
phospholipase domain; GTPase, Ras GTPase-activating domain;
BCR, the G-binding protein Rac/Rho GTPase-activating domain;
Dbl, a guanine-nucleotide exchange domain.A

precisely mapped on several receptors. For example, Src, PA3’-
kinase, GAP, Syp, and PLCyl bind tyrosine-phosphory’ \d
sites Y379/Y381 Y7407y751 y771 Y1009 and Y102 respec-
tively, on the PDGFR (Fig. 3). Theseﬁ%bindirz_ ;'tes were
mapped using two main approaches. The first approach

involves in vivo expression of the wild-type (wt) receptor, or
variant forms of the receptor in which specific tyrosine phos-
Zl Sse

phorylation sites are substituted with phenylalanine.

receptor-expressing cells are then stimulated with the agpro-
priate ligand necessary for receptor activation. The&or
mutant receptors are immunoprecipitated and assayed for the
presence of specific co-immunoprecipitated SH2-containing
proteins. In the case of the PDGFR, specific receptor aptophos-
phorylation sites are required for binding of deﬁnedz g—c -
taining proteins. In vitro, the autophosphorylated receptorﬁ
bind SH2 signalling proteins. These interactions can be effi-
ciently competed by short txrosine-phosphorylated pe;&
corresponding to specific rﬂtor autophosphorylation sites.
Together these approaches have identified specific rgeeptor-
binding sites for SH2-containing molecules (Kazlay’ is and
Cooper, 1989, 1990; Molloy et al., 1989; Downing et al., 1989;
Kaplan et al., 1990; Morrison et al., 1990; Anderson et al.,
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PDGF Receptor

Extracellular medium
T

Cytoplasm

Fig. 3. SH2 domain binding sites on the PDGFR. The sequences C-
terminal to the autophosphorylated tyrosine binding sites are
indicated on the left of the receptor, in single letter amino acid code.

al., 1992: Kazlauskas et al.. 1992, 1993: van der Geer et al.,
1993).

The ability of SH2 domains to mediate phosphotyrosine-
dependent interactions is not limited to receptors. For example,
GAP, Grb2, Src, and other signalling proteins can also
associate, via their SH2 domain(s) with txrosine-phosphory-
lated cytoplasmic molecules (Moran et a&%; Koch et al.,
1991; Lowenstein et al., 1992; Schaller et al., 1992; Cobb et
al., 1994). This was demonstrated by the ability of v-Crk and
v-Abl SH2 domains to bind a spectrum of tyrosine-phos
rylated proteins in solution, and in
(Matsuda et al., 1990; Mayer and Han , 1990; Mayer et
al., 1991, 1992). The N-terminal SH2 domain of GAP was also
shown to bind predominantly tyrosine-phosphorylated proteins
p62 and RrI190 in vivo andAvitro (Moran et al., 1990;
Marenge nd Pawson, 1992). These proteins have been
suggested to have RNA-binding ability, and a GTPase activity
towards the small GTP-binding protein Rho, respectively
(Wong et al., 1992; Settleman et al., 1992a,b). These experi-
ments revealed that binding to phosphotyrosine—co&
sites is a fundamental property of all SH2 domains.A

SH2 SPECIFICITY

As noted above, autophosphorylated growth factor receptors
possess multiple phosphotyrosine sites that bind to distinct
SH2 domains (Fig. 3) (Fantl et al., 1992; Rotin et al., 1993;
Mohammadi et al., 191; Reedijk et al., 1990, 1992). The sxs-
tematic mapping o o, GAP, and PLCy1 binding site(s

the PDGFR and C has suggested that the sequence C-
terminal tohe phosphotyrosine regulates SH2-binding sgeci-
ficity (va&r Geer and Hunter, 1993; Mohammadi 5
1991; Cantley et al., 1991; Panayotou et al., 1992; Kashishian
et al., 1992; Kazlauskas et al., 1992). For example, binding
sites for the SH2-containing p85 protein on the polyoma virus
middle T-antigen, PDGFR, CSF-1R, c-Kit, and IRS-1 have the

1990; Escobedo et al., 1991; Fantl et al., 1992; Kashishian et A consensus  sequence pTyr-(Met/Val)-(Asp/ Pro)-(Met)
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Fig. 4. Sequence of the Src SH2 domain with conserved residues
highlighted, and respective positions indicated above. The locations
of the a-helices, B-sheets and loops are indicated below according to
the nomenclature developed by Eck et al. (1993).

depicted in single letter code as [pY(M/V)-(D/E/P)-
(Escobedo et al., 1991; Auger et al., 1992; McGlade et
1992; Backer et al., 1992). Furthermore, the p85 SH2 domains
can bind to phosphopeptides containing the consensus
sequence pYM/VAX-M with high affinity (Felder et al., 1993;
Panayotou et al 93). Based on the data for the p85 SH2
domain-selectivity, a degenerate phosphopeptide library screen
was developed in order to determine the specificity of individ-
ual SH2 domains (Songyang et al., 1993, 1994). 1y,
the p85 SH2 domains expressed as fusion proteins were
incubated with phosphopeptides, containing the sequence
GDGpTyrX*'X+2X+3SPLLL (single letter amino acid code),
where X represents a degenerate position at the +1, +2, and +3
residues. The p85 N- and C-terminal SH2 domains selected
amino acid motifs very similar to the consensus binding sites
in the physiological targets mentioned above. Consequently,
the assay was expanded to other SH2 domains, in order to
investigate their respective potential specificity (Songyang et
al., 1993, 1994).

Based on their binding specificity, SH2 domains can be clas-
sified into two groups (Songyang et al., 1994). The first ﬁ
selects mostly hydrophilic residues at the two residues (-
terminal to the phosphotyrosine (the +1 and +2 positions),

a hydrophobic residue at +3. The second group preferentially
selects hydrophobic residues. (Songyang et al., 1993, 1994).

The ability of thjs assay to predict SH2-binding sequences
implies that SH2 ain can independently select for phos
photyrosine and residues at the +1, +2, and +3 position&
selection must therefore be performed by residues strategically
located within the SH2 domain, which specifically interact
with these positions. Evidence of SH2 domain binding-spgci-
ficity was first provided by structural analysis of the v-Sr 2
domain complexed to the pYEEI peptide, and will be discussed

in the next section. i

SH2 STRUCTURE

SH2 domains provided information about the overall/ “ology
of these modular domains, which comprise a central B-sheet
flanked by two oxhelices (Overduin et al., 1992; Booker et al.,
1992). A

The X-ray structures of v-Src SH2 and Lck SH2 domains
complexed to the high affinity peptide EP WEHTHPIYL
(pYEEI) added information about SH2 interact; with ??os-

NMR solutions of the uncomplexed Abl SH2, and %50( N-

photyrosine and the +1Glu, +2Glu, and +3Ile residues within
the phosphopeptide ( man et al., 1993; Eck et al., 1993).
Following the structural analysis of these domains, a new
nomenclature was adopted for SH2 residues based on
secondary structures (see Fig. 4). X-ray crystallographic sfuc-
tures were also of higher resolution, showing two clef] e
first being the phosphotyrosine-binding site, and the second, a
hydrophobic-binding pocket for the +3 residue. Both pockets
are flexible; the phosphotyrosine-binding pocket closes upon
association with phosphotyrosine, while the hydrophobic
pocket opens after interaction with the +3 residue. As expected,
well-conserved residues within the SH2 domains form the
hydrophobic core and the phosphotyrosine-binding pocket,
while the more variable residues are involved in interactions
with the +1 to +3 residues, and therefore in conferring speci-
ficity. The phosphotyrosine moiety is stabilized mostly via
interac& with ArgoA2. ArgBB5. and hyspD6, which
contact the pheny’ \ng and the phosphate&i)._‘liesidues
within the BC loop also stabilize the phosphotyrosine structure
through interactions with the terminal phosphate oxygens.
In contrast to the phosphotyrosine-binding site, the +1
+2Glu residues lie on the surface of the SH2 domain. The

+1Glu forms ionic interactions with RkyrBDS and %s[ﬁDS,
while the +2Glu is stabilized by ioni&eﬁrﬁtions water
molecules with D’1, LysBD6 and the carbonyl oxygen of
the +1%lu. Theﬁc[frioph

binding pocket specific for the
3lle ormed by residues in the EF and BG loops, and
engulfs the +3Ile. We have recently shown that changing the
Thr at the EF1 position of the Src SH2 domain to Trp markedly
alters its bin& specificity and biological behaviour
(Marengere et al., 1994).

The interior of the binding pocket is lined by helix
the edges are formed by the EF and BG loops, a e
strand. More specifically, IleBE4, TyrD5. TyroA9, LeuB&
GlyBG3 and ThrEF1 are i/’ Nues that directly interact with the
+3Ile and may therefore be important in determining specificity
at that position. These amino acids vary amongst SH2 domains,
consistent with the possibility that they are major determinants
in SH2 specificity, at least at the +3 position. The Src and Lg¢k
SH2 structures have identified one specific type of SH2/
phopeptide interaction, in which the phosphopeptide can b -
resented as a two-pronged plug (the prongs being forme
phosphotyrosine and the +3Ile sidechain), while the SH2
domain is a socket with two accommodating holes.

The NMR structure of the PL.Cyl C-terminal SH2 (C-SH2)
domain complexed to DY \Y'I*!'I*2P+3LPDPK (termed

pYIIP) phosphopeptide,/ § shown a second class SH2
binding-specificity (Pascal et al., 1994). The BLC SH2
domain shares some topologi (catures with, complexed

Src/Lck SH2 domains, such as the hydrophobic core and the
concentration qf basic residues near the phosphotyrosine-
binding pock terestingly, the PLCyl C-SH2 domain differs
with respect to its phosphotyrﬁtabilizing interactions,

while

SH2-binding surface for positions C-terminal to the phospho-
tyrosine, and its additional ability to contact the opep-

tide +4, +5, and +6 positions.

Also in contrast to the +3-binding pocket of the Src SH2
domain, the PLCyl C-SH2 domain binding surface, has an
extended hy; hobic groove in which the +1, +3 and +5
residues are buried. One factor contributing to this difference
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in binding surface is the SH2 position BD3, which is a Tyrin ~ GRNETIC EVIDENCE FOR THE ROLE OF SH2

Stc SH2 domain, but a Cys in the JX_Xyl C-SH2 domain. AINS IN SIGNAL TRANSDUCTION - SH2

TyrBDS5 in the Src SH2 domain interay’ ith the BG loop, and/ \DOMAINS REGULATE DEVELOPMENTAL

pinches that segment of the binding surface, closing the =~ PATHWAYS

hydrophobic groove, and thereby forcing the +1 and +2

residues to bind at the surface of the SH2 domain. The other =~ The first genetic evidence describing a role for SH2 domains
major difference between SH2 structures is the ability of the , in development was provided by the C. elegans gene sex
PLCyl C-SH2 domain to associate with the +4, +5, and +6 myoblasts abnormal (sem)-5 (Clark et al., 1992). Disruptions
positions of the phosphopeptide. Although 85% of the NMR- within the sem-5 gene affect hermaphrodite vulval dgvelop-
detected interactions were between the SH2 domain and the  ment, and proper migration of sex myoblasts. sem-5 y/ qtions
phosphotyrosine +1, +2, and +3 positions, interactions between ~ also affect the clear (clr) 1 phenotype, and larval viability
the +4Leu, +5Pro, and +6Asp of the phosphopeptide were also ~ (Horvitz and Sternberg, 1991).

detected, mostly with SH2 residues within the EF and BG ~_ The sem-5 gene encodes a protein containing almost exclu-
loops. SH2 binding to the +4, +5, and +6 residues may confer . Sively SH3 and SH2 domains (Fig. 2), and mutations aff/’ Nng
optimal binding affinity towards a physiological target. development map to these domains (Clark et al., 1992). A spb-

Another example of an SH2 domain binding to a phospho-  Stitution at position BC1, within the BC loop of the /
tyrosine-containing sequence, is provided by the structural ~ domain, affects vulval development, sex myoblast migration,
analysis of the Syp N-terminal SH2 domain (N-SH2) and the clr-1 phenotype, while a substitution at position BC2
complexed to high affinity peptides (Lee et al., 1994). The Syp  2ffects the clr-1 phenotype and has a very minimal effect on
N-SH2 domain displays some unique features, while other vulval development. The BC1 mutation induces a substitution
facets resemble either the Src SH2 or the BLCyl C-SH2  ©of the well-conserved qu residue for Lys, while the BCZ
domain structures. For example, the Gly & A2, which mutat.io.n affects amore variable residue (Ser for Asn), possibly
replaces the Arg found at A2 in the Src/Lck and PLCYL C- explaining the minimal effe?ct on de.velopmer.ltal processes
SH2 domains, does not contact the phosph otyrosi&loiety. compared to the .BC1 mutation. A third mutation disrupts a
Instead, the invariant ArgBBS5 of the Syp N-SH2 domain sphce‘ acceptor site, apd likely generates a n1_111 allele. This
interacts with both th i z'-nyl ring and the phosphate group mutation results in a high level of larval lethality, anq severe
terminal oxygens. In contrast to the PLCyl C-SH2 domain suppression of vulval development, sex myoblast migration
structure, no additional basic residue& found to bind the ~ 2nd the clr-1 phenotype.

phosphotyrosine, which might compensate for the absence of The .Drosop hila downstream of receptor kinase (.d &) gene,
the AroGA2. which is homologous to the C. elegans gene sem-5, is required

found in the PLCyl C-SH2, TeBDS5 of the Syp N-SH2 for proper differentiation of the R7 photoreceptor cell, leading to

A . . 8
. - . normal eye development. drk is also required for pupal viability,
?(?rmingdz?fk:lsyrcll?ct);Iﬁ%tb?;a?;gecﬁangréﬁnar\fhiﬁnzggr-ti-aln t fgr and is apparently involved in signalling pathways downstream of

.. . . . . multiple receptor tyrosine kinases, including sevenless, the
and +3 positions are deeply buried. Also consistent with this P p Y g

. . . Drosophila EGFR homologue and torso (Olivier et al., 1993;
type of binding surface topology, Syp N-SH2 domain residues i1t 41 1993; Doyle and Bishop, 1993). Mutant alleles of

interact weakly with the +4 peptide residue, and tightly with drk. E(sev)2B and Su(SevsIDR] itiallv identified by thei
the +5 residue. Although SH2 domains are wgll-conserved and e;féct gss ‘é)y o d?:, el og:nee:nt (S)i m;)W \; 1-n119a9]}; laﬁg ;atz . m};ppilé

display very similar backbone con.forTnauo&hey vary inthe ¢ point mutations affecting well-conserved SH2 residues 0tA2
details of their phosphotyrosine-binding pockets, and in their (substitution of Arg for His) and BR6 (substitution of His for Tyr)
binding surfapes for the peptide residues C-terminal to the ;v 1vedin phosphotyrosine bin&(Olivier et al.,, 1993). Tran-
phosphotyrosine. ) . sheterozygous combinations of these mutant alleles result in

A growing body of evidence shows that residues both N- - 501 jethality (Olivier et al, 1993). Genetically, drk lies
terminal of the phosphotyrosine, and C-terminal to +3 canaffect  ypream of son-of-sevenless (sos), which encodes a guanine
SH2 binding-specificity. The ability of pR5a N-SH2 to bind a  py¢jeotide exchange factor for Ras (Simon et al., 1991). The SH3
phosphopeptide representing the IRS-1 74 ‘8 binding s'it.e, Wwas  domains of drk were shown to bind directly to the proline-rich
investigated by systematically substity’ \ peptide positions — tail of Sos (Olivier et al., 1993). drk therefore provides a direct
4 to +5, relative to the phosphotyrosine, with brnzoylpheny-  ink between activated receptors and Sos, which is able to directly
lalanine (Bpa) (Williams and Shoelson, 1993)/ \ost changes  convert Ras into the active GTP-bound state. These mutations
had little effect on binding affinity but Bpa substitution for affect the ability of the drk S}’ Nomain to bind activated receptor
+1Met and +3Met greatly reduced the affinity of the pRS& N-  tyrosine kinases, thereby blocking signalling cascades and

SH2 domain for these altered peptides. It was also sy’ N that  directly altering cellular responses (Olivier et al., 1993).
Bpa-substitution at positions —1 and +4 decreased the affinity A

of the p85a N-SH2 domain for these peptides. The —1 and +4

positions were cross-linked, upon photoactivation of the Bpa SH3 DOMAIN

complex, to residues within the oizhelix A and BG loop, respec-

tively, contributing to the overy’ \ffinity. These data 3/ \@n- Many signalling proteins that couple activated RPTKSs to intra-
sistent with the NMR structure of PRLCyl C-SH2 and the cellular signalling events, contain single or multiple cop&f
crystallographic structure of Syp Y {2, which observed inter- SH3 domains, which can often be found in the same molecule
actions between +4, +5, and +6 peptide positions, and reﬁs as SH2 domains. SH3 domains are also well-conserved regions
within EF and BG loops (Pascal et al., 1994; Lee et al., 1994). of approximately 50-75 residues, Wiﬁo known catalytic
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function, that are found both in signalling molecules with
intrinsic catalytic activities and in adaptor proteins (Fig. 2)
(Pawson, 1988; Gish and Pawson, 1992; Pawson and Gish,
1992). SH3 dony’ \ specifically recognize and bind wit/ gh
affinity to proline-rich sequences. This was first demonstrated
from the identification of the SH3-binding protein (3BP) 1,
cloned from an expression library, using the SH3 domain of the
tyrosine kinase c-Abl (Cicchetti et al., 1992). The c-Abl SH3
domain-binding site was later mapped to a proline-rich
sequence within the C-terminal region of 3BP1. This SH3-
binding site was further refined to a ten amino acid proline-rich
motif with the sequence APTMPPPLPP (Ren et al., 1993). Enr-
thermore, a second c-Abl SH3 domain binding protein
identified and termed 3BP2 (Ren et al., 1993). The binding site
for c-Abl SH3 domain on 3BP2 was localized to the sequence
PPAYPPPPVP (Ren et al., 1993). This suggested a binding
specificity for SH3 domains and a role in signal transduction by
mediating protein-protein interactions.

Genetic analyses of the mammalian Grb2 homologues
Drosophila drk and C. elegans Sem-5 proteins, have revealed
a role for SH3 domains in the conserved signalling pathway
that couples activated receptor to Ras (Clark et al., 1992;
Olivier et al., 1993). As discussed previously, mutations within
the SH2 domains of drk and Sem-5, have defined their role in
mediating signalling in both species. In C. elegans, Sem-5 SH3
mutations also disrupt normal signalling, and cause severe
defects in vulval induction, sex myoblast migration, clr-1 spp-
pression, and larval viability, showing a role for SH3 do
in cellular signalling (Clark et al., 1992). In contrast to
mutations in the N-terminal SH3 domain of Sem-5, a substi-
tution of (Gly201 for Arg in the Sem-5 Csterminal SH3 domain,
only re in a minor clr-1 suppressi his suggests that the
N-terminal SH3 domain might play a more crucial role than
the C-terminal SH3 domain in mediating proper signalling in
this pathway. These genetically identified pathways, and the
role played by drk and Sem-5 signalling molecules, were spb-
stantiated by biochemical studies in mammalian cells with
homologue Grb2 and mSos1/mSos2 (Lowenstein et al., 1992;
Bowtell et al., 1992). As with drk, the SH3 domains of Grb2
form a stable cytoplasmic complex by binding the proline-rich
sequences in the C terminus of the guanine nucleotide releasing
protein mSosl and mSos2 (the mouse homologues of
Drosophila Son-of-sevenless). Upon activation and aptophos-
phorylation of the EGFR, the Grb2-mSosl com@binds
directly to the receptor through recognition of binding site
pYINQ (Tw!%8) by the Grb2 SH2. As a consequence, it is
hypothesﬂthat mSos1 becomes co-localized with p2lras,
and catalyses the exchange of GDP for GTP, activating p21ras
and its signalling pathway (Pawson and Schlessinger, 1993;
Gale et al., 1993; Rozakis-Adcock et al., 1993; Li et al., 1993;
Buday and Downward, 1993; Egan et al., 1993). SH3 domains
apparently have many other functions that are beyond the
scope of this article. In particular, they are implicated in the
subcellular localization of proline-rich proteins, and in the
organization of signalling complexes.

In summary, SH2 and SH3 domains regulate a network of
protein-protein interactions that are important for signalling
downstream of receptors associated with tyrosine kinase
activity.
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